aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/bio.c
diff options
context:
space:
mode:
authorChristoph Hellwig <hch@lst.de>2023-05-24 17:03:08 +0200
committerDavid Sterba <dsterba@suse.com>2023-06-19 13:59:32 +0200
commitcbfce4c7fbde23cc8bcba44822a58c728caf6ec9 (patch)
tree3cc7a0c85483da01f45d0eaef58e8c325e56b5d0 /fs/btrfs/bio.c
parent5cfe76f846d5034058c0c4813259d5d831757c36 (diff)
btrfs: optimize the logical to physical mapping for zoned writes
The current code to store the final logical to physical mapping for a zone append write in the extent tree is rather inefficient. It first has to split the ordered extent so that there is one ordered extent per bio, so that it can look up the ordered extent on I/O completion in btrfs_record_physical_zoned and store the physical LBA returned by the block driver in the ordered extent. btrfs_rewrite_logical_zoned then has to do a lookup in the chunk tree to see what physical address the logical address for this bio / ordered extent is mapped to, and then rewrite it in the extent tree. To optimize this process, we can store the physical address assigned in the chunk tree to the original logical address and a pointer to btrfs_ordered_sum structure the in the btrfs_bio structure, and then use this information to rewrite the logical address in the btrfs_ordered_sum structure directly at I/O completion time in btrfs_record_physical_zoned. btrfs_rewrite_logical_zoned then simply updates the logical address in the extent tree and the ordered_extent itself. The code in btrfs_rewrite_logical_zoned now runs for all data I/O completions in zoned file systems, which is fine as there is no remapping to do for non-append writes to conventional zones or for relocation, and the overhead for quickly breaking out of the loop is very low. Because zoned file systems now need the ordered_sums structure to record the actual write location returned by zone append, allocate dummy structures without the csum array for them when the I/O doesn't use checksums, and free them when completing the ordered_extent. Note that the btrfs_bio doesn't grow as the new field are places into a union that is so far not used for data writes and has plenty of space left in it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'fs/btrfs/bio.c')
-rw-r--r--fs/btrfs/bio.c5
1 files changed, 5 insertions, 0 deletions
diff --git a/fs/btrfs/bio.c b/fs/btrfs/bio.c
index ea6c81f9d1a3..54cfab7394d3 100644
--- a/fs/btrfs/bio.c
+++ b/fs/btrfs/bio.c
@@ -431,6 +431,7 @@ static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
ASSERT(btrfs_dev_is_sequential(dev, physical));
+ btrfs_bio(bio)->orig_physical = physical;
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
}
btrfs_debug_in_rcu(dev->fs_info,
@@ -685,6 +686,10 @@ static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
ret = btrfs_bio_csum(bbio);
if (ret)
goto fail_put_bio;
+ } else if (use_append) {
+ ret = btrfs_alloc_dummy_sum(bbio);
+ if (ret)
+ goto fail_put_bio;
}
}