aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/bio.c
AgeCommit message (Collapse)AuthorFilesLines
2024-11-01Merge tag 'for-6.12-rc5-tag' of ↵Linus Torvalds1-24/+13
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more stability fixes. There's one patch adding export of MIPS cmpxchg helper, used in the error propagation fix. - fix error propagation from split bios to the original btrfs bio - fix merging of adjacent extents (normal operation, defragmentation) - fix potential use after free after freeing btrfs device structures" * tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix defrag not merging contiguous extents due to merged extent maps btrfs: fix extent map merging not happening for adjacent extents btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids() btrfs: fix error propagation of split bios MIPS: export __cmpxchg_small()
2024-10-23btrfs: fix error propagation of split biosNaohiro Aota1-24/+13
The purpose of btrfs_bbio_propagate_error() shall be propagating an error of split bio to its original btrfs_bio, and tell the error to the upper layer. However, it's not working well on some cases. * Case 1. Immediate (or quick) end_bio with an error When btrfs sends btrfs_bio to mirrored devices, btrfs calls btrfs_bio_end_io() when all the mirroring bios are completed. If that btrfs_bio was split, it is from btrfs_clone_bioset and its end_io function is btrfs_orig_write_end_io. For this case, btrfs_bbio_propagate_error() accesses the orig_bbio's bio context to increase the error count. That works well in most cases. However, if the end_io is called enough fast, orig_bbio's (remaining part after split) bio context may not be properly set at that time. Since the bio context is set when the orig_bbio (the last btrfs_bio) is sent to devices, that might be too late for earlier split btrfs_bio's completion. That will result in NULL pointer dereference. That bug is easily reproducible by running btrfs/146 on zoned devices [1] and it shows the following trace. [1] You need raid-stripe-tree feature as it create "-d raid0 -m raid1" FS. BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 13 Comm: kworker/u32:1 Not tainted 6.11.0-rc7-BTRFS-ZNS+ #474 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: writeback wb_workfn (flush-btrfs-5) RIP: 0010:btrfs_bio_end_io+0xae/0xc0 [btrfs] BTRFS error (device dm-0): bdev /dev/mapper/error-test errs: wr 2, rd 0, flush 0, corrupt 0, gen 0 RSP: 0018:ffffc9000006f248 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888005a7f080 RCX: ffffc9000006f1dc RDX: 0000000000000000 RSI: 000000000000000a RDI: ffff888005a7f080 RBP: ffff888011dfc540 R08: 0000000000000000 R09: 0000000000000001 R10: ffffffff82e508e0 R11: 0000000000000005 R12: ffff88800ddfbe58 R13: ffff888005a7f080 R14: ffff888005a7f158 R15: ffff888005a7f158 FS: 0000000000000000(0000) GS:ffff88803ea80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000020 CR3: 0000000002e22006 CR4: 0000000000370ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die_body.cold+0x19/0x26 ? page_fault_oops+0x13e/0x2b0 ? _printk+0x58/0x73 ? do_user_addr_fault+0x5f/0x750 ? exc_page_fault+0x76/0x240 ? asm_exc_page_fault+0x22/0x30 ? btrfs_bio_end_io+0xae/0xc0 [btrfs] ? btrfs_log_dev_io_error+0x7f/0x90 [btrfs] btrfs_orig_write_end_io+0x51/0x90 [btrfs] dm_submit_bio+0x5c2/0xa50 [dm_mod] ? find_held_lock+0x2b/0x80 ? blk_try_enter_queue+0x90/0x1e0 __submit_bio+0xe0/0x130 ? ktime_get+0x10a/0x160 ? lockdep_hardirqs_on+0x74/0x100 submit_bio_noacct_nocheck+0x199/0x410 btrfs_submit_bio+0x7d/0x150 [btrfs] btrfs_submit_chunk+0x1a1/0x6d0 [btrfs] ? lockdep_hardirqs_on+0x74/0x100 ? __folio_start_writeback+0x10/0x2c0 btrfs_submit_bbio+0x1c/0x40 [btrfs] submit_one_bio+0x44/0x60 [btrfs] submit_extent_folio+0x13f/0x330 [btrfs] ? btrfs_set_range_writeback+0xa3/0xd0 [btrfs] extent_writepage_io+0x18b/0x360 [btrfs] extent_write_locked_range+0x17c/0x340 [btrfs] ? __pfx_end_bbio_data_write+0x10/0x10 [btrfs] run_delalloc_cow+0x71/0xd0 [btrfs] btrfs_run_delalloc_range+0x176/0x500 [btrfs] ? find_lock_delalloc_range+0x119/0x260 [btrfs] writepage_delalloc+0x2ab/0x480 [btrfs] extent_write_cache_pages+0x236/0x7d0 [btrfs] btrfs_writepages+0x72/0x130 [btrfs] do_writepages+0xd4/0x240 ? find_held_lock+0x2b/0x80 ? wbc_attach_and_unlock_inode+0x12c/0x290 ? wbc_attach_and_unlock_inode+0x12c/0x290 __writeback_single_inode+0x5c/0x4c0 ? do_raw_spin_unlock+0x49/0xb0 writeback_sb_inodes+0x22c/0x560 __writeback_inodes_wb+0x4c/0xe0 wb_writeback+0x1d6/0x3f0 wb_workfn+0x334/0x520 process_one_work+0x1ee/0x570 ? lock_is_held_type+0xc6/0x130 worker_thread+0x1d1/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0xee/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: dm_mod btrfs blake2b_generic xor raid6_pq rapl CR2: 0000000000000020 * Case 2. Earlier completion of orig_bbio for mirrored btrfs_bios btrfs_bbio_propagate_error() assumes the end_io function for orig_bbio is called last among split bios. In that case, btrfs_orig_write_end_io() sets the bio->bi_status to BLK_STS_IOERR by seeing the bioc->error [2]. Otherwise, the increased orig_bio's bioc->error is not checked by anyone and return BLK_STS_OK to the upper layer. [2] Actually, this is not true. Because we only increases orig_bioc->errors by max_errors, the condition "atomic_read(&bioc->error) > bioc->max_errors" is still not met if only one split btrfs_bio fails. * Case 3. Later completion of orig_bbio for un-mirrored btrfs_bios In contrast to the above case, btrfs_bbio_propagate_error() is not working well if un-mirrored orig_bbio is completed last. It sets orig_bbio->bio.bi_status to the btrfs_bio's error. But, that is easily over-written by orig_bbio's completion status. If the status is BLK_STS_OK, the upper layer would not know the failure. * Solution Considering the above cases, we can only save the error status in the orig_bbio (remaining part after split) itself as it is always available. Also, the saved error status should be propagated when all the split btrfs_bios are finished (i.e, bbio->pending_ios == 0). This commit introduces "status" to btrfs_bbio and saves the first error of split bios to original btrfs_bio's "status" variable. When all the split bios are finished, the saved status is loaded into original btrfs_bio's status. With this commit, btrfs/146 on zoned devices does not hit the NULL pointer dereference anymore. Fixes: 852eee62d31a ("btrfs: allow btrfs_submit_bio to split bios") CC: stable@vger.kernel.org # 6.6+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-16Merge tag 'for-6.12/block-20240913' of git://git.kernel.dk/linuxLinus Torvalds1-12/+18
Pull block updates from Jens Axboe: - MD changes via Song: - md-bitmap refactoring (Yu Kuai) - raid5 performance optimization (Artur Paszkiewicz) - Other small fixes (Yu Kuai, Chen Ni) - Add a sysfs entry 'new_level' (Xiao Ni) - Improve information reported in /proc/mdstat (Mateusz Kusiak) - NVMe changes via Keith: - Asynchronous namespace scanning (Stuart) - TCP TLS updates (Hannes) - RDMA queue controller validation (Niklas) - Align field names to the spec (Anuj) - Metadata support validation (Puranjay) - A syntax cleanup (Shen) - Fix a Kconfig linking error (Arnd) - New queue-depth quirk (Keith) - Add missing unplug trace event (Keith) - blk-iocost fixes (Colin, Konstantin) - t10-pi modular removal and fixes (Alexey) - Fix for potential BLKSECDISCARD overflow (Alexey) - bio splitting cleanups and fixes (Christoph) - Deal with folios rather than rather than pages, speeding up how the block layer handles bigger IOs (Kundan) - Use spinlocks rather than bit spinlocks in zram (Sebastian, Mike) - Reduce zoned device overhead in ublk (Ming) - Add and use sendpages_ok() for drbd and nvme-tcp (Ofir) - Fix regression in partition error pointer checking (Riyan) - Add support for write zeroes and rotational status in nbd (Wouter) - Add Yu Kuai as new BFQ maintainer. The scheduler has been unmaintained for quite a while. - Various sets of fixes for BFQ (Yu Kuai) - Misc fixes and cleanups (Alvaro, Christophe, Li, Md Haris, Mikhail, Yang) * tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux: (120 commits) nvme-pci: qdepth 1 quirk block: fix potential invalid pointer dereference in blk_add_partition blk_iocost: make read-only static array vrate_adj_pct const block: unpin user pages belonging to a folio at once mm: release number of pages of a folio block: introduce folio awareness and add a bigger size from folio block: Added folio-ized version of bio_add_hw_page() block, bfq: factor out a helper to split bfqq in bfq_init_rq() block, bfq: remove local variable 'bfqq_already_existing' in bfq_init_rq() block, bfq: remove local variable 'split' in bfq_init_rq() block, bfq: remove bfq_log_bfqg() block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator() block, bfq: fix procress reference leakage for bfqq in merge chain block, bfq: fix uaf for accessing waker_bfqq after splitting blk-throttle: support prioritized processing of metadata blk-throttle: remove last_low_overflow_time drbd: Add NULL check for net_conf to prevent dereference in state validation nvme-tcp: fix link failure for TCP auth blk-mq: add missing unplug trace event mtip32xx: Remove redundant null pointer checks in mtip_hw_debugfs_init() ...
2024-09-10btrfs: merge btrfs_orig_bbio_end_io() into btrfs_bio_end_io()Qu Wenruo1-18/+11
There are only two differences between the two functions: - btrfs_orig_bbio_end_io() does extra error propagation This is mostly to allow tolerance for write errors. - btrfs_orig_bbio_end_io() does extra pending_ios check This check can handle both the original bio, or the cloned one. (All accounting happens in the original one). This makes btrfs_orig_bbio_end_io() a much safer call. In fact we already had a double freeing error due to usage of btrfs_bio_end_io() in the error path of btrfs_submit_chunk(). So just move the whole content of btrfs_orig_bbio_end_io() into btrfs_bio_end_io(). For normal paths this brings no change, because they are already calling btrfs_orig_bbio_end_io() in the first place. For error paths (not only inside bio.c but also external callers), this change will introduce extra checks, especially for external callers, as they will error out without submitting the btrfs bio. But considering it's already in the error path, such slower but much safer checks are still an overall win. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: rename __btrfs_submit_bio() and drop double underscoresDavid Sterba1-5/+5
Previous patch freed the function name btrfs_submit_bio() so we can use it for a helper that submits struct bio. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: rename btrfs_submit_bio() to btrfs_submit_bbio()David Sterba1-5/+5
The function name is a bit misleading as it submits the btrfs_bio (bbio), rename it so we can use btrfs_submit_bio() when an actual bio is submitted. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: set search_commit_root on stripe io in case of relocationJohannes Thumshirn1-1/+4
Set rst_search_commit_root in the btrfs_io_stripe we're passing to btrfs_map_block() in case we're doing data relocation. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: rename btrfs_io_stripe::is_scrub to rst_search_commit_rootJohannes Thumshirn1-1/+1
Rename 'btrfs_io_stripe::is_scrub' to 'rst_search_commit_root'. While 'is_scrub' describes the state of the io_stripe (it is a stripe submitted by scrub) it does not describe the purpose, namely looking at the commit root when searching RAID stripe-tree entries. Renaming the stripe to rst_search_commit_root describes this purpose. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-29block: rework bio splittingChristoph Hellwig1-12/+18
The current setup with bio_may_exceed_limit and __bio_split_to_limits is a bit of a mess. Change it so that __bio_split_to_limits does all the work and is just a variant of bio_split_to_limits that returns nr_segs. This is done by inlining it and instead have the various bio_split_* helpers directly submit the potentially split bios. To support btrfs, the rw version has a lower level helper split out that just returns the offset to split. This turns out to nicely clean up the btrfs flow as well. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: David Sterba <dsterba@suse.com> Reviewed-by: Damien Le Moal <dlemoal@kernel.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Reviewed-by: Hans Holmberg <hans.holmberg@wdc.com> Link: https://lore.kernel.org/r/20240826173820.1690925-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-08-27btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()Qu Wenruo1-8/+18
[BUG] There is an internal report that KASAN is reporting use-after-free, with the following backtrace: BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs] Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45 CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: dump_stack_lvl+0x61/0x80 print_address_description.constprop.0+0x5e/0x2f0 print_report+0x118/0x216 kasan_report+0x11d/0x1f0 btrfs_check_read_bio+0xa68/0xb70 [btrfs] process_one_work+0xce0/0x12a0 worker_thread+0x717/0x1250 kthread+0x2e3/0x3c0 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x11/0x20 Allocated by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x7d/0x80 kmem_cache_alloc_noprof+0x16e/0x3e0 mempool_alloc_noprof+0x12e/0x310 bio_alloc_bioset+0x3f0/0x7a0 btrfs_bio_alloc+0x2e/0x50 [btrfs] submit_extent_page+0x4d1/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x4b/0x60 kmem_cache_free+0x214/0x5d0 bio_free+0xed/0x180 end_bbio_data_read+0x1cc/0x580 [btrfs] btrfs_submit_chunk+0x98d/0x1880 [btrfs] btrfs_submit_bio+0x33/0x70 [btrfs] submit_one_bio+0xd4/0x130 [btrfs] submit_extent_page+0x3ea/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [CAUSE] Although I cannot reproduce the error, the report itself is good enough to pin down the cause. The call trace is the regular endio workqueue context, but the free-by-task trace is showing that during btrfs_submit_chunk() we already hit a critical error, and is calling btrfs_bio_end_io() to error out. And the original endio function called bio_put() to free the whole bio. This means a double freeing thus causing use-after-free, e.g.: 1. Enter btrfs_submit_bio() with a read bio The read bio length is 128K, crossing two 64K stripes. 2. The first run of btrfs_submit_chunk() 2.1 Call btrfs_map_block(), which returns 64K 2.2 Call btrfs_split_bio() Now there are two bios, one referring to the first 64K, the other referring to the second 64K. 2.3 The first half is submitted. 3. The second run of btrfs_submit_chunk() 3.1 Call btrfs_map_block(), which by somehow failed Now we call btrfs_bio_end_io() to handle the error 3.2 btrfs_bio_end_io() calls the original endio function Which is end_bbio_data_read(), and it calls bio_put() for the original bio. Now the original bio is freed. 4. The submitted first 64K bio finished Now we call into btrfs_check_read_bio() and tries to advance the bio iter. But since the original bio (thus its iter) is already freed, we trigger the above use-after free. And even if the memory is not poisoned/corrupted, we will later call the original endio function, causing a double freeing. [FIX] Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(), which has the extra check on split bios and do the proper refcounting for cloned bios. Furthermore there is already one extra btrfs_cleanup_bio() call, but that is duplicated to btrfs_orig_bbio_end_io() call, so remove that label completely. Reported-by: David Sterba <dsterba@suse.com> Fixes: 852eee62d31a ("btrfs: allow btrfs_submit_bio to split bios") CC: stable@vger.kernel.org # 6.6+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: introduce new "rescue=ignoremetacsums" mount optionQu Wenruo1-1/+1
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the other metadata sanity checks are still kept as is. This new mount option is mostly to allow the kernel to mount an interrupted checksum conversion (at the metadata csum overwrite stage). And since the main part of metadata sanity checks is inside tree-checker, we shouldn't lose much safety, and the new mount option is rescue mount option it requires full read-only mount. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to is_data_inode()David Sterba1-1/+1
Pass a struct btrfs_inode to is_data_inode() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-13btrfs: zoned: allocate dummy checksums for zoned NODATASUM writesJohannes Thumshirn1-1/+3
Shin'ichiro reported that when he's running fstests' test-case btrfs/167 on emulated zoned devices, he's seeing the following NULL pointer dereference in 'btrfs_zone_finish_endio()': Oops: general protection fault, probably for non-canonical address 0xdffffc0000000011: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 4 PID: 2332440 Comm: kworker/u80:15 Tainted: G W 6.10.0-rc2-kts+ #4 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] RSP: 0018:ffff88867f107a90 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff893e5534 RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088 RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed1081696028 R10: ffff88840b4b0143 R11: ffff88834dfff600 R12: ffff88840b4b0000 R13: 0000000000020000 R14: 0000000000000000 R15: ffff888530ad5210 FS: 0000000000000000(0000) GS:ffff888e3f800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f87223fff38 CR3: 00000007a7c6a002 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? die_addr+0x46/0x70 ? exc_general_protection+0x14f/0x250 ? asm_exc_general_protection+0x26/0x30 ? do_raw_read_unlock+0x44/0x70 ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] btrfs_finish_one_ordered+0x5d9/0x19a0 [btrfs] ? __pfx_lock_release+0x10/0x10 ? do_raw_write_lock+0x90/0x260 ? __pfx_do_raw_write_lock+0x10/0x10 ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs] ? _raw_write_unlock+0x23/0x40 ? btrfs_finish_ordered_zoned+0x5a9/0x850 [btrfs] ? lock_acquire+0x435/0x500 btrfs_work_helper+0x1b1/0xa70 [btrfs] ? __schedule+0x10a8/0x60b0 ? __pfx___might_resched+0x10/0x10 process_one_work+0x862/0x1410 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5e6/0x1010 ? __pfx_worker_thread+0x10/0x10 kthread+0x2c3/0x3a0 ? trace_irq_enable.constprop.0+0xce/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Enabling CONFIG_BTRFS_ASSERT revealed the following assertion to trigger: assertion failed: !list_empty(&ordered->list), in fs/btrfs/zoned.c:1815 This indicates, that we're missing the checksums list on the ordered_extent. As btrfs/167 is doing a NOCOW write this is to be expected. Further analysis with drgn confirmed the assumption: >>> inode = prog.crashed_thread().stack_trace()[11]['ordered'].inode >>> btrfs_inode = drgn.container_of(inode, "struct btrfs_inode", \ "vfs_inode") >>> print(btrfs_inode.flags) (u32)1 As zoned emulation mode simulates conventional zones on regular devices, we cannot use zone-append for writing. But we're only attaching dummy checksums if we're doing a zone-append write. So for NOCOW zoned data writes on conventional zones, also attach a dummy checksum. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Fixes: cbfce4c7fbde ("btrfs: optimize the logical to physical mapping for zoned writes") CC: Naohiro Aota <Naohiro.Aota@wdc.com> # 6.6+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: introduce offload_csum_mode to tweak checksum offloading behaviorNaohiro Aota1-1/+13
We disable offloading checksum to workqueues and do it synchronously when the checksum algorithm is fast. However, as reported in the link below, RAID0 with multiple devices may suffer from the sync checksum, because "fast checksum" is still not fast enough to catch up with RAID0 writing. We don't have an effective way to determine whether to offload or not, for now add a sysfs knob so this can be debugged. This is intentionally under CONFIG_BTRFS_DEBUG so ti's not exposed to users as it may be removed in the future agin. Introduce fs_devices->offload_csum_mode, so that a btrfs developer can change the behavior by writing to /sys/fs/btrfs/<uuid>/offload_csum. The default is "auto" which is the same as the previous behavior. Or, you can set "on" or "off" (or "y" or "n" whatever kstrtobool() accepts) to always/never offload checksum. More benchmark need to be collected with this knob to implement a proper criteria to enable/disable checksum offloading. Link: https://lore.kernel.org/linux-btrfs/20230731152223.4EFB.409509F4@e16-tech.com/ Link: https://lore.kernel.org/linux-btrfs/p3vo3g7pqn664mhmdhlotu5dzcna6vjtcoc2hb2lsgo2fwct7k@xzaxclba5tae/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: remove unused included headersDavid Sterba1-1/+0
With help of neovim, LSP and clangd we can identify header files that are not actually needed to be included in the .c files. This is focused only on removal (with minor fixups), further cleanups are possible but will require doing the header files properly with forward declarations, minimized includes and include-what-you-use care. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: remove duplicate recording of physical addressJohannes Thumshirn1-2/+0
Remove the duplicate physical recording of the original write physical address in case of a single device write. This duplicated code is most likely present due to a rebase error. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: migrate btrfs_repair_io_failure() to folio interfacesQu Wenruo1-4/+11
[BUG] Test case btrfs/124 failed if larger metadata folio is enabled, the dying message looks like this: BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0 BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928) BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs] PKRU: 55555554 Call Trace: <TASK> read_tree_block+0x33/0xb0 [btrfs] read_block_for_search+0x23e/0x340 [btrfs] btrfs_search_slot+0x2f9/0xe60 [btrfs] btrfs_lookup_csum+0x75/0x160 [btrfs] btrfs_lookup_bio_sums+0x21a/0x560 [btrfs] btrfs_submit_chunk+0x152/0x680 [btrfs] btrfs_submit_bio+0x1c/0x50 [btrfs] submit_one_bio+0x40/0x80 [btrfs] submit_extent_page+0x158/0x390 [btrfs] btrfs_do_readpage+0x330/0x740 [btrfs] extent_readahead+0x38d/0x6c0 [btrfs] read_pages+0x94/0x2c0 page_cache_ra_unbounded+0x12d/0x190 relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs] relocate_block_group+0x2d3/0x560 [btrfs] btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs] btrfs_relocate_chunk+0x4c/0x1a0 [btrfs] btrfs_balance+0x925/0x13c0 [btrfs] btrfs_ioctl+0x19f1/0x25d0 [btrfs] __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x3f/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 [CAUSE] The dying line is at btrfs_repair_io_failure() call inside btrfs_repair_eb_io_failure(). The function is still relying on the extent buffer using page sized folios. When the extent buffer is using larger folio, we go into the 2nd slot of folios[], and triggered the NULL pointer dereference. [FIX] Migrate btrfs_repair_io_failure() to folio interfaces. So that when we hit a larger folio, we just submit the whole folio in one go. This also affects data repair path through btrfs_end_repair_bio(), thankfully data is still fully page based, we can just add an ASSERT(), and use page_folio() to convert the page to folio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: fix typos found by codespellDavid Sterba1-1/+1
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: merge ordered work callbacks in btrfs_work into oneDavid Sterba1-8/+9
There are two callbacks defined in btrfs_work but only two actually make use of them, otherwise there are NULLs. We can get rid of the freeing callback making it a special case of the normal work. This reduces the size of btrfs_work by 8 bytes, final layout: struct btrfs_work { btrfs_func_t func; /* 0 8 */ btrfs_ordered_func_t ordered_func; /* 8 8 */ struct work_struct normal_work; /* 16 32 */ struct list_head ordered_list; /* 48 16 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct btrfs_workqueue * wq; /* 64 8 */ long unsigned int flags; /* 72 8 */ /* size: 80, cachelines: 2, members: 6 */ /* last cacheline: 16 bytes */ }; This in turn reduces size of other structures (on a release config): - async_chunk 160 -> 152 - async_submit_bio 152 -> 144 - btrfs_async_delayed_work 104 -> 96 - btrfs_caching_control 176 -> 168 - btrfs_delalloc_work 144 -> 136 - btrfs_fs_info 3608 -> 3600 - btrfs_ordered_extent 440 -> 424 - btrfs_writepage_fixup 104 -> 96 Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: scrub: implement raid stripe tree supportJohannes Thumshirn1-0/+2
A filesystem that uses the raid stripe tree for logical to physical address translation can't use the regular scrub path, that reads all stripes and then checks if a sector is unused afterwards. When using the raid stripe tree, this will result in lookup errors, as the stripe tree doesn't know the requested logical addresses. In case we're scrubbing a filesystem which uses the RAID stripe tree for multi-device logical to physical address translation, perform an extra block mapping step to get the real on-disk stripe length from the stripe tree when scrubbing the sectors. This prevents a double completion of the btrfs_bio caused by splitting the underlying bio and ultimately a use-after-free. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: add support for inserting raid stripe extentsJohannes Thumshirn1-0/+21
Add support for inserting stripe extents into the raid stripe tree on completion of every write that needs an extra logical-to-physical translation when using RAID. Inserting the stripe extents happens after the data I/O has completed, this is done to a) support zone-append and b) rule out the possibility of a RAID-write-hole. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: remove the need_raid_map parameter from btrfs_map_block()Qu Wenruo1-1/+1
The parameter @need_raid_map is mostly a legacy from the old days where we don't yet have a solid definition on the @mirror_num, and only check-integrity was using that parameter, while all other call sites just pass 1 for that parameter. Now since we have removed check-integrity functionality, we can also remove the @need_raid_map parameter. This change will also remove the ability to read P/Q stripe directly when passing 0 as @need_raid_map. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: check-integrity: remove btrfsic_unmount() functionQu Wenruo1-1/+0
The function btrfsic_mount() is part of the deprecated check-integrity functionality. Now let's remove the main entry point of check-integrity, and thankfully most of the check-integrity code is self-contained inside check-integrity.c, we can safely remove the function without huge changes to btrfs code base. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: check-integrity: remove btrfsic_check_bio() functionQu Wenruo1-4/+0
The function btrfsic_check_bio() is part of the deprecated check-integrity functionality. Now let's remove the main entry point of check-integrity, and thankfully most of the check-integrity code is self-contained inside check-integrity.c, we can safely remove the function without huge changes to btrfs code base. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: add an ordered_extent pointer to struct btrfs_bioChristoph Hellwig1-4/+38
Add a pointer to the ordered_extent to the existing union in struct btrfs_bio, so all code dealing with data write bios can just use a pointer dereference to retrieve the ordered_extent instead of doing multiple rbtree lookups per I/O. The reference to this ordered_extent is dropped at end I/O time, which implies that an extra one must be acquired when the bio is split. This also requires moving the btrfs_extract_ordered_extent call into btrfs_split_bio so that the invariant of always having a valid ordered_extent reference for the btrfs_bio is kept. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: add a is_data_bbio helperChristoph Hellwig1-4/+9
Add a helper to check for that a btrfs_bio has a valid inode, and that it is a data inode to key off all the special handling for data path checksumming. Note that this uses is_data_inode instead of REQ_META as REQ_META is only set directly before submission in submit_one_bio and we'll also want to use this helper for error handling where REQ_META isn't set yet. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: limit write bios to a single ordered extentChristoph Hellwig1-3/+0
Currently buffered writeback bios are allowed to span multiple ordered_extents, although that basically never actually happens since commit 4a445b7b6178 ("btrfs: don't merge pages into bio if their page offset is not contiguous"). Supporting bios than span ordered_extents complicates the file checksumming code, and prevents us from adding an ordered_extent pointer to the btrfs_bio structure. Use the existing code to limit a bio to single ordered_extent for zoned device writes for all writes. This allows to remove the REQ_BTRFS_ONE_ORDERED flags, and the handling of multiple ordered_extents in btrfs_csum_one_bio. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: fix file_offset for REQ_BTRFS_ONE_ORDERED bios that get splitChristoph Hellwig1-2/+1
If a bio gets split, it needs to have a proper file_offset for checksum validation and repair to work properly. Based on feedback from Josef, commit 852eee62d31a ("btrfs: allow btrfs_submit_bio to split bios") skipped this adjustment for ONE_ORDERED bios. But if we actually ever need to split a ONE_ORDERED read bio, this will lead to a wrong file offset in the repair code. Right now the only user of the file_offset is logging of an error message so this is mostly harmless, but the wrong offset might be more problematic for additional users in the future. Fixes: 852eee62d31a ("btrfs: allow btrfs_submit_bio to split bios") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: rename __btrfs_map_block to btrfs_map_blockChristoph Hellwig1-2/+2
Now that the old btrfs_map_block is gone, drop the leading underscores from __btrfs_map_block. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: defer splitting of ordered extents until I/O completionChristoph Hellwig1-17/+0
The btrfs zoned completion code currently needs an ordered_extent and extent_map per bio so that it can account for the non-predictable write location from Zone Append. To archive that it currently splits the ordered_extent and extent_map at I/O submission time, and then records the actual physical address in the ->physical field of the ordered_extent. This patch instead switches to record the "original" physical address that the btrfs allocator assigned in spare space in the btrfs_bio, and then rewrites the logical address in the btrfs_ordered_sum structure at I/O completion time. This allows the ordered extent completion handler to simply walk the list of ordered csums and split the ordered extent as needed. This removes an extra ordered extent and extent_map lookup and manipulation during the I/O submission path, and instead batches it in the I/O completion path where we need to touch these anyway. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: record orig_physical only for the original bioChristoph Hellwig1-1/+2
btrfs_submit_dev_bio is also called for clone bios that aren't embedded into a btrfs_bio structure, but previous commit "btrfs: optimize the logical to physical mapping for zoned writes" added code to assign btrfs_bio.orig_physical in it. This is harmless right now as only the single data profile can be used on zoned devices, but will blow up when the RAID stripe tree is added. Move it out into the single I/O specific branch in the caller. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: optimize the logical to physical mapping for zoned writesChristoph Hellwig1-0/+5
The current code to store the final logical to physical mapping for a zone append write in the extent tree is rather inefficient. It first has to split the ordered extent so that there is one ordered extent per bio, so that it can look up the ordered extent on I/O completion in btrfs_record_physical_zoned and store the physical LBA returned by the block driver in the ordered extent. btrfs_rewrite_logical_zoned then has to do a lookup in the chunk tree to see what physical address the logical address for this bio / ordered extent is mapped to, and then rewrite it in the extent tree. To optimize this process, we can store the physical address assigned in the chunk tree to the original logical address and a pointer to btrfs_ordered_sum structure the in the btrfs_bio structure, and then use this information to rewrite the logical address in the btrfs_ordered_sum structure directly at I/O completion time in btrfs_record_physical_zoned. btrfs_rewrite_logical_zoned then simply updates the logical address in the extent tree and the ordered_extent itself. The code in btrfs_rewrite_logical_zoned now runs for all data I/O completions in zoned file systems, which is fine as there is no remapping to do for non-append writes to conventional zones or for relocation, and the overhead for quickly breaking out of the loop is very low. Because zoned file systems now need the ordered_sums structure to record the actual write location returned by zone append, allocate dummy structures without the csum array for them when the I/O doesn't use checksums, and free them when completing the ordered_extent. Note that the btrfs_bio doesn't grow as the new field are places into a union that is so far not used for data writes and has plenty of space left in it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: don't call btrfs_record_physical_zoned for failed appendChristoph Hellwig1-1/+1
When a zoned append command fails there is no written address reported, so don't try to record it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: remove hipri_workers workqueueChristoph Hellwig1-4/+1
Now that btrfs_wq_submit_bio is never called for synchronous I/O, the hipri_workers workqueue is not used anymore and can be removed. Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: determine synchronous writers from bio or writeback controlChristoph Hellwig1-4/+3
The writeback_control structure already passes down the information about a writeback being synchronous from the core VM code, and thus information is propagated into the bio REQ_SYNC flag through the wbc_to_write_flags helper. Use that information to decide if checksums calculation is offloaded to a workqueue instead of btrfs_inode::sync_writers field that not only bloats the inode but also has too wide scope, being inode wide instead of limited to the actual writeback request. The sync writes were set in: - btrfs_do_write_iter - regular IO, sync status is set - start_ordered_ops - ordered write start, writeback with WB_SYNC_ALL mode - btrfs_write_marked_extents - write marked extents, writeback with WB_SYNC_ALL mode Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: submit IO synchronously for fast checksum implementationsChristoph Hellwig1-13/+7
Most modern hardware supports very fast accelerated crc32c calculation. If that is supported the CPU overhead of the checksum calculation is very limited, and offloading the calculation to special worker threads has a lot of overhead for no gain. E.g. on an Intel Optane device is actually very much slows down even 1M buffered writes with fio: Unpatched: write: IOPS=3316, BW=3316MiB/s (3477MB/s)(200GiB/61757msec); 0 zone resets With synchronous CRCs: write: IOPS=4882, BW=4882MiB/s (5119MB/s)(200GiB/41948msec); 0 zone resets With a lot of variation during the unpatched run going down as low as 1100MB/s, while the synchronous CRC version has about the same peak write speed but much lower dips, and fewer kworkers churning around. Both tests had fio saturated at 100% CPU. (thanks to Jens Axboe via Chris Mason for the benchmarking) Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use SECTOR_SHIFT to convert LBA to physical offsetAnand Jain1-1/+1
Using SECTOR_SHIFT to convert LBA to physical address makes it more readable. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-01btrfs: zoned: fix dev-replace after the scrub reworkQu Wenruo1-4/+0
[BUG] After commit e02ee89baa66 ("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure"), scrub no longer works for zoned device at all. Even an empty zoned btrfs cannot be replaced: # mkfs.btrfs -f /dev/nvme0n1 # mount /dev/nvme0n1 /mnt/btrfs # btrfs replace start -Bf 1 /dev/nvme0n2 /mnt/btrfs Resetting device zones /dev/nvme1n1 (160 zones) ... ERROR: ioctl(DEV_REPLACE_START) failed on "/mnt/btrfs/": Input/output error And we can hit kernel crash related to that: BTRFS info (device nvme1n1): host-managed zoned block device /dev/nvme3n1, 160 zones of 134217728 bytes BTRFS info (device nvme1n1): dev_replace from /dev/nvme2n1 (devid 2) to /dev/nvme3n1 started nvme3n1: Zone Management Append(0x7d) @ LBA 65536, 4 blocks, Zone Is Full (sct 0x1 / sc 0xb9) DNR I/O error, dev nvme3n1, sector 786432 op 0xd:(ZONE_APPEND) flags 0x4000 phys_seg 3 prio class 2 BTRFS error (device nvme1n1): bdev /dev/nvme3n1 errs: wr 1, rd 0, flush 0, corrupt 0, gen 0 BUG: kernel NULL pointer dereference, address: 00000000000000a8 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:_raw_spin_lock_irqsave+0x1e/0x40 Call Trace: <IRQ> btrfs_lookup_ordered_extent+0x31/0x190 btrfs_record_physical_zoned+0x18/0x40 btrfs_simple_end_io+0xaf/0xc0 blk_update_request+0x153/0x4c0 blk_mq_end_request+0x15/0xd0 nvme_poll_cq+0x1d3/0x360 nvme_irq+0x39/0x80 __handle_irq_event_percpu+0x3b/0x190 handle_irq_event+0x2f/0x70 handle_edge_irq+0x7c/0x210 __common_interrupt+0x34/0xa0 common_interrupt+0x7d/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 [CAUSE] Dev-replace reuses scrub code to iterate all extents and write the existing content back to the new device. And for zoned devices, we call fill_writer_pointer_gap() to make sure all the writes into the zoned device is sequential, even if there may be some gaps between the writes. However we have several different bugs all related to zoned dev-replace: - We are using ZONE_APPEND operation for metadata style write back For zoned devices, btrfs has two ways to write data: * ZONE_APPEND for data This allows higher queue depth, but will not be able to know where the write would land. Thus needs to grab the real on-disk physical location in it's endio. * WRITE for metadata This requires single queue depth (new writes can only be submitted after previous one finished), and all writes must be sequential. For scrub, we go single queue depth, but still goes with ZONE_APPEND, which requires btrfs_bio::inode being populated. This is the cause of that crash. - No correct tracing of write_pointer After a write finished, we should forward sctx->write_pointer, or fill_writer_pointer_gap() would not work properly and cause more than necessary zero out, and fill the whole zone prematurely. - Incorrect physical bytenr passed to fill_writer_pointer_gap() In scrub_write_sectors(), one call site passes logical address, which is completely wrong. The other call site passes physical address of current sector, but we should pass the physical address of the btrfs_bio we're submitting. This is the cause of the -EIO errors. [FIX] - Do not use ZONE_APPEND for btrfs_submit_repair_write(). - Manually forward sctx->write_pointer after successful writeback - Use the physical address of the to-be-submitted btrfs_bio for fill_writer_pointer_gap() Now zoned device replace would work as expected. Reported-by: Christoph Hellwig <hch@lst.de> Fixes: e02ee89baa66 ("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure") Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-26btrfs: call btrfs_orig_bbio_end_io in btrfs_end_bio_workChristoph Hellwig1-1/+1
When I implemented the storage layer bio splitting, I was under the assumption that we'll never split metadata bios. But Qu reminded me that this can actually happen with very old file systems with unaligned metadata chunks and RAID0. I still haven't seen such a case in practice, but we better handled this case, especially as it is fairly easily to do not calling the ->end_іo method directly in btrfs_end_io_work, and using the proper btrfs_orig_bbio_end_io helper instead. In addition to the old file system with unaligned metadata chunks case documented in the commit log, the combination of the new scrub code with Johannes pending raid-stripe-tree also triggers this case. We spent some time debugging it and found that this patch solves the problem. Fixes: 103c19723c80 ("btrfs: split the bio submission path into a separate file") CC: stable@vger.kernel.org # 6.3+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: introduce a new helper to submit write bio for repairQu Wenruo1-44/+50
Both scrub and read-repair are utilizing a special repair writes that: - Only writes back to a single device Even for read-repair on RAID56, we only update the corrupted data stripe itself, not triggering the full RMW path. - Requires a valid @mirror_num For RAID56 case, only @mirror_num == 1 is valid. For non-RAID56 cases, we need @mirror_num to locate our stripe. - No data csum generation needed These two call sites still have some differences though: - Read-repair goes plain bio It doesn't need a full btrfs_bio, and goes submit_bio_wait(). - New scrub repair would go btrfs_bio To simplify both read and write path. So here this patch would: - Introduce a common helper, btrfs_map_repair_block() Due to the single device nature, we can use an on-stack btrfs_io_stripe to pass device and its physical bytenr. - Introduce a new interface, btrfs_submit_repair_bio(), for later scrub code This is for the incoming scrub code. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: introduce btrfs_bio::fs_info memberQu Wenruo1-17/+25
Currently we're doing a lot of work for btrfs_bio: - Checksum verification for data read bios - Bio splits if it crosses stripe boundary - Read repair for data read bios However for the incoming scrub patches, we don't want this extra functionality at all, just plain logical + mirror -> physical mapping ability. Thus here we do the following changes: - Introduce btrfs_bio::fs_info This is for the new scrub specific btrfs_bio, which would not populate btrfs_bio::inode. Thus we need such new member to grab a fs_info This new member will always be populated. - Replace @inode argument with @fs_info for btrfs_bio_init() and its caller Since @inode is no longer a mandatory member, replace it with @fs_info, and let involved users populate @inode. - Skip checksum verification and generation if @bbio->inode is NULL - Add extra ASSERT()s To make sure: * bbio->inode is properly set for involved read repair path * if @file_offset is set, bbio->inode is also populated - Grab @fs_info from @bbio directly We can no longer go @bbio->inode->root->fs_info, as bbio->inode can be NULL. This involves: * btrfs_simple_end_io() * should_async_write() * btrfs_wq_submit_bio() * btrfs_use_zone_append() Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs, block: move REQ_CGROUP_PUNT to btrfsChristoph Hellwig1-4/+8
REQ_CGROUP_PUNT is a bit annoying as it is hard to follow and adds a branch to the bio submission hot path. To fix this, export blkcg_punt_bio_submit and let btrfs call it directly. Add a new REQ_FS_PRIVATE flag for btrfs to indicate to it's own low-level bio submission code that a punt to the cgroup submission helper is required. Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: pass an ordered_extent to btrfs_extract_ordered_extentChristoph Hellwig1-1/+15
To prepare for a new caller that already has the ordered_extent available, change btrfs_extract_ordered_extent to take an argument for it. Add a wrapper for the bio case that still has to do the lookup (for now). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: use __bio_add_page for adding a single page in repair_one_sectorJohannes Thumshirn1-1/+1
The btrfs repair bio submission code uses bio_add_page() to add a page to a newly created bio. bio_add_page() can fail, but the return value is never checked. Use __bio_add_page() as adding a single page to a newly created bio is guaranteed to succeed. This brings us a step closer to marking bio_add_page() as __must_check. Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: make btrfs_split_bio work on struct btrfs_bioChristoph Hellwig1-13/+14
btrfs_split_bio expects a btrfs_bio as argument and always allocates one. Type both the orig_bio argument and the return value as struct btrfs_bio to improve type safety. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: return a btrfs_bio from btrfs_bio_allocChristoph Hellwig1-5/+7
Return the containing struct btrfs_bio instead of the less type safe struct bio from btrfs_bio_alloc. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: pass a btrfs_bio to btrfs_submit_bioChristoph Hellwig1-7/+7
btrfs_submit_bio expects the bio passed to it to be embedded into a btrfs_bio structure. Pass the btrfs_bio directly to increase type safety and make the code self-documenting. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-06btrfs: fix unnecessary increment of read error stat on write errorNaohiro Aota1-1/+1
Current btrfs_log_dev_io_error() increases the read error count even if the erroneous IO is a WRITE request. This is because it forget to use "else if", and all the error WRITE requests counts as READ error as there is (of course) no REQ_RAHEAD bit set. Fixes: c3a62baf21ad ("btrfs: use chained bios when cloning") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: pass a btrfs_bio to btrfs_use_appendChristoph Hellwig1-1/+1
struct btrfs_bio has all the information needed for btrfs_use_append, so pass that instead of a btrfs_inode and file_offset. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: split zone append bios in btrfs_submit_bioChristoph Hellwig1-17/+27
The current btrfs zoned device support is a little cumbersome in the data I/O path as it requires the callers to not issue I/O larger than the supported ZONE_APPEND size of the underlying device. This leads to a lot of extra accounting. Instead change btrfs_submit_bio so that it can take write bios of arbitrary size and form from the upper layers, and just split them internally to the ZONE_APPEND queue limits. Then remove all the upper layer warts catering to limited write sized on zoned devices, including the extra refcount in the compressed_bio. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>