aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/vecemu.c
blob: 2d8f6d8ccafca2d0bf4905ae4370d669ead9eaa1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
 * Routines to emulate some Altivec/VMX instructions, specifically
 * those that can trap when given denormalized operands in Java mode.
 */
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <linux/uaccess.h>

/* Functions in vector.S */
extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
extern void vrefp(vector128 *dst, vector128 *src);
extern void vrsqrtefp(vector128 *dst, vector128 *src);
extern void vexptep(vector128 *dst, vector128 *src);

static unsigned int exp2s[8] = {
	0x800000,
	0x8b95c2,
	0x9837f0,
	0xa5fed7,
	0xb504f3,
	0xc5672a,
	0xd744fd,
	0xeac0c7
};

/*
 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 * single-precision floating-point representation of x.
 */
static unsigned int eexp2(unsigned int s)
{
	int exp, pwr;
	unsigned int mant, frac;

	/* extract exponent field from input */
	exp = ((s >> 23) & 0xff) - 127;
	if (exp > 7) {
		/* check for NaN input */
		if (exp == 128 && (s & 0x7fffff) != 0)
			return s | 0x400000;	/* return QNaN */
		/* 2^-big = 0, 2^+big = +Inf */
		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
	}
	if (exp < -23)
		return 0x3f800000;	/* 1.0 */

	/* convert to fixed point integer in 9.23 representation */
	pwr = (s & 0x7fffff) | 0x800000;
	if (exp > 0)
		pwr <<= exp;
	else
		pwr >>= -exp;
	if (s & 0x80000000)
		pwr = -pwr;

	/* extract integer part, which becomes exponent part of result */
	exp = (pwr >> 23) + 126;
	if (exp >= 254)
		return 0x7f800000;
	if (exp < -23)
		return 0;

	/* table lookup on top 3 bits of fraction to get mantissa */
	mant = exp2s[(pwr >> 20) & 7];

	/* linear interpolation using remaining 20 bits of fraction */
	asm("mulhwu %0,%1,%2" : "=r" (frac)
	    : "r" (pwr << 12), "r" (0x172b83ff));
	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
	mant += frac;

	if (exp >= 0)
		return mant + (exp << 23);

	/* denormalized result */
	exp = -exp;
	mant += 1 << (exp - 1);
	return mant >> exp;
}

/*
 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 * single-precision floating-point representation of x.
 */
static unsigned int elog2(unsigned int s)
{
	int exp, mant, lz, frac;

	exp = s & 0x7f800000;
	mant = s & 0x7fffff;
	if (exp == 0x7f800000) {	/* Inf or NaN */
		if (mant != 0)
			s |= 0x400000;	/* turn NaN into QNaN */
		return s;
	}
	if ((exp | mant) == 0)		/* +0 or -0 */
		return 0xff800000;	/* return -Inf */

	if (exp == 0) {
		/* denormalized */
		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
		mant <<= lz - 8;
		exp = (-118 - lz) << 23;
	} else {
		mant |= 0x800000;
		exp -= 127 << 23;
	}

	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
		exp |= 0x400000;			/* 0.5 * 2^23 */
		asm("mulhwu %0,%1,%2" : "=r" (mant)
		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
	}
	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
		exp |= 0x200000;			/* 0.25 * 2^23 */
		asm("mulhwu %0,%1,%2" : "=r" (mant)
		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
	}
	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
		exp |= 0x100000;			/* 0.125 * 2^23 */
		asm("mulhwu %0,%1,%2" : "=r" (mant)
		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
	}
	if (mant > 0x800000) {				/* 1.0 * 2^23 */
		/* calculate (mant - 1) * 1.381097463 */
		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
		asm("mulhwu %0,%1,%2" : "=r" (frac)
		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
		exp += frac;
	}
	s = exp & 0x80000000;
	if (exp != 0) {
		if (s)
			exp = -exp;
		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
		lz = 8 - lz;
		if (lz > 0)
			exp >>= lz;
		else if (lz < 0)
			exp <<= -lz;
		s += ((lz + 126) << 23) + exp;
	}
	return s;
}

#define VSCR_SAT	1

static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
{
	int exp, mant;

	exp = (x >> 23) & 0xff;
	mant = x & 0x7fffff;
	if (exp == 255 && mant != 0)
		return 0;		/* NaN -> 0 */
	exp = exp - 127 + scale;
	if (exp < 0)
		return 0;		/* round towards zero */
	if (exp >= 31) {
		/* saturate, unless the result would be -2^31 */
		if (x + (scale << 23) != 0xcf000000)
			*vscrp |= VSCR_SAT;
		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
	}
	mant |= 0x800000;
	mant = (mant << 7) >> (30 - exp);
	return (x & 0x80000000)? -mant: mant;
}

static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
{
	int exp;
	unsigned int mant;

	exp = (x >> 23) & 0xff;
	mant = x & 0x7fffff;
	if (exp == 255 && mant != 0)
		return 0;		/* NaN -> 0 */
	exp = exp - 127 + scale;
	if (exp < 0)
		return 0;		/* round towards zero */
	if (x & 0x80000000) {
		/* negative => saturate to 0 */
		*vscrp |= VSCR_SAT;
		return 0;
	}
	if (exp >= 32) {
		/* saturate */
		*vscrp |= VSCR_SAT;
		return 0xffffffff;
	}
	mant |= 0x800000;
	mant = (mant << 8) >> (31 - exp);
	return mant;
}

/* Round to floating integer, towards 0 */
static unsigned int rfiz(unsigned int x)
{
	int exp;

	exp = ((x >> 23) & 0xff) - 127;
	if (exp == 128 && (x & 0x7fffff) != 0)
		return x | 0x400000;	/* NaN -> make it a QNaN */
	if (exp >= 23)
		return x;		/* it's an integer already (or Inf) */
	if (exp < 0)
		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
	return x & ~(0x7fffff >> exp);
}

/* Round to floating integer, towards +/- Inf */
static unsigned int rfii(unsigned int x)
{
	int exp, mask;

	exp = ((x >> 23) & 0xff) - 127;
	if (exp == 128 && (x & 0x7fffff) != 0)
		return x | 0x400000;	/* NaN -> make it a QNaN */
	if (exp >= 23)
		return x;		/* it's an integer already (or Inf) */
	if ((x & 0x7fffffff) == 0)
		return x;		/* +/-0 -> +/-0 */
	if (exp < 0)
		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
		return (x & 0x80000000) | 0x3f800000;
	mask = 0x7fffff >> exp;
	/* mantissa overflows into exponent - that's OK,
	   it can't overflow into the sign bit */
	return (x + mask) & ~mask;
}

/* Round to floating integer, to nearest */
static unsigned int rfin(unsigned int x)
{
	int exp, half;

	exp = ((x >> 23) & 0xff) - 127;
	if (exp == 128 && (x & 0x7fffff) != 0)
		return x | 0x400000;	/* NaN -> make it a QNaN */
	if (exp >= 23)
		return x;		/* it's an integer already (or Inf) */
	if (exp < -1)
		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
	if (exp == -1)
		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
		return (x & 0x80000000) | 0x3f800000;
	half = 0x400000 >> exp;
	/* add 0.5 to the magnitude and chop off the fraction bits */
	return (x + half) & ~(0x7fffff >> exp);
}

int emulate_altivec(struct pt_regs *regs)
{
	unsigned int instr, i;
	unsigned int va, vb, vc, vd;
	vector128 *vrs;

	if (get_user(instr, (unsigned int __user *) regs->nip))
		return -EFAULT;
	if ((instr >> 26) != 4)
		return -EINVAL;		/* not an altivec instruction */
	vd = (instr >> 21) & 0x1f;
	va = (instr >> 16) & 0x1f;
	vb = (instr >> 11) & 0x1f;
	vc = (instr >> 6) & 0x1f;

	vrs = current->thread.vr_state.vr;
	switch (instr & 0x3f) {
	case 10:
		switch (vc) {
		case 0:	/* vaddfp */
			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
			break;
		case 1:	/* vsubfp */
			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
			break;
		case 4:	/* vrefp */
			vrefp(&vrs[vd], &vrs[vb]);
			break;
		case 5:	/* vrsqrtefp */
			vrsqrtefp(&vrs[vd], &vrs[vb]);
			break;
		case 6:	/* vexptefp */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
			break;
		case 7:	/* vlogefp */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
			break;
		case 8:		/* vrfin */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
			break;
		case 9:		/* vrfiz */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
			break;
		case 10:	/* vrfip */
			for (i = 0; i < 4; ++i) {
				u32 x = vrs[vb].u[i];
				x = (x & 0x80000000)? rfiz(x): rfii(x);
				vrs[vd].u[i] = x;
			}
			break;
		case 11:	/* vrfim */
			for (i = 0; i < 4; ++i) {
				u32 x = vrs[vb].u[i];
				x = (x & 0x80000000)? rfii(x): rfiz(x);
				vrs[vd].u[i] = x;
			}
			break;
		case 14:	/* vctuxs */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
					&current->thread.vr_state.vscr.u[3]);
			break;
		case 15:	/* vctsxs */
			for (i = 0; i < 4; ++i)
				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
					&current->thread.vr_state.vscr.u[3]);
			break;
		default:
			return -EINVAL;
		}
		break;
	case 46:	/* vmaddfp */
		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
		break;
	case 47:	/* vnmsubfp */
		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}