aboutsummaryrefslogtreecommitdiff
path: root/Documentation/arch/sparc/adi.rst
blob: dbcd8b6e7bc3f12f024865632962cc32c3c69a50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
================================
Application Data Integrity (ADI)
================================

SPARC M7 processor adds the Application Data Integrity (ADI) feature.
ADI allows a task to set version tags on any subset of its address
space. Once ADI is enabled and version tags are set for ranges of
address space of a task, the processor will compare the tag in pointers
to memory in these ranges to the version set by the application
previously. Access to memory is granted only if the tag in given pointer
matches the tag set by the application. In case of mismatch, processor
raises an exception.

Following steps must be taken by a task to enable ADI fully:

1. Set the user mode PSTATE.mcde bit. This acts as master switch for
   the task's entire address space to enable/disable ADI for the task.

2. Set TTE.mcd bit on any TLB entries that correspond to the range of
   addresses ADI is being enabled on. MMU checks the version tag only
   on the pages that have TTE.mcd bit set.

3. Set the version tag for virtual addresses using stxa instruction
   and one of the MCD specific ASIs. Each stxa instruction sets the
   given tag for one ADI block size number of bytes. This step must
   be repeated for entire page to set tags for entire page.

ADI block size for the platform is provided by the hypervisor to kernel
in machine description tables. Hypervisor also provides the number of
top bits in the virtual address that specify the version tag.  Once
version tag has been set for a memory location, the tag is stored in the
physical memory and the same tag must be present in the ADI version tag
bits of the virtual address being presented to the MMU. For example on
SPARC M7 processor, MMU uses bits 63-60 for version tags and ADI block
size is same as cacheline size which is 64 bytes. A task that sets ADI
version to, say 10, on a range of memory, must access that memory using
virtual addresses that contain 0xa in bits 63-60.

ADI is enabled on a set of pages using mprotect() with PROT_ADI flag.
When ADI is enabled on a set of pages by a task for the first time,
kernel sets the PSTATE.mcde bit for the task. Version tags for memory
addresses are set with an stxa instruction on the addresses using
ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY. ADI block size is
provided by the hypervisor to the kernel.  Kernel returns the value of
ADI block size to userspace using auxiliary vector along with other ADI
info. Following auxiliary vectors are provided by the kernel:

	============	===========================================
	AT_ADI_BLKSZ	ADI block size. This is the granularity and
			alignment, in bytes, of ADI versioning.
	AT_ADI_NBITS	Number of ADI version bits in the VA
	============	===========================================


IMPORTANT NOTES
===============

- Version tag values of 0x0 and 0xf are reserved. These values match any
  tag in virtual address and never generate a mismatch exception.

- Version tags are set on virtual addresses from userspace even though
  tags are stored in physical memory. Tags are set on a physical page
  after it has been allocated to a task and a pte has been created for
  it.

- When a task frees a memory page it had set version tags on, the page
  goes back to free page pool. When this page is re-allocated to a task,
  kernel clears the page using block initialization ASI which clears the
  version tags as well for the page. If a page allocated to a task is
  freed and allocated back to the same task, old version tags set by the
  task on that page will no longer be present.

- ADI tag mismatches are not detected for non-faulting loads.

- Kernel does not set any tags for user pages and it is entirely a
  task's responsibility to set any version tags. Kernel does ensure the
  version tags are preserved if a page is swapped out to the disk and
  swapped back in. It also preserves that version tags if a page is
  migrated.

- ADI works for any size pages. A userspace task need not be aware of
  page size when using ADI. It can simply select a virtual address
  range, enable ADI on the range using mprotect() and set version tags
  for the entire range. mprotect() ensures range is aligned to page size
  and is a multiple of page size.

- ADI tags can only be set on writable memory. For example, ADI tags can
  not be set on read-only mappings.



ADI related traps
=================

With ADI enabled, following new traps may occur:

Disrupting memory corruption
----------------------------

	When a store accesses a memory location that has TTE.mcd=1,
	the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
	tag in the address used (bits 63:60) does not match the tag set on
	the corresponding cacheline, a memory corruption trap occurs. By
	default, it is a disrupting trap and is sent to the hypervisor
	first. Hypervisor creates a sun4v error report and sends a
	resumable error (TT=0x7e) trap to the kernel. The kernel sends
	a SIGSEGV to the task that resulted in this trap with the following
	info::

		siginfo.si_signo = SIGSEGV;
		siginfo.errno = 0;
		siginfo.si_code = SEGV_ADIDERR;
		siginfo.si_addr = addr; /* PC where first mismatch occurred */
		siginfo.si_trapno = 0;


Precise memory corruption
-------------------------

	When a store accesses a memory location that has TTE.mcd=1,
	the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
	tag in the address used (bits 63:60) does not match the tag set on
	the corresponding cacheline, a memory corruption trap occurs. If
	MCD precise exception is enabled (MCDPERR=1), a precise
	exception is sent to the kernel with TT=0x1a. The kernel sends
	a SIGSEGV to the task that resulted in this trap with the following
	info::

		siginfo.si_signo = SIGSEGV;
		siginfo.errno = 0;
		siginfo.si_code = SEGV_ADIPERR;
		siginfo.si_addr = addr;	/* address that caused trap */
		siginfo.si_trapno = 0;

	NOTE:
		ADI tag mismatch on a load always results in precise trap.


MCD disabled
------------

	When a task has not enabled ADI and attempts to set ADI version
	on a memory address, processor sends an MCD disabled trap. This
	trap is handled by hypervisor first and the hypervisor vectors this
	trap through to the kernel as Data Access Exception trap with
	fault type set to 0xa (invalid ASI). When this occurs, the kernel
	sends the task SIGSEGV signal with following info::

		siginfo.si_signo = SIGSEGV;
		siginfo.errno = 0;
		siginfo.si_code = SEGV_ACCADI;
		siginfo.si_addr = addr;	/* address that caused trap */
		siginfo.si_trapno = 0;


Sample program to use ADI
-------------------------

Following sample program is meant to illustrate how to use the ADI
functionality::

  #include <unistd.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include <elf.h>
  #include <sys/ipc.h>
  #include <sys/shm.h>
  #include <sys/mman.h>
  #include <asm/asi.h>

  #ifndef AT_ADI_BLKSZ
  #define AT_ADI_BLKSZ	48
  #endif
  #ifndef AT_ADI_NBITS
  #define AT_ADI_NBITS	49
  #endif

  #ifndef PROT_ADI
  #define PROT_ADI	0x10
  #endif

  #define BUFFER_SIZE     32*1024*1024UL

  main(int argc, char* argv[], char* envp[])
  {
          unsigned long i, mcde, adi_blksz, adi_nbits;
          char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr;
          int shmid, version;
	Elf64_auxv_t *auxv;

	adi_blksz = 0;

	while(*envp++ != NULL);
	for (auxv = (Elf64_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) {
		switch (auxv->a_type) {
		case AT_ADI_BLKSZ:
			adi_blksz = auxv->a_un.a_val;
			break;
		case AT_ADI_NBITS:
			adi_nbits = auxv->a_un.a_val;
			break;
		}
	}
	if (adi_blksz == 0) {
		fprintf(stderr, "Oops! ADI is not supported\n");
		exit(1);
	}

	printf("ADI capabilities:\n");
	printf("\tBlock size = %ld\n", adi_blksz);
	printf("\tNumber of bits = %ld\n", adi_nbits);

          if ((shmid = shmget(2, BUFFER_SIZE,
                                  IPC_CREAT | SHM_R | SHM_W)) < 0) {
                  perror("shmget failed");
                  exit(1);
          }

          shmaddr = shmat(shmid, NULL, 0);
          if (shmaddr == (char *)-1) {
                  perror("shm attach failed");
                  shmctl(shmid, IPC_RMID, NULL);
                  exit(1);
          }

	if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE|PROT_ADI)) {
		perror("mprotect failed");
		goto err_out;
	}

          /* Set the ADI version tag on the shm segment
           */
          version = 10;
          tmp_addr = shmaddr;
          end = shmaddr + BUFFER_SIZE;
          while (tmp_addr < end) {
                  asm volatile(
                          "stxa %1, [%0]0x90\n\t"
                          :
                          : "r" (tmp_addr), "r" (version));
                  tmp_addr += adi_blksz;
          }
	asm volatile("membar #Sync\n\t");

          /* Create a versioned address from the normal address by placing
	 * version tag in the upper adi_nbits bits
           */
          tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits);
          tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits);
          veraddr = (void *) (((unsigned long)version << (64-adi_nbits))
                          | (unsigned long)tmp_addr);

          printf("Starting the writes:\n");
          for (i = 0; i < BUFFER_SIZE; i++) {
                  veraddr[i] = (char)(i);
                  if (!(i % (1024 * 1024)))
                          printf(".");
          }
          printf("\n");

          printf("Verifying data...");
	fflush(stdout);
          for (i = 0; i < BUFFER_SIZE; i++)
                  if (veraddr[i] != (char)i)
                          printf("\nIndex %lu mismatched\n", i);
          printf("Done.\n");

          /* Disable ADI and clean up
           */
	if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE)) {
		perror("mprotect failed");
		goto err_out;
	}

          if (shmdt((const void *)shmaddr) != 0)
                  perror("Detach failure");
          shmctl(shmid, IPC_RMID, NULL);

          exit(0);

  err_out:
          if (shmdt((const void *)shmaddr) != 0)
                  perror("Detach failure");
          shmctl(shmid, IPC_RMID, NULL);
          exit(1);
  }