aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/sfc/tx.c
blob: e182055ec2ebad88802b104540170f6e8936c4a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2013 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/cache.h>
#include "net_driver.h"
#include "efx.h"
#include "io.h"
#include "nic.h"
#include "tx.h"
#include "workarounds.h"
#include "ef10_regs.h"

#ifdef EFX_USE_PIO

#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;

#endif /* EFX_USE_PIO */

static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
					 struct efx_tx_buffer *buffer)
{
	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
	struct efx_buffer *page_buf =
		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
	unsigned int offset =
		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);

	if (unlikely(!page_buf->addr) &&
	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
				 GFP_ATOMIC))
		return NULL;
	buffer->dma_addr = page_buf->dma_addr + offset;
	buffer->unmap_len = 0;
	return (u8 *)page_buf->addr + offset;
}

u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
				   struct efx_tx_buffer *buffer, size_t len)
{
	if (len > EFX_TX_CB_SIZE)
		return NULL;
	return efx_tx_get_copy_buffer(tx_queue, buffer);
}

static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer,
			       unsigned int *pkts_compl,
			       unsigned int *bytes_compl)
{
	if (buffer->unmap_len) {
		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
					 DMA_TO_DEVICE);
		else
			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
				       DMA_TO_DEVICE);
		buffer->unmap_len = 0;
	}

	if (buffer->flags & EFX_TX_BUF_SKB) {
		struct sk_buff *skb = (struct sk_buff *)buffer->skb;

		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
		(*pkts_compl)++;
		(*bytes_compl) += skb->len;
		if (tx_queue->timestamping &&
		    (tx_queue->completed_timestamp_major ||
		     tx_queue->completed_timestamp_minor)) {
			struct skb_shared_hwtstamps hwtstamp;

			hwtstamp.hwtstamp =
				efx_ptp_nic_to_kernel_time(tx_queue);
			skb_tstamp_tx(skb, &hwtstamp);

			tx_queue->completed_timestamp_major = 0;
			tx_queue->completed_timestamp_minor = 0;
		}
		dev_consume_skb_any((struct sk_buff *)buffer->skb);
		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
			   "TX queue %d transmission id %x complete\n",
			   tx_queue->queue, tx_queue->read_count);
	}

	buffer->len = 0;
	buffer->flags = 0;
}

unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
{
	/* Header and payload descriptor for each output segment, plus
	 * one for every input fragment boundary within a segment
	 */
	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;

	/* Possibly one more per segment for option descriptors */
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
		max_descs += EFX_TSO_MAX_SEGS;

	/* Possibly more for PCIe page boundaries within input fragments */
	if (PAGE_SIZE > EFX_PAGE_SIZE)
		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));

	return max_descs;
}

static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
	/* We need to consider both queues that the net core sees as one */
	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
	struct efx_nic *efx = txq1->efx;
	unsigned int fill_level;

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	if (likely(fill_level < efx->txq_stop_thresh))
		return;

	/* We used the stale old_read_count above, which gives us a
	 * pessimistic estimate of the fill level (which may even
	 * validly be >= efx->txq_entries).  Now try again using
	 * read_count (more likely to be a cache miss).
	 *
	 * If we read read_count and then conditionally stop the
	 * queue, it is possible for the completion path to race with
	 * us and complete all outstanding descriptors in the middle,
	 * after which there will be no more completions to wake it.
	 * Therefore we stop the queue first, then read read_count
	 * (with a memory barrier to ensure the ordering), then
	 * restart the queue if the fill level turns out to be low
	 * enough.
	 */
	netif_tx_stop_queue(txq1->core_txq);
	smp_mb();
	txq1->old_read_count = READ_ONCE(txq1->read_count);
	txq2->old_read_count = READ_ONCE(txq2->read_count);

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
	if (likely(fill_level < efx->txq_stop_thresh)) {
		smp_mb();
		if (likely(!efx->loopback_selftest))
			netif_tx_start_queue(txq1->core_txq);
	}
}

static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
				struct sk_buff *skb)
{
	unsigned int copy_len = skb->len;
	struct efx_tx_buffer *buffer;
	u8 *copy_buffer;
	int rc;

	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
	if (unlikely(!copy_buffer))
		return -ENOMEM;

	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
	EFX_WARN_ON_PARANOID(rc);
	buffer->len = copy_len;

	buffer->skb = skb;
	buffer->flags = EFX_TX_BUF_SKB;

	++tx_queue->insert_count;
	return rc;
}

#ifdef EFX_USE_PIO

struct efx_short_copy_buffer {
	int used;
	u8 buf[L1_CACHE_BYTES];
};

/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 */
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
				    u8 *data, int len,
				    struct efx_short_copy_buffer *copy_buf)
{
	int block_len = len & ~(sizeof(copy_buf->buf) - 1);

	__iowrite64_copy(*piobuf, data, block_len >> 3);
	*piobuf += block_len;
	len -= block_len;

	if (len) {
		data += block_len;
		BUG_ON(copy_buf->used);
		BUG_ON(len > sizeof(copy_buf->buf));
		memcpy(copy_buf->buf, data, len);
		copy_buf->used = len;
	}
}

/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 */
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
				       u8 *data, int len,
				       struct efx_short_copy_buffer *copy_buf)
{
	if (copy_buf->used) {
		/* if the copy buffer is partially full, fill it up and write */
		int copy_to_buf =
			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);

		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
		copy_buf->used += copy_to_buf;

		/* if we didn't fill it up then we're done for now */
		if (copy_buf->used < sizeof(copy_buf->buf))
			return;

		__iowrite64_copy(*piobuf, copy_buf->buf,
				 sizeof(copy_buf->buf) >> 3);
		*piobuf += sizeof(copy_buf->buf);
		data += copy_to_buf;
		len -= copy_to_buf;
		copy_buf->used = 0;
	}

	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
}

static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
				  struct efx_short_copy_buffer *copy_buf)
{
	/* if there's anything in it, write the whole buffer, including junk */
	if (copy_buf->used)
		__iowrite64_copy(piobuf, copy_buf->buf,
				 sizeof(copy_buf->buf) >> 3);
}

/* Traverse skb structure and copy fragments in to PIO buffer.
 * Advances piobuf pointer.
 */
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
				     u8 __iomem **piobuf,
				     struct efx_short_copy_buffer *copy_buf)
{
	int i;

	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
				copy_buf);

	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
		u8 *vaddr;

		vaddr = kmap_atomic(skb_frag_page(f));

		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
					   skb_frag_size(f), copy_buf);
		kunmap_atomic(vaddr);
	}

	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
}

static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
			       struct sk_buff *skb)
{
	struct efx_tx_buffer *buffer =
		efx_tx_queue_get_insert_buffer(tx_queue);
	u8 __iomem *piobuf = tx_queue->piobuf;

	/* Copy to PIO buffer. Ensure the writes are padded to the end
	 * of a cache line, as this is required for write-combining to be
	 * effective on at least x86.
	 */

	if (skb_shinfo(skb)->nr_frags) {
		/* The size of the copy buffer will ensure all writes
		 * are the size of a cache line.
		 */
		struct efx_short_copy_buffer copy_buf;

		copy_buf.used = 0;

		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
					 &piobuf, &copy_buf);
		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
	} else {
		/* Pad the write to the size of a cache line.
		 * We can do this because we know the skb_shared_info struct is
		 * after the source, and the destination buffer is big enough.
		 */
		BUILD_BUG_ON(L1_CACHE_BYTES >
			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
		__iowrite64_copy(tx_queue->piobuf, skb->data,
				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
	}

	buffer->skb = skb;
	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;

	EFX_POPULATE_QWORD_5(buffer->option,
			     ESF_DZ_TX_DESC_IS_OPT, 1,
			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
			     ESF_DZ_TX_PIO_CONT, 0,
			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
			     ESF_DZ_TX_PIO_BUF_ADDR,
			     tx_queue->piobuf_offset);
	++tx_queue->insert_count;
	return 0;
}
#endif /* EFX_USE_PIO */

static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
					      dma_addr_t dma_addr,
					      size_t len)
{
	const struct efx_nic_type *nic_type = tx_queue->efx->type;
	struct efx_tx_buffer *buffer;
	unsigned int dma_len;

	/* Map the fragment taking account of NIC-dependent DMA limits. */
	do {
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);

		buffer->len = dma_len;
		buffer->dma_addr = dma_addr;
		buffer->flags = EFX_TX_BUF_CONT;
		len -= dma_len;
		dma_addr += dma_len;
		++tx_queue->insert_count;
	} while (len);

	return buffer;
}

/* Map all data from an SKB for DMA and create descriptors on the queue.
 */
static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
			   unsigned int segment_count)
{
	struct efx_nic *efx = tx_queue->efx;
	struct device *dma_dev = &efx->pci_dev->dev;
	unsigned int frag_index, nr_frags;
	dma_addr_t dma_addr, unmap_addr;
	unsigned short dma_flags;
	size_t len, unmap_len;

	nr_frags = skb_shinfo(skb)->nr_frags;
	frag_index = 0;

	/* Map header data. */
	len = skb_headlen(skb);
	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
	dma_flags = EFX_TX_BUF_MAP_SINGLE;
	unmap_len = len;
	unmap_addr = dma_addr;

	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
		return -EIO;

	if (segment_count) {
		/* For TSO we need to put the header in to a separate
		 * descriptor. Map this separately if necessary.
		 */
		size_t header_len = skb_transport_header(skb) - skb->data +
				(tcp_hdr(skb)->doff << 2u);

		if (header_len != len) {
			tx_queue->tso_long_headers++;
			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
			len -= header_len;
			dma_addr += header_len;
		}
	}

	/* Add descriptors for each fragment. */
	do {
		struct efx_tx_buffer *buffer;
		skb_frag_t *fragment;

		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);

		/* The final descriptor for a fragment is responsible for
		 * unmapping the whole fragment.
		 */
		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
		buffer->unmap_len = unmap_len;
		buffer->dma_offset = buffer->dma_addr - unmap_addr;

		if (frag_index >= nr_frags) {
			/* Store SKB details with the final buffer for
			 * the completion.
			 */
			buffer->skb = skb;
			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
			return 0;
		}

		/* Move on to the next fragment. */
		fragment = &skb_shinfo(skb)->frags[frag_index++];
		len = skb_frag_size(fragment);
		dma_addr = skb_frag_dma_map(dma_dev, fragment,
				0, len, DMA_TO_DEVICE);
		dma_flags = 0;
		unmap_len = len;
		unmap_addr = dma_addr;

		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
			return -EIO;
	} while (1);
}

/* Remove buffers put into a tx_queue for the current packet.
 * None of the buffers must have an skb attached.
 */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
			       unsigned int insert_count)
{
	struct efx_tx_buffer *buffer;
	unsigned int bytes_compl = 0;
	unsigned int pkts_compl = 0;

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != insert_count) {
		--tx_queue->insert_count;
		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
	}
}

/*
 * Fallback to software TSO.
 *
 * This is used if we are unable to send a GSO packet through hardware TSO.
 * This should only ever happen due to per-queue restrictions - unsupported
 * packets should first be filtered by the feature flags.
 *
 * Returns 0 on success, error code otherwise.
 */
static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
			       struct sk_buff *skb)
{
	struct sk_buff *segments, *next;

	segments = skb_gso_segment(skb, 0);
	if (IS_ERR(segments))
		return PTR_ERR(segments);

	dev_consume_skb_any(skb);
	skb = segments;

	while (skb) {
		next = skb->next;
		skb->next = NULL;

		efx_enqueue_skb(tx_queue, skb);
		skb = next;
	}

	return 0;
}

/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.
 *
 * Returns NETDEV_TX_OK.
 * You must hold netif_tx_lock() to call this function.
 */
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
	unsigned int old_insert_count = tx_queue->insert_count;
	bool xmit_more = netdev_xmit_more();
	bool data_mapped = false;
	unsigned int segments;
	unsigned int skb_len;
	int rc;

	skb_len = skb->len;
	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
	if (segments == 1)
		segments = 0; /* Don't use TSO for a single segment. */

	/* Handle TSO first - it's *possible* (although unlikely) that we might
	 * be passed a packet to segment that's smaller than the copybreak/PIO
	 * size limit.
	 */
	if (segments) {
		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
		if (rc == -EINVAL) {
			rc = efx_tx_tso_fallback(tx_queue, skb);
			tx_queue->tso_fallbacks++;
			if (rc == 0)
				return 0;
		}
		if (rc)
			goto err;
#ifdef EFX_USE_PIO
	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
		   efx_nic_may_tx_pio(tx_queue)) {
		/* Use PIO for short packets with an empty queue. */
		if (efx_enqueue_skb_pio(tx_queue, skb))
			goto err;
		tx_queue->pio_packets++;
		data_mapped = true;
#endif
	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
		/* Pad short packets or coalesce short fragmented packets. */
		if (efx_enqueue_skb_copy(tx_queue, skb))
			goto err;
		tx_queue->cb_packets++;
		data_mapped = true;
	}

	/* Map for DMA and create descriptors if we haven't done so already. */
	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
		goto err;

	efx_tx_maybe_stop_queue(tx_queue);

	/* Pass off to hardware */
	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);

		/* There could be packets left on the partner queue if
		 * xmit_more was set. If we do not push those they
		 * could be left for a long time and cause a netdev watchdog.
		 */
		if (txq2->xmit_more_available)
			efx_nic_push_buffers(txq2);

		efx_nic_push_buffers(tx_queue);
	} else {
		tx_queue->xmit_more_available = xmit_more;
	}

	if (segments) {
		tx_queue->tso_bursts++;
		tx_queue->tso_packets += segments;
		tx_queue->tx_packets  += segments;
	} else {
		tx_queue->tx_packets++;
	}

	return NETDEV_TX_OK;


err:
	efx_enqueue_unwind(tx_queue, old_insert_count);
	dev_kfree_skb_any(skb);

	/* If we're not expecting another transmit and we had something to push
	 * on this queue or a partner queue then we need to push here to get the
	 * previous packets out.
	 */
	if (!xmit_more) {
		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);

		if (txq2->xmit_more_available)
			efx_nic_push_buffers(txq2);

		efx_nic_push_buffers(tx_queue);
	}

	return NETDEV_TX_OK;
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
				unsigned int index,
				unsigned int *pkts_compl,
				unsigned int *bytes_compl)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;

	stop_index = (index + 1) & tx_queue->ptr_mask;
	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];

		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
		    unlikely(buffer->len == 0)) {
			netif_err(efx, tx_err, efx->net_dev,
				  "TX queue %d spurious TX completion id %x\n",
				  tx_queue->queue, read_ptr);
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);

		++tx_queue->read_count;
		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
	}
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
				struct net_device *net_dev)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_tx_queue *tx_queue;
	unsigned index, type;

	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));

	/* PTP "event" packet */
	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
		return efx_ptp_tx(efx, skb);
	}

	index = skb_get_queue_mapping(skb);
	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
	if (index >= efx->n_tx_channels) {
		index -= efx->n_tx_channels;
		type |= EFX_TXQ_TYPE_HIGHPRI;
	}
	tx_queue = efx_get_tx_queue(efx, index, type);

	return efx_enqueue_skb(tx_queue, skb);
}

void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;

	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
	tx_queue->core_txq =
		netdev_get_tx_queue(efx->net_dev,
				    tx_queue->queue / EFX_TXQ_TYPES +
				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     efx->n_tx_channels : 0));
}

int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
		 void *type_data)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct tc_mqprio_qopt *mqprio = type_data;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned tc, num_tc;
	int rc;

	if (type != TC_SETUP_QDISC_MQPRIO)
		return -EOPNOTSUPP;

	num_tc = mqprio->num_tc;

	if (num_tc > EFX_MAX_TX_TC)
		return -EINVAL;

	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;

	if (num_tc == net_dev->num_tc)
		return 0;

	for (tc = 0; tc < num_tc; tc++) {
		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
	}

	if (num_tc > net_dev->num_tc) {
		/* Initialise high-priority queues as necessary */
		efx_for_each_channel(channel, efx) {
			efx_for_each_possible_channel_tx_queue(tx_queue,
							       channel) {
				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
					continue;
				if (!tx_queue->buffer) {
					rc = efx_probe_tx_queue(tx_queue);
					if (rc)
						return rc;
				}
				if (!tx_queue->initialised)
					efx_init_tx_queue(tx_queue);
				efx_init_tx_queue_core_txq(tx_queue);
			}
		}
	} else {
		/* Reduce number of classes before number of queues */
		net_dev->num_tc = num_tc;
	}

	rc = netif_set_real_num_tx_queues(net_dev,
					  max_t(int, num_tc, 1) *
					  efx->n_tx_channels);
	if (rc)
		return rc;

	/* Do not destroy high-priority queues when they become
	 * unused.  We would have to flush them first, and it is
	 * fairly difficult to flush a subset of TX queues.  Leave
	 * it to efx_fini_channels().
	 */

	net_dev->num_tc = num_tc;
	return 0;
}

void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;
	struct efx_tx_queue *txq2;
	unsigned int pkts_compl = 0, bytes_compl = 0;

	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);

	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
	tx_queue->pkts_compl += pkts_compl;
	tx_queue->bytes_compl += bytes_compl;

	if (pkts_compl > 1)
		++tx_queue->merge_events;

	/* See if we need to restart the netif queue.  This memory
	 * barrier ensures that we write read_count (inside
	 * efx_dequeue_buffers()) before reading the queue status.
	 */
	smp_mb();
	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
	    likely(efx->port_enabled) &&
	    likely(netif_device_present(efx->net_dev))) {
		txq2 = efx_tx_queue_partner(tx_queue);
		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
				 txq2->insert_count - txq2->read_count);
		if (fill_level <= efx->txq_wake_thresh)
			netif_tx_wake_queue(tx_queue->core_txq);
	}

	/* Check whether the hardware queue is now empty */
	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
		if (tx_queue->read_count == tx_queue->old_write_count) {
			smp_mb();
			tx_queue->empty_read_count =
				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
		}
	}
}

static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
{
	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
}

int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int entries;
	int rc;

	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	tx_queue->ptr_mask = entries - 1;

	netif_dbg(efx, probe, efx->net_dev,
		  "creating TX queue %d size %#x mask %#x\n",
		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);

	/* Allocate software ring */
	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
				   GFP_KERNEL);
	if (!tx_queue->buffer)
		return -ENOMEM;

	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
	if (!tx_queue->cb_page) {
		rc = -ENOMEM;
		goto fail1;
	}

	/* Allocate hardware ring */
	rc = efx_nic_probe_tx(tx_queue);
	if (rc)
		goto fail2;

	return 0;

fail2:
	kfree(tx_queue->cb_page);
	tx_queue->cb_page = NULL;
fail1:
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;

	netif_dbg(efx, drv, efx->net_dev,
		  "initialising TX queue %d\n", tx_queue->queue);

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
	tx_queue->packet_write_count = 0;
	tx_queue->old_write_count = 0;
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
	tx_queue->xmit_more_available = false;
	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
				  tx_queue->channel == efx_ptp_channel(efx));
	tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
	tx_queue->completed_timestamp_major = 0;
	tx_queue->completed_timestamp_minor = 0;

	/* Set up default function pointers. These may get replaced by
	 * efx_nic_init_tx() based off NIC/queue capabilities.
	 */
	tx_queue->handle_tso = efx_enqueue_skb_tso;

	/* Set up TX descriptor ring */
	efx_nic_init_tx(tx_queue);

	tx_queue->initialised = true;
}

void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "shutting down TX queue %d\n", tx_queue->queue);

	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
		unsigned int pkts_compl = 0, bytes_compl = 0;
		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);

		++tx_queue->read_count;
	}
	tx_queue->xmit_more_available = false;
	netdev_tx_reset_queue(tx_queue->core_txq);
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
	int i;

	if (!tx_queue->buffer)
		return;

	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "destroying TX queue %d\n", tx_queue->queue);
	efx_nic_remove_tx(tx_queue);

	if (tx_queue->cb_page) {
		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
			efx_nic_free_buffer(tx_queue->efx,
					    &tx_queue->cb_page[i]);
		kfree(tx_queue->cb_page);
		tx_queue->cb_page = NULL;
	}

	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}