1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2024- IBM Corp.
*
* X25519 scalar multiplication with 51 bits limbs for PPC64le.
* Based on RFC7748 and AArch64 optimized implementation for X25519
* - Algorithm 1 Scalar multiplication of a variable point
*/
#include <crypto/curve25519.h>
#include <crypto/internal/kpp.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/cpufeature.h>
#include <linux/processor.h>
typedef uint64_t fe51[5];
asmlinkage void x25519_fe51_mul(fe51 h, const fe51 f, const fe51 g);
asmlinkage void x25519_fe51_sqr(fe51 h, const fe51 f);
asmlinkage void x25519_fe51_mul121666(fe51 h, fe51 f);
asmlinkage void x25519_fe51_sqr_times(fe51 h, const fe51 f, int n);
asmlinkage void x25519_fe51_frombytes(fe51 h, const uint8_t *s);
asmlinkage void x25519_fe51_tobytes(uint8_t *s, const fe51 h);
asmlinkage void x25519_cswap(fe51 p, fe51 q, unsigned int bit);
#define fmul x25519_fe51_mul
#define fsqr x25519_fe51_sqr
#define fmul121666 x25519_fe51_mul121666
#define fe51_tobytes x25519_fe51_tobytes
static void fadd(fe51 h, const fe51 f, const fe51 g)
{
h[0] = f[0] + g[0];
h[1] = f[1] + g[1];
h[2] = f[2] + g[2];
h[3] = f[3] + g[3];
h[4] = f[4] + g[4];
}
/*
* Prime = 2 ** 255 - 19, 255 bits
* (0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffed)
*
* Prime in 5 51-bit limbs
*/
static fe51 prime51 = { 0x7ffffffffffed, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff};
static void fsub(fe51 h, const fe51 f, const fe51 g)
{
h[0] = (f[0] + ((prime51[0] * 2))) - g[0];
h[1] = (f[1] + ((prime51[1] * 2))) - g[1];
h[2] = (f[2] + ((prime51[2] * 2))) - g[2];
h[3] = (f[3] + ((prime51[3] * 2))) - g[3];
h[4] = (f[4] + ((prime51[4] * 2))) - g[4];
}
static void fe51_frombytes(fe51 h, const uint8_t *s)
{
/*
* Make sure 64-bit aligned.
*/
unsigned char sbuf[32+8];
unsigned char *sb = PTR_ALIGN((void *)sbuf, 8);
memcpy(sb, s, 32);
x25519_fe51_frombytes(h, sb);
}
static void finv(fe51 o, const fe51 i)
{
fe51 a0, b, c, t00;
fsqr(a0, i);
x25519_fe51_sqr_times(t00, a0, 2);
fmul(b, t00, i);
fmul(a0, b, a0);
fsqr(t00, a0);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 5);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 10);
fmul(c, t00, b);
x25519_fe51_sqr_times(t00, c, 20);
fmul(t00, t00, c);
x25519_fe51_sqr_times(t00, t00, 10);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 50);
fmul(c, t00, b);
x25519_fe51_sqr_times(t00, c, 100);
fmul(t00, t00, c);
x25519_fe51_sqr_times(t00, t00, 50);
fmul(t00, t00, b);
x25519_fe51_sqr_times(t00, t00, 5);
fmul(o, t00, a0);
}
static void curve25519_fe51(uint8_t out[32], const uint8_t scalar[32],
const uint8_t point[32])
{
fe51 x1, x2, z2, x3, z3;
uint8_t s[32];
unsigned int swap = 0;
int i;
memcpy(s, scalar, 32);
s[0] &= 0xf8;
s[31] &= 0x7f;
s[31] |= 0x40;
fe51_frombytes(x1, point);
z2[0] = z2[1] = z2[2] = z2[3] = z2[4] = 0;
x3[0] = x1[0];
x3[1] = x1[1];
x3[2] = x1[2];
x3[3] = x1[3];
x3[4] = x1[4];
x2[0] = z3[0] = 1;
x2[1] = z3[1] = 0;
x2[2] = z3[2] = 0;
x2[3] = z3[3] = 0;
x2[4] = z3[4] = 0;
for (i = 254; i >= 0; --i) {
unsigned int k_t = 1 & (s[i / 8] >> (i & 7));
fe51 a, b, c, d, e;
fe51 da, cb, aa, bb;
fe51 dacb_p, dacb_m;
swap ^= k_t;
x25519_cswap(x2, x3, swap);
x25519_cswap(z2, z3, swap);
swap = k_t;
fsub(b, x2, z2); // B = x_2 - z_2
fadd(a, x2, z2); // A = x_2 + z_2
fsub(d, x3, z3); // D = x_3 - z_3
fadd(c, x3, z3); // C = x_3 + z_3
fsqr(bb, b); // BB = B^2
fsqr(aa, a); // AA = A^2
fmul(da, d, a); // DA = D * A
fmul(cb, c, b); // CB = C * B
fsub(e, aa, bb); // E = AA - BB
fmul(x2, aa, bb); // x2 = AA * BB
fadd(dacb_p, da, cb); // DA + CB
fsub(dacb_m, da, cb); // DA - CB
fmul121666(z3, e); // 121666 * E
fsqr(z2, dacb_m); // (DA - CB)^2
fsqr(x3, dacb_p); // x3 = (DA + CB)^2
fadd(b, bb, z3); // BB + 121666 * E
fmul(z3, x1, z2); // z3 = x1 * (DA - CB)^2
fmul(z2, e, b); // z2 = e * (BB + (DA + CB)^2)
}
finv(z2, z2);
fmul(x2, x2, z2);
fe51_tobytes(out, x2);
}
void curve25519_arch(u8 mypublic[CURVE25519_KEY_SIZE],
const u8 secret[CURVE25519_KEY_SIZE],
const u8 basepoint[CURVE25519_KEY_SIZE])
{
curve25519_fe51(mypublic, secret, basepoint);
}
EXPORT_SYMBOL(curve25519_arch);
void curve25519_base_arch(u8 pub[CURVE25519_KEY_SIZE],
const u8 secret[CURVE25519_KEY_SIZE])
{
curve25519_fe51(pub, secret, curve25519_base_point);
}
EXPORT_SYMBOL(curve25519_base_arch);
static int curve25519_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
u8 *secret = kpp_tfm_ctx(tfm);
if (!len)
curve25519_generate_secret(secret);
else if (len == CURVE25519_KEY_SIZE &&
crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE))
memcpy(secret, buf, CURVE25519_KEY_SIZE);
else
return -EINVAL;
return 0;
}
static int curve25519_generate_public_key(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
const u8 *secret = kpp_tfm_ctx(tfm);
u8 buf[CURVE25519_KEY_SIZE];
int copied, nbytes;
if (req->src)
return -EINVAL;
curve25519_base_arch(buf, secret);
/* might want less than we've got */
nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len);
copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst,
nbytes),
buf, nbytes);
if (copied != nbytes)
return -EINVAL;
return 0;
}
static int curve25519_compute_shared_secret(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
const u8 *secret = kpp_tfm_ctx(tfm);
u8 public_key[CURVE25519_KEY_SIZE];
u8 buf[CURVE25519_KEY_SIZE];
int copied, nbytes;
if (!req->src)
return -EINVAL;
copied = sg_copy_to_buffer(req->src,
sg_nents_for_len(req->src,
CURVE25519_KEY_SIZE),
public_key, CURVE25519_KEY_SIZE);
if (copied != CURVE25519_KEY_SIZE)
return -EINVAL;
curve25519_arch(buf, secret, public_key);
/* might want less than we've got */
nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len);
copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst,
nbytes),
buf, nbytes);
if (copied != nbytes)
return -EINVAL;
return 0;
}
static unsigned int curve25519_max_size(struct crypto_kpp *tfm)
{
return CURVE25519_KEY_SIZE;
}
static struct kpp_alg curve25519_alg = {
.base.cra_name = "curve25519",
.base.cra_driver_name = "curve25519-ppc64le",
.base.cra_priority = 200,
.base.cra_module = THIS_MODULE,
.base.cra_ctxsize = CURVE25519_KEY_SIZE,
.set_secret = curve25519_set_secret,
.generate_public_key = curve25519_generate_public_key,
.compute_shared_secret = curve25519_compute_shared_secret,
.max_size = curve25519_max_size,
};
static int __init curve25519_mod_init(void)
{
return IS_REACHABLE(CONFIG_CRYPTO_KPP) ?
crypto_register_kpp(&curve25519_alg) : 0;
}
static void __exit curve25519_mod_exit(void)
{
if (IS_REACHABLE(CONFIG_CRYPTO_KPP))
crypto_unregister_kpp(&curve25519_alg);
}
module_init(curve25519_mod_init);
module_exit(curve25519_mod_exit);
MODULE_ALIAS_CRYPTO("curve25519");
MODULE_ALIAS_CRYPTO("curve25519-ppc64le");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Danny Tsen <dtsen@us.ibm.com>");
|