aboutsummaryrefslogtreecommitdiff
path: root/arch/arc/kernel/disasm.c
blob: d04837d91b407797d2881cff37c2cd00b08e0487 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
// SPDX-License-Identifier: GPL-2.0-only
/*
 * several functions that help interpret ARC instructions
 * used for unaligned accesses, kprobes and kgdb
 *
 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 */

#include <linux/types.h>
#include <linux/kprobes.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <asm/disasm.h>

#if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
	defined(CONFIG_KPROBES)

/* disasm_instr: Analyses instruction at addr, stores
 * findings in *state
 */
void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
	int userspace, struct pt_regs *regs, struct callee_regs *cregs)
{
	int fieldA = 0;
	int fieldC = 0, fieldCisReg = 0;
	uint16_t word1 = 0, word0 = 0;
	int subopcode, is_linked, op_format;
	uint16_t *ins_ptr;
	uint16_t ins_buf[4];
	int bytes_not_copied = 0;

	memset(state, 0, sizeof(struct disasm_state));

	/* This fetches the upper part of the 32 bit instruction
	 * in both the cases of Little Endian or Big Endian configurations. */
	if (userspace) {
		bytes_not_copied = copy_from_user(ins_buf,
						(const void __user *) addr, 8);
		if (bytes_not_copied > 6)
			goto fault;
		ins_ptr = ins_buf;
	} else {
		ins_ptr = (uint16_t *) addr;
	}

	word1 = *((uint16_t *)addr);

	state->major_opcode = (word1 >> 11) & 0x1F;

	/* Check if the instruction is 32 bit or 16 bit instruction */
	if (state->major_opcode < 0x0B) {
		if (bytes_not_copied > 4)
			goto fault;
		state->instr_len = 4;
		word0 = *((uint16_t *)(addr+2));
		state->words[0] = (word1 << 16) | word0;
	} else {
		state->instr_len = 2;
		state->words[0] = word1;
	}

	/* Read the second word in case of limm */
	word1 = *((uint16_t *)(addr + state->instr_len));
	word0 = *((uint16_t *)(addr + state->instr_len + 2));
	state->words[1] = (word1 << 16) | word0;

	switch (state->major_opcode) {
	case op_Bcc:
		state->is_branch = 1;

		/* unconditional branch s25, conditional branch s21 */
		fieldA = (IS_BIT(state->words[0], 16)) ?
			FIELD_s25(state->words[0]) :
			FIELD_s21(state->words[0]);

		state->delay_slot = IS_BIT(state->words[0], 5);
		state->target = fieldA + (addr & ~0x3);
		state->flow = direct_jump;
		break;

	case op_BLcc:
		if (IS_BIT(state->words[0], 16)) {
			/* Branch and Link*/
			/* unconditional branch s25, conditional branch s21 */
			fieldA = (IS_BIT(state->words[0], 17)) ?
				(FIELD_s25(state->words[0]) & ~0x3) :
				FIELD_s21(state->words[0]);

			state->flow = direct_call;
		} else {
			/*Branch On Compare */
			fieldA = FIELD_s9(state->words[0]) & ~0x3;
			state->flow = direct_jump;
		}

		state->delay_slot = IS_BIT(state->words[0], 5);
		state->target = fieldA + (addr & ~0x3);
		state->is_branch = 1;
		break;

	case op_LD:  /* LD<zz> a,[b,s9] */
		state->write = 0;
		state->di = BITS(state->words[0], 11, 11);
		if (state->di)
			break;
		state->x = BITS(state->words[0], 6, 6);
		state->zz = BITS(state->words[0], 7, 8);
		state->aa = BITS(state->words[0], 9, 10);
		state->wb_reg = FIELD_B(state->words[0]);
		if (state->wb_reg == REG_LIMM) {
			state->instr_len += 4;
			state->aa = 0;
			state->src1 = state->words[1];
		} else {
			state->src1 = get_reg(state->wb_reg, regs, cregs);
		}
		state->src2 = FIELD_s9(state->words[0]);
		state->dest = FIELD_A(state->words[0]);
		state->pref = (state->dest == REG_LIMM);
		break;

	case op_ST:
		state->write = 1;
		state->di = BITS(state->words[0], 5, 5);
		if (state->di)
			break;
		state->aa = BITS(state->words[0], 3, 4);
		state->zz = BITS(state->words[0], 1, 2);
		state->src1 = FIELD_C(state->words[0]);
		if (state->src1 == REG_LIMM) {
			state->instr_len += 4;
			state->src1 = state->words[1];
		} else {
			state->src1 = get_reg(state->src1, regs, cregs);
		}
		state->wb_reg = FIELD_B(state->words[0]);
		if (state->wb_reg == REG_LIMM) {
			state->aa = 0;
			state->instr_len += 4;
			state->src2 = state->words[1];
		} else {
			state->src2 = get_reg(state->wb_reg, regs, cregs);
		}
		state->src3 = FIELD_s9(state->words[0]);
		break;

	case op_MAJOR_4:
		subopcode = MINOR_OPCODE(state->words[0]);
		switch (subopcode) {
		case 32:	/* Jcc */
		case 33:	/* Jcc.D */
		case 34:	/* JLcc */
		case 35:	/* JLcc.D */
			is_linked = 0;

			if (subopcode == 33 || subopcode == 35)
				state->delay_slot = 1;

			if (subopcode == 34 || subopcode == 35)
				is_linked = 1;

			fieldCisReg = 0;
			op_format = BITS(state->words[0], 22, 23);
			if (op_format == 0 || ((op_format == 3) &&
				(!IS_BIT(state->words[0], 5)))) {
				fieldC = FIELD_C(state->words[0]);

				if (fieldC == REG_LIMM) {
					fieldC = state->words[1];
					state->instr_len += 4;
				} else {
					fieldCisReg = 1;
				}
			} else if (op_format == 1 || ((op_format == 3)
				&& (IS_BIT(state->words[0], 5)))) {
				fieldC = FIELD_C(state->words[0]);
			} else  {
				/* op_format == 2 */
				fieldC = FIELD_s12(state->words[0]);
			}

			if (!fieldCisReg) {
				state->target = fieldC;
				state->flow = is_linked ?
					direct_call : direct_jump;
			} else {
				state->target = get_reg(fieldC, regs, cregs);
				state->flow = is_linked ?
					indirect_call : indirect_jump;
			}
			state->is_branch = 1;
			break;

		case 40:	/* LPcc */
			if (BITS(state->words[0], 22, 23) == 3) {
				/* Conditional LPcc u7 */
				fieldC = FIELD_C(state->words[0]);

				fieldC = fieldC << 1;
				fieldC += (addr & ~0x03);
				state->is_branch = 1;
				state->flow = direct_jump;
				state->target = fieldC;
			}
			/* For Unconditional lp, next pc is the fall through
			 * which is updated */
			break;

		case 48 ... 55:	/* LD a,[b,c] */
			state->di = BITS(state->words[0], 15, 15);
			if (state->di)
				break;
			state->x = BITS(state->words[0], 16, 16);
			state->zz = BITS(state->words[0], 17, 18);
			state->aa = BITS(state->words[0], 22, 23);
			state->wb_reg = FIELD_B(state->words[0]);
			if (state->wb_reg == REG_LIMM) {
				state->instr_len += 4;
				state->src1 = state->words[1];
			} else {
				state->src1 = get_reg(state->wb_reg, regs,
						cregs);
			}
			state->src2 = FIELD_C(state->words[0]);
			if (state->src2 == REG_LIMM) {
				state->instr_len += 4;
				state->src2 = state->words[1];
			} else {
				state->src2 = get_reg(state->src2, regs,
					cregs);
			}
			state->dest = FIELD_A(state->words[0]);
			if (state->dest == REG_LIMM)
				state->pref = 1;
			break;

		case 10:	/* MOV */
			/* still need to check for limm to extract instr len */
			/* MOV is special case because it only takes 2 args */
			switch (BITS(state->words[0], 22, 23)) {
			case 0: /* OP a,b,c */
				if (FIELD_C(state->words[0]) == REG_LIMM)
					state->instr_len += 4;
				break;
			case 1: /* OP a,b,u6 */
				break;
			case 2: /* OP b,b,s12 */
				break;
			case 3: /* OP.cc b,b,c/u6 */
				if ((!IS_BIT(state->words[0], 5)) &&
				    (FIELD_C(state->words[0]) == REG_LIMM))
					state->instr_len += 4;
				break;
			}
			break;


		default:
			/* Not a Load, Jump or Loop instruction */
			/* still need to check for limm to extract instr len */
			switch (BITS(state->words[0], 22, 23)) {
			case 0: /* OP a,b,c */
				if ((FIELD_B(state->words[0]) == REG_LIMM) ||
				    (FIELD_C(state->words[0]) == REG_LIMM))
					state->instr_len += 4;
				break;
			case 1: /* OP a,b,u6 */
				break;
			case 2: /* OP b,b,s12 */
				break;
			case 3: /* OP.cc b,b,c/u6 */
				if ((!IS_BIT(state->words[0], 5)) &&
				   ((FIELD_B(state->words[0]) == REG_LIMM) ||
				    (FIELD_C(state->words[0]) == REG_LIMM)))
					state->instr_len += 4;
				break;
			}
			break;
		}
		break;

	/* 16 Bit Instructions */
	case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
		state->zz = BITS(state->words[0], 3, 4);
		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
		state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
		state->dest = FIELD_S_A(state->words[0]);
		break;

	case op_ADD_MOV_CMP:
		/* check for limm, ignore mov_s h,b (== mov_s 0,b) */
		if ((BITS(state->words[0], 3, 4) < 3) &&
		    (FIELD_S_H(state->words[0]) == REG_LIMM))
			state->instr_len += 4;
		break;

	case op_S:
		subopcode = BITS(state->words[0], 5, 7);
		switch (subopcode) {
		case 0:	/* j_s */
		case 1:	/* j_s.d */
		case 2:	/* jl_s */
		case 3:	/* jl_s.d */
			state->target = get_reg(FIELD_S_B(state->words[0]),
						regs, cregs);
			state->delay_slot = subopcode & 1;
			state->flow = (subopcode >= 2) ?
				direct_call : indirect_jump;
			break;
		case 7:
			switch (BITS(state->words[0], 8, 10)) {
			case 4:	/* jeq_s [blink] */
			case 5:	/* jne_s [blink] */
			case 6:	/* j_s [blink] */
			case 7:	/* j_s.d [blink] */
				state->delay_slot = (subopcode == 7);
				state->flow = indirect_jump;
				state->target = get_reg(31, regs, cregs);
			default:
				break;
			}
		default:
			break;
		}
		break;

	case op_LD_S:	/* LD_S c, [b, u7] */
		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
		state->src2 = FIELD_S_u7(state->words[0]);
		state->dest = FIELD_S_C(state->words[0]);
		break;

	case op_LDB_S:
	case op_STB_S:
		/* no further handling required as byte accesses should not
		 * cause an unaligned access exception */
		state->zz = 1;
		break;

	case op_LDWX_S:	/* LDWX_S c, [b, u6] */
		state->x = 1;
		/* intentional fall-through */

	case op_LDW_S:	/* LDW_S c, [b, u6] */
		state->zz = 2;
		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
		state->src2 = FIELD_S_u6(state->words[0]);
		state->dest = FIELD_S_C(state->words[0]);
		break;

	case op_ST_S:	/* ST_S c, [b, u7] */
		state->write = 1;
		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
		state->src3 = FIELD_S_u7(state->words[0]);
		break;

	case op_STW_S:	/* STW_S c,[b,u6] */
		state->write = 1;
		state->zz = 2;
		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
		state->src3 = FIELD_S_u6(state->words[0]);
		break;

	case op_SP:	/* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
		/* note: we are ignoring possibility of:
		 * ADD_S, SUB_S, PUSH_S, POP_S as these should not
		 * cause unaliged exception anyway */
		state->write = BITS(state->words[0], 6, 6);
		state->zz = BITS(state->words[0], 5, 5);
		if (state->zz)
			break;	/* byte accesses should not come here */
		if (!state->write) {
			state->src1 = get_reg(28, regs, cregs);
			state->src2 = FIELD_S_u7(state->words[0]);
			state->dest = FIELD_S_B(state->words[0]);
		} else {
			state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
					cregs);
			state->src2 = get_reg(28, regs, cregs);
			state->src3 = FIELD_S_u7(state->words[0]);
		}
		break;

	case op_GP:	/* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
		/* note: ADD_S r0, gp, s11 is ignored */
		state->zz = BITS(state->words[0], 9, 10);
		state->src1 = get_reg(26, regs, cregs);
		state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
			FIELD_S_s11(state->words[0]);
		state->dest = 0;
		break;

	case op_Pcl:	/* LD_S b,[pcl,u10] */
		state->src1 = regs->ret & ~3;
		state->src2 = FIELD_S_u10(state->words[0]);
		state->dest = FIELD_S_B(state->words[0]);
		break;

	case op_BR_S:
		state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
		state->flow = direct_jump;
		state->is_branch = 1;
		break;

	case op_B_S:
		fieldA = (BITS(state->words[0], 9, 10) == 3) ?
			FIELD_S_s7(state->words[0]) :
			FIELD_S_s10(state->words[0]);
		state->target = fieldA + (addr & ~0x03);
		state->flow = direct_jump;
		state->is_branch = 1;
		break;

	case op_BL_S:
		state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
		state->flow = direct_call;
		state->is_branch = 1;
		break;

	default:
		break;
	}

	if (bytes_not_copied <= (8 - state->instr_len))
		return;

fault:	state->fault = 1;
}

long __kprobes get_reg(int reg, struct pt_regs *regs,
		       struct callee_regs *cregs)
{
	long *p;

	if (reg <= 12) {
		p = &regs->r0;
		return p[-reg];
	}

	if (cregs && (reg <= 25)) {
		p = &cregs->r13;
		return p[13-reg];
	}

	if (reg == 26)
		return regs->r26;
	if (reg == 27)
		return regs->fp;
	if (reg == 28)
		return regs->sp;
	if (reg == 31)
		return regs->blink;

	return 0;
}

void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
		struct callee_regs *cregs)
{
	long *p;

	switch (reg) {
	case 0 ... 12:
		p = &regs->r0;
		p[-reg] = val;
		break;
	case 13 ... 25:
		if (cregs) {
			p = &cregs->r13;
			p[13-reg] = val;
		}
		break;
	case 26:
		regs->r26 = val;
		break;
	case 27:
		regs->fp = val;
		break;
	case 28:
		regs->sp = val;
		break;
	case 31:
		regs->blink = val;
		break;
	default:
		break;
	}
}

/*
 * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
 * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
 *
 * If @pc is a branch
 *	-@tgt_if_br is set to branch target.
 *	-If branch has delay slot, @next_pc updated with actual next PC.
 */
int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
			     struct callee_regs *cregs,
			     unsigned long *next_pc, unsigned long *tgt_if_br)
{
	struct disasm_state instr;

	memset(&instr, 0, sizeof(struct disasm_state));
	disasm_instr(pc, &instr, 0, regs, cregs);

	*next_pc = pc + instr.instr_len;

	/* Instruction with possible two targets branch, jump and loop */
	if (instr.is_branch)
		*tgt_if_br = instr.target;

	/* For the instructions with delay slots, the fall through is the
	 * instruction following the instruction in delay slot.
	 */
	 if (instr.delay_slot) {
		struct disasm_state instr_d;

		disasm_instr(*next_pc, &instr_d, 0, regs, cregs);

		*next_pc += instr_d.instr_len;
	 }

	 /* Zero Overhead Loop - end of the loop */
	if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
		&& (regs->lp_count > 1)) {
		*next_pc = regs->lp_start;
	}

	return instr.is_branch;
}

#endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */