aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm/kvm_emulate.h
blob: 965b4cd8c24703c7993808b8d7ab6857a4bf9073 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/kvm_emulate.h
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_EMULATE_H__
#define __ARM64_KVM_EMULATE_H__

#include <linux/kvm_host.h>

#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_hyp.h>
#include <asm/ptrace.h>
#include <asm/cputype.h>
#include <asm/virt.h>

#define CURRENT_EL_SP_EL0_VECTOR	0x0
#define CURRENT_EL_SP_ELx_VECTOR	0x200
#define LOWER_EL_AArch64_VECTOR		0x400
#define LOWER_EL_AArch32_VECTOR		0x600

enum exception_type {
	except_type_sync	= 0,
	except_type_irq		= 0x80,
	except_type_fiq		= 0x100,
	except_type_serror	= 0x180,
};

#define kvm_exception_type_names		\
	{ except_type_sync,	"SYNC"   },	\
	{ except_type_irq,	"IRQ"    },	\
	{ except_type_fiq,	"FIQ"    },	\
	{ except_type_serror,	"SERROR" }

bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
void kvm_skip_instr32(struct kvm_vcpu *vcpu);

void kvm_inject_undefined(struct kvm_vcpu *vcpu);
void kvm_inject_vabt(struct kvm_vcpu *vcpu);
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_size_fault(struct kvm_vcpu *vcpu);

void kvm_vcpu_wfi(struct kvm_vcpu *vcpu);

void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu);
int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2);
int kvm_inject_nested_irq(struct kvm_vcpu *vcpu);

static inline bool vcpu_has_feature(const struct kvm_vcpu *vcpu, int feature)
{
	return test_bit(feature, vcpu->kvm->arch.vcpu_features);
}

#if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__)
static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.hcr_el2 & HCR_RW);
}
#else
static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
{
	return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
}
#endif

static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
{
	vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
	if (has_vhe() || has_hvhe())
		vcpu->arch.hcr_el2 |= HCR_E2H;
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) {
		/* route synchronous external abort exceptions to EL2 */
		vcpu->arch.hcr_el2 |= HCR_TEA;
		/* trap error record accesses */
		vcpu->arch.hcr_el2 |= HCR_TERR;
	}

	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
		vcpu->arch.hcr_el2 |= HCR_FWB;
	} else {
		/*
		 * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C
		 * get set in SCTLR_EL1 such that we can detect when the guest
		 * MMU gets turned on and do the necessary cache maintenance
		 * then.
		 */
		vcpu->arch.hcr_el2 |= HCR_TVM;
	}

	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
		vcpu->arch.hcr_el2 |= HCR_TID4;
	else
		vcpu->arch.hcr_el2 |= HCR_TID2;

	if (vcpu_el1_is_32bit(vcpu))
		vcpu->arch.hcr_el2 &= ~HCR_RW;

	if (kvm_has_mte(vcpu->kvm))
		vcpu->arch.hcr_el2 |= HCR_ATA;
}

static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu)
{
	return (unsigned long *)&vcpu->arch.hcr_el2;
}

static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu)
{
	vcpu->arch.hcr_el2 &= ~HCR_TWE;
	if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
	    vcpu->kvm->arch.vgic.nassgireq)
		vcpu->arch.hcr_el2 &= ~HCR_TWI;
	else
		vcpu->arch.hcr_el2 |= HCR_TWI;
}

static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu)
{
	vcpu->arch.hcr_el2 |= HCR_TWE;
	vcpu->arch.hcr_el2 |= HCR_TWI;
}

static inline void vcpu_ptrauth_enable(struct kvm_vcpu *vcpu)
{
	vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
}

static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu)
{
	vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
}

static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.vsesr_el2;
}

static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
{
	vcpu->arch.vsesr_el2 = vsesr;
}

static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
{
	return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
}

static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
{
	return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
}

static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
{
	return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT);
}

static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
{
	if (vcpu_mode_is_32bit(vcpu))
		return kvm_condition_valid32(vcpu);

	return true;
}

static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
{
	*vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT;
}

/*
 * vcpu_get_reg and vcpu_set_reg should always be passed a register number
 * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on
 * AArch32 with banked registers.
 */
static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
					 u8 reg_num)
{
	return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
}

static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
				unsigned long val)
{
	if (reg_num != 31)
		vcpu_gp_regs(vcpu)->regs[reg_num] = val;
}

static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt)
{
	switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) {
	case PSR_MODE_EL2h:
	case PSR_MODE_EL2t:
		return true;
	default:
		return false;
	}
}

static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu)
{
	return vcpu_is_el2_ctxt(&vcpu->arch.ctxt);
}

static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt)
{
	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H;
}

static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu)
{
	return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt);
}

static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt)
{
	return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE;
}

static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu)
{
	return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt);
}

static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt)
{
	/*
	 * We are in a hypervisor context if the vcpu mode is EL2 or
	 * E2H and TGE bits are set. The latter means we are in the user space
	 * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost'
	 *
	 * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the
	 * rest of the KVM code, and will result in a misbehaving guest.
	 */
	return vcpu_is_el2_ctxt(ctxt) ||
		(__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) ||
		__vcpu_el2_tge_is_set(ctxt);
}

static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu)
{
	return __is_hyp_ctxt(&vcpu->arch.ctxt);
}

/*
 * The layout of SPSR for an AArch32 state is different when observed from an
 * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32
 * view given an AArch64 view.
 *
 * In ARM DDI 0487E.a see:
 *
 * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426
 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256
 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280
 *
 * Which show the following differences:
 *
 * | Bit | AA64 | AA32 | Notes                       |
 * +-----+------+------+-----------------------------|
 * | 24  | DIT  | J    | J is RES0 in ARMv8          |
 * | 21  | SS   | DIT  | SS doesn't exist in AArch32 |
 *
 * ... and all other bits are (currently) common.
 */
static inline unsigned long host_spsr_to_spsr32(unsigned long spsr)
{
	const unsigned long overlap = BIT(24) | BIT(21);
	unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT);

	spsr &= ~overlap;

	spsr |= dit << 21;

	return spsr;
}

static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
{
	u32 mode;

	if (vcpu_mode_is_32bit(vcpu)) {
		mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
		return mode > PSR_AA32_MODE_USR;
	}

	mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK;

	return mode != PSR_MODE_EL0t;
}

static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
{
	return vcpu->arch.fault.esr_el2;
}

static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
{
	u64 esr = kvm_vcpu_get_esr(vcpu);

	if (esr & ESR_ELx_CV)
		return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;

	return -1;
}

static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu)
{
	return vcpu->arch.fault.far_el2;
}

static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
{
	return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
}

static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
{
	return vcpu->arch.fault.disr_el1;
}

static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
}

static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
}

static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
}

static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
}

static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
}

static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
{
	return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
}

static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
}

/* Always check for S1PTW *before* using this. */
static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR;
}

static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
}

static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
{
	return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
}

/* This one is not specific to Data Abort */
static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
{
	return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
}

static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
{
	return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
}

static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW;
}

static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu);
}

static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
}

static __always_inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_TYPE;
}

static __always_inline u8 kvm_vcpu_trap_get_fault_level(const struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_LEVEL;
}

static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
{
	switch (kvm_vcpu_trap_get_fault(vcpu)) {
	case ESR_ELx_FSC_EXTABT:
	case ESR_ELx_FSC_SEA_TTW0:
	case ESR_ELx_FSC_SEA_TTW1:
	case ESR_ELx_FSC_SEA_TTW2:
	case ESR_ELx_FSC_SEA_TTW3:
	case ESR_ELx_FSC_SECC:
	case ESR_ELx_FSC_SECC_TTW0:
	case ESR_ELx_FSC_SECC_TTW1:
	case ESR_ELx_FSC_SECC_TTW2:
	case ESR_ELx_FSC_SECC_TTW3:
		return true;
	default:
		return false;
	}
}

static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
{
	u64 esr = kvm_vcpu_get_esr(vcpu);
	return ESR_ELx_SYS64_ISS_RT(esr);
}

static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_abt_iss1tw(vcpu)) {
		/*
		 * Only a permission fault on a S1PTW should be
		 * considered as a write. Otherwise, page tables baked
		 * in a read-only memslot will result in an exception
		 * being delivered in the guest.
		 *
		 * The drawback is that we end-up faulting twice if the
		 * guest is using any of HW AF/DB: a translation fault
		 * to map the page containing the PT (read only at
		 * first), then a permission fault to allow the flags
		 * to be set.
		 */
		switch (kvm_vcpu_trap_get_fault_type(vcpu)) {
		case ESR_ELx_FSC_PERM:
			return true;
		default:
			return false;
		}
	}

	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
	return vcpu_read_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
}

static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)
{
	if (vcpu_mode_is_32bit(vcpu)) {
		*vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT;
	} else {
		u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
		sctlr |= SCTLR_ELx_EE;
		vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1);
	}
}

static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu)
{
	if (vcpu_mode_is_32bit(vcpu))
		return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT);

	if (vcpu_mode_priv(vcpu))
		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE);
	else
		return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E);
}

static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu,
						    unsigned long data,
						    unsigned int len)
{
	if (kvm_vcpu_is_be(vcpu)) {
		switch (len) {
		case 1:
			return data & 0xff;
		case 2:
			return be16_to_cpu(data & 0xffff);
		case 4:
			return be32_to_cpu(data & 0xffffffff);
		default:
			return be64_to_cpu(data);
		}
	} else {
		switch (len) {
		case 1:
			return data & 0xff;
		case 2:
			return le16_to_cpu(data & 0xffff);
		case 4:
			return le32_to_cpu(data & 0xffffffff);
		default:
			return le64_to_cpu(data);
		}
	}

	return data;		/* Leave LE untouched */
}

static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
						    unsigned long data,
						    unsigned int len)
{
	if (kvm_vcpu_is_be(vcpu)) {
		switch (len) {
		case 1:
			return data & 0xff;
		case 2:
			return cpu_to_be16(data & 0xffff);
		case 4:
			return cpu_to_be32(data & 0xffffffff);
		default:
			return cpu_to_be64(data);
		}
	} else {
		switch (len) {
		case 1:
			return data & 0xff;
		case 2:
			return cpu_to_le16(data & 0xffff);
		case 4:
			return cpu_to_le32(data & 0xffffffff);
		default:
			return cpu_to_le64(data);
		}
	}

	return data;		/* Leave LE untouched */
}

static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu)
{
	WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION));
	vcpu_set_flag(vcpu, INCREMENT_PC);
}

#define kvm_pend_exception(v, e)					\
	do {								\
		WARN_ON(vcpu_get_flag((v), INCREMENT_PC));		\
		vcpu_set_flag((v), PENDING_EXCEPTION);			\
		vcpu_set_flag((v), e);					\
	} while (0)

static __always_inline void kvm_write_cptr_el2(u64 val)
{
	if (has_vhe() || has_hvhe())
		write_sysreg(val, cpacr_el1);
	else
		write_sysreg(val, cptr_el2);
}

static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu)
{
	u64 val;

	if (has_vhe()) {
		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
		       CPACR_EL1_ZEN_EL1EN);
		if (cpus_have_final_cap(ARM64_SME))
			val |= CPACR_EL1_SMEN_EL1EN;
	} else if (has_hvhe()) {
		val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);

		if (!vcpu_has_sve(vcpu) ||
		    (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED))
			val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN;
		if (cpus_have_final_cap(ARM64_SME))
			val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN;
	} else {
		val = CPTR_NVHE_EL2_RES1;

		if (vcpu_has_sve(vcpu) &&
		    (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED))
			val |= CPTR_EL2_TZ;
		if (cpus_have_final_cap(ARM64_SME))
			val &= ~CPTR_EL2_TSM;
	}

	return val;
}

static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu)
{
	u64 val = kvm_get_reset_cptr_el2(vcpu);

	kvm_write_cptr_el2(val);
}
#endif /* __ARM64_KVM_EMULATE_H__ */