Age | Commit message (Collapse) | Author | Files | Lines |
|
With LPAE enabled, privileged no-access cannot be enforced using CPU
domains as such feature is not available. This patch implements PAN
by disabling TTBR0 page table walks while in kernel mode.
The ARM architecture allows page table walks to be split between TTBR0
and TTBR1. With LPAE enabled, the split is defined by a combination of
TTBCR T0SZ and T1SZ bits. Currently, an LPAE-enabled kernel uses TTBR0
for user addresses and TTBR1 for kernel addresses with the VMSPLIT_2G
and VMSPLIT_3G configurations. The main advantage for the 3:1 split is
that TTBR1 is reduced to 2 levels, so potentially faster TLB refill
(though usually the first level entries are already cached in the TLB).
The PAN support on LPAE-enabled kernels uses TTBR0 when running in user
space or in kernel space during user access routines (TTBCR T0SZ and
T1SZ are both 0). When running user accesses are disabled in kernel
mode, TTBR0 page table walks are disabled by setting TTBCR.EPD0. TTBR1
is used for kernel accesses (including loadable modules; anything
covered by swapper_pg_dir) by reducing the TTBCR.T0SZ to the minimum
(2^(32-7) = 32MB). To avoid user accesses potentially hitting stale TLB
entries, the ASID is switched to 0 (reserved) by setting TTBCR.A1 and
using the ASID value in TTBR1. The difference from a non-PAN kernel is
that with the 3:1 memory split, TTBR1 always uses 3 levels of page
tables.
As part of the change we are using preprocessor elif definied() clauses
so balance these clauses by converting relevant precedingt ifdef
clauses to if defined() clauses.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Florian Fainelli <florian.fainelli@broadcom.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
The sync_*() ops on arch/arm are defined in terms of the regular bitops
with no special handling. This is not correct, as UP kernels elide
barriers for the fully-ordered operations, and so the required ordering
is lost when such UP kernels are run under a hypervsior on an SMP
system.
Fix this by defining sync ops with the required barriers.
Note: On 32-bit arm, the sync_*() ops are currently only used by Xen,
which requires ARMv7, but the semantics can be implemented for ARMv6+.
Fixes: e54d2f61528165bb ("xen/arm: sync_bitops")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-2-mark.rutland@arm.com
|
|
Commit 62b95a7b44d1 ("ARM: 9282/1: vfp: Manipulate task VFP state with
softirqs disabled") replaced the en/disable preemption calls inside the
VFP state handling code with en/disabling of soft IRQs, which is
necessary to allow kernel use of the VFP/SIMD unit when handling a soft
IRQ.
Unfortunately, when lockdep is enabled (or other instrumentation that
enables TRACE_IRQFLAGS), the disable path implemented in asm fails to
perform the lockdep and RCU related bookkeeping, resulting in spurious
warnings and other badness.
Set let's rework the VFP entry code a little bit so we can make the
local_bh_disable() call from C, with all the instrumentations that
happen to have been configured. Calling local_bh_enable() can be done
from asm, as it is a simple wrapper around __local_bh_enable_ip(), which
is always a callable function.
Link: https://lore.kernel.org/all/ZBBYCSZUJOWBg1s8@localhost.localdomain/
Fixes: 62b95a7b44d1 ("ARM: 9282/1: vfp: Manipulate task VFP state with softirqs disabled")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
In a subsequent patch, we will relax the kernel mode NEON policy, and
permit kernel mode NEON to be used not only from task context, as is
permitted today, but also from softirq context.
Given that softirqs may trigger over the back of any IRQ unless they are
explicitly disabled, we need to address the resulting races in the VFP
state handling, by disabling softirq processing in two distinct but
related cases:
- kernel mode NEON will leave the FPU disabled after it completes, so
any kernel code sequence that enables the FPU and subsequently accesses
its registers needs to disable softirqs until it completes;
- kernel_neon_begin() will preserve the userland VFP state in memory,
and if it interrupts the ordinary VFP state preserve sequence, the
latter will resume execution with the VFP registers corrupted, and
happily continue saving them to memory.
Given that disabling softirqs also disables preemption, we can replace
the existing preempt_disable/enable occurrences in the VFP state
handling asm code with new macros that dis/enable softirqs instead.
In the VFP state handling C code, add local_bh_disable/enable() calls
in those places where the VFP state is preserved.
One thing to keep in mind is that, once we allow NEON use in softirq
context, the result of any such interruption is that the FPEXC_EN bit in
the FPEXC register will be cleared, and vfp_current_hw_state[cpu] will
be NULL. This means that any sequence that [conditionally] clears
FPEXC_EN and/or sets vfp_current_hw_state[cpu] to NULL does not need to
run with softirqs disabled, as the result will be the same. Furthermore,
the handling of THREAD_NOTIFY_SWITCH is guaranteed to run with IRQs
disabled, and so it does not need protection from softirq interruptions
either.
Tested-by: Martin Willi <martin@strongswan.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
Convert the implementations to operate on words rather than bytes
which makes bitmap searching faster.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
ARMv7 has MOVW/MOVT instruction pairs to load symbol addresses into
registers without having to rely on literal loads that go via the
D-cache. For older cores, we now support a similar arrangement, based
on PC-relative group relocations.
This means we can elide most literal loads entirely from the entry path,
by switching to the ldr_va macro to emit the appropriate sequence
depending on the target architecture revision.
While at it, switch to the bl_r macro for invoking the right PABT/DABT
helpers instead of setting the LR register explicitly, which does not
play well with cores that speculate across function returns.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
When CONFIG_SMP is not defined, the CPU offset is always zero, and so
we can simplify the sequence to load a per-CPU variable.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
Pull ARM updates from Russell King:
"Updates for IRQ stacks and virtually mapped stack support, and ftrace:
- Support for IRQ and vmap'ed stacks
This covers all the work related to implementing IRQ stacks and
vmap'ed stacks for all 32-bit ARM systems that are currently
supported by the Linux kernel, including RiscPC and Footbridge. It
has been submitted for review in four different waves:
- IRQ stacks support for v7 SMP systems [0]
- vmap'ed stacks support for v7 SMP systems[1]
- extending support for both IRQ stacks and vmap'ed stacks for all
remaining configurations, including v6/v7 SMP multiplatform
kernels and uniprocessor configurations including v7-M [2]
- fixes and updates in [3]
- ftrace fixes and cleanups
Make all flavors of ftrace available on all builds, regardless of
ISA choice, unwinder choice or compiler [4]:
- use ADD not POP where possible
- fix a couple of Thumb2 related issues
- enable HAVE_FUNCTION_GRAPH_FP_TEST for robustness
- enable the graph tracer with the EABI unwinder
- avoid clobbering frame pointer registers to make Clang happy
- Fixes for the above"
[0] https://lore.kernel.org/linux-arm-kernel/20211115084732.3704393-1-ardb@kernel.org/
[1] https://lore.kernel.org/linux-arm-kernel/20211122092816.2865873-1-ardb@kernel.org/
[2] https://lore.kernel.org/linux-arm-kernel/20211206164659.1495084-1-ardb@kernel.org/
[3] https://lore.kernel.org/linux-arm-kernel/20220124174744.1054712-1-ardb@kernel.org/
[4] https://lore.kernel.org/linux-arm-kernel/20220203082204.1176734-1-ardb@kernel.org/
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (62 commits)
ARM: fix building NOMMU ARMv4/v5 kernels
ARM: unwind: only permit stack switch when unwinding call_with_stack()
ARM: Revert "unwind: dump exception stack from calling frame"
ARM: entry: fix unwinder problems caused by IRQ stacks
ARM: unwind: set frame.pc correctly for current-thread unwinding
ARM: 9184/1: return_address: disable again for CONFIG_ARM_UNWIND=y
ARM: 9183/1: unwind: avoid spurious warnings on bogus code addresses
Revert "ARM: 9144/1: forbid ftrace with clang and thumb2_kernel"
ARM: mach-bcm: disable ftrace in SMC invocation routines
ARM: cacheflush: avoid clobbering the frame pointer
ARM: kprobes: treat R7 as the frame pointer register in Thumb2 builds
ARM: ftrace: enable the graph tracer with the EABI unwinder
ARM: unwind: track location of LR value in stack frame
ARM: ftrace: enable HAVE_FUNCTION_GRAPH_FP_TEST
ARM: ftrace: avoid unnecessary literal loads
ARM: ftrace: avoid redundant loads or clobbering IP
ARM: ftrace: use trampolines to keep .init.text in branching range
ARM: ftrace: use ADD not POP to counter PUSH at entry
ARM: ftrace: ensure that ADR takes the Thumb bit into account
ARM: make get_current() and __my_cpu_offset() __always_inline
...
|
|
In the recent Spectre BHB patches, there was a typo that is only
exposed in certain configurations: mcr p15,0,XX,c7,r5,4 should have
been mcr p15,0,XX,c7,c5,4
Reported-by: kernel test robot <lkp@intel.com>
Fixes: b9baf5c8c5c3 ("ARM: Spectre-BHB workaround")
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull ARM spectre fixes from Russell King:
"ARM Spectre BHB mitigations.
These patches add Spectre BHB migitations for the following Arm CPUs
to the 32-bit ARM kernels:
- Cortex A15
- Cortex A57
- Cortex A72
- Cortex A73
- Cortex A75
- Brahma B15
for CVE-2022-23960"
* tag 'for-linus-bhb' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: include unprivileged BPF status in Spectre V2 reporting
ARM: Spectre-BHB workaround
ARM: use LOADADDR() to get load address of sections
ARM: early traps initialisation
ARM: report Spectre v2 status through sysfs
|
|
Workaround the Spectre BHB issues for Cortex-A15, Cortex-A57,
Cortex-A72, Cortex-A73 and Cortex-A75. We also include Brahma B15 as
well to be safe, which is affected by Spectre V2 in the same ways as
Cortex-A15.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
Nathan reports the group relocations go out of range in pathological
cases such as allyesconfig kernels, which have little chance of actually
booting but are still used in validation.
So add a Kconfig symbol for this feature, and make it depend on
!COMPILE_TEST.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
When building for Thumb2, the .alt.smp.init sections that are emitted by
the ALT_UP() patching code may not be 32-bit aligned, even though the
fixup_smp_on_up() routine expects that. This results in alignment faults
at module load time, which need to be fixed up by the fault handler.
So let's align those sections explicitly, and prevent this from occurring.
Cc: <stable@vger.kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
On UP systems, only a single task can be 'current' at the same time,
which means we can use a global variable to track it. This means we can
also enable THREAD_INFO_IN_TASK for those systems, as in that case,
thread_info is accessed via current rather than the other way around,
removing the need to store thread_info at the base of the task stack.
This, in turn, permits us to enable IRQ stacks and vmap'ed stacks on UP
systems as well.
To partially mitigate the performance overhead of this arrangement, use
a ADD/ADD/LDR sequence with the appropriate PC-relative group
relocations to load the value of current when needed. This means that
accessing current will still only require a single load as before,
avoiding the need for a literal to carry the address of the global
variable in each function. However, accessing thread_info will now
require this load as well.
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> # ARMv7M
|
|
Permit the use of the TPIDRPRW system register for carrying the per-CPU
offset in generic SMP configurations that also target non-SMP capable
ARMv6 cores. This uses the SMP_ON_UP code patching framework to turn all
TPIDRPRW accesses into reads/writes of entry #0 in the __per_cpu_offset
array.
While at it, switch over some existing direct TPIDRPRW accesses in asm
code to invocations of a new helper that is patched in the same way when
necessary.
Note that CPU_V6+SMP without SMP_ON_UP results in a kernel that does not
boot on v6 CPUs without SMP extensions, so add this dependency to
Kconfig as well.
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> # ARMv7M
|
|
We will be adding variable loads to various hot paths, so it makes sense
to add a helper macro that can load variables from asm code without the
use of literal pool entries. On v7 or later, we can simply use MOVW/MOVT
pairs, but on earlier cores, this requires a bit of hackery to emit a
instruction sequence that implements this using a sequence of ADD/LDR
instructions.
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> # ARMv7M
|
|
Now that we no longer rely on the stack pointer to access the current
task struct or thread info, we can implement support for IRQ stacks
cleanly as well.
Define a per-CPU IRQ stack and switch to this stack when taking an IRQ,
provided that we were not already using that stack in the interrupted
context. This is never the case for IRQs taken from user space, but ones
taken while running in the kernel could fire while one taken from user
space has not completed yet.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Keith Packard <keithpac@amazon.com>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> # ARMv7M
|
|
Add a bl_r macro that abstract the difference between the ways indirect
calls are performed on older and newer ARM architecture revisions.
The main difference is to prefer blx instructions over explicit LR
assignments when possible, as these tend to confuse the prediction logic
in out-of-order cores when speculating across a function return.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Keith Packard <keithpac@amazon.com>
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> # ARMv7M
|
|
Now that we no longer rely on thread_info living at the base of the task
stack to be able to access the 'current' pointer, we can wire up the
generic support for moving thread_info into the task struct itself.
Note that this requires us to update the cpu field in thread_info
explicitly, now that the core code no longer does so. Ideally, we would
switch the percpu code to access the cpu field in task_struct instead,
but this unleashes #include circular dependency hell.
Co-developed-by: Keith Packard <keithpac@amazon.com>
Signed-off-by: Keith Packard <keithpac@amazon.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
|
|
Now that the user space TLS register is assigned on every return to user
space, we can use it to keep the 'current' pointer while running in the
kernel. This removes the need to access it via thread_info, which is
located at the base of the stack, but will be moved out of there in a
subsequent patch.
Use the __builtin_thread_pointer() helper when available - this will
help GCC understand that reloading the value within the same function is
not necessary, even when using the per-task stack protector (which also
generates accesses via the TLS register). For example, the generated
code below loads TPIDRURO only once, and uses it to access both the
stack canary and the preempt_count fields.
<do_one_initcall>:
e92d 41f0 stmdb sp!, {r4, r5, r6, r7, r8, lr}
ee1d 4f70 mrc 15, 0, r4, cr13, cr0, {3}
4606 mov r6, r0
b094 sub sp, #80 ; 0x50
f8d4 34e8 ldr.w r3, [r4, #1256] ; 0x4e8 <- stack canary
9313 str r3, [sp, #76] ; 0x4c
f8d4 8004 ldr.w r8, [r4, #4] <- preempt count
Co-developed-by: Keith Packard <keithpac@amazon.com>
Signed-off-by: Keith Packard <keithpac@amazon.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
|
|
Take the 4 instruction byte swapping sequence from the decompressor's
head.S, and turn it into a rev_l GAS macro for general use. While
at it, make it use the 'rev' instruction when compiling for v6 or
later.
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Currently, the .alt.smp.init section contains the virtual addresses
of the patch sites. Since patching may occur both before and after
switching into virtual mode, this requires some manual handling of
the address when applying the UP alternative.
Let's simplify this by using relative offsets in the table entries:
this allows us to simply add each entry's address to its contents,
regardless of whether we are running in virtual mode or not.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Like arm64, ARM supports position independent code sequences that
produce symbol references with a greater reach than the ordinary
adr/ldr instructions. Since on ARM, the adrl pseudo-instruction is
only supported in ARM mode (and not at all when using Clang), having
a adr_l macro like we do on arm64 is useful, and increases symmetry
as well.
Currently, we use open coded instruction sequences involving literals
and arithmetic operations. Instead, we can use movw/movt pairs on v7
CPUs, circumventing the D-cache entirely.
E.g., on v7+ CPUs, we can emit a PC-relative reference as follows:
movw <reg>, #:lower16:<sym> - (1f + 8)
movt <reg>, #:upper16:<sym> - (1f + 8)
1: add <reg>, <reg>, pc
For older CPUs, we can emit the literal into a subsection, allowing it
to be emitted out of line while retaining the ability to perform
arithmetic on label offsets.
E.g., on pre-v7 CPUs, we can emit a PC-relative reference as follows:
ldr <reg>, 2f
1: add <reg>, <reg>, pc
.subsection 1
2: .long <sym> - (1b + 8)
.previous
This is allowed by the assembler because, unlike ordinary sections,
subsections are combined into a single section in the object file, and
so the label references are not true cross-section references that are
visible as relocations. (Subsections have been available in binutils
since 2004 at least, so they should not cause any issues with older
toolchains.)
So use the above to implement the macros mov_l, adr_l, ldr_l and str_l,
all of which will use movw/movt pairs on v7 and later CPUs, and use
PC-relative literals otherwise.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Pull ARM updates from Russell King:
- remove a now unnecessary usage of the KERNEL_DS for
sys_oabi_epoll_ctl()
- update my email address in a number of drivers
- decompressor EFI updates from Ard Biesheuvel
- module unwind section handling updates
- sparsemem Kconfig cleanups
- make act_mm macro respect THREAD_SIZE
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8980/1: Allow either FLATMEM or SPARSEMEM on the multiplatform build
ARM: 8979/1: Remove redundant ARCH_SPARSEMEM_DEFAULT setting
ARM: 8978/1: mm: make act_mm() respect THREAD_SIZE
ARM: decompressor: run decompressor in place if loaded via UEFI
ARM: decompressor: move GOT into .data for EFI enabled builds
ARM: decompressor: defer loading of the contents of the LC0 structure
ARM: decompressor: split off _edata and stack base into separate object
ARM: decompressor: move headroom variable out of LC0
ARM: 8976/1: module: allow arch overrides for .init section names
ARM: 8975/1: module: fix handling of unwind init sections
ARM: 8974/1: use SPARSMEM_STATIC when SPARSEMEM is enabled
ARM: 8971/1: replace the sole use of a symbol with its definition
ARM: 8969/1: decompressor: simplify libfdt builds
Update rmk's email address in various drivers
ARM: compat: remove KERNEL_DS usage in sys_oabi_epoll_ctl()
|
|
Consolidate the user access assembly code to asm/uaccess-asm.h. This
moves the csdb, check_uaccess, uaccess_mask_range_ptr, uaccess_enable,
uaccess_disable, uaccess_save, uaccess_restore macros, and creates two
new ones for exception entry and exit - uaccess_entry and uaccess_exit.
This makes the uaccess_save and uaccess_restore macros private to
asm/uaccess-asm.h.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
ALT_UP_B macro sets symbol up_b_offset via .equ to an expression
involving another symbol. The macro gets expanded twice when
arch/arm/kernel/sleep.S is assembled, creating a scenario where
up_b_offset is set to another expression involving symbols while its
current value is based on symbols. LLVM integrated assembler does not
allow such cases, and based on the documentation of binutils, "Values
that are based on expressions involving other symbols are allowed, but
some targets may restrict this to only being done once per assembly", so
it may be better to avoid such cases as it is not clearly stated which
targets should support or disallow them. The fix in this case is simple,
as up_b_offset has only one use, so we can replace the use with the
definition and get rid of up_b_offset.
Link:https://github.com/ClangBuiltLinux/linux/issues/920
Reviewed-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Jian Cai <caij2003@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use unified assembler syntax (UAL) in headers. Divided syntax is
considered deprecated. This will also allow to build the kernel
using LLVM's integrated assembler.
Signed-off-by: Stefan Agner <stefan@agner.ch>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
ARMv6+ processors do not use CONFIG_CPU_USE_DOMAINS and use privileged
ldr/str instructions in copy_{from/to}_user. They are currently
unnecessarily using single ldr/str instructions and can use ldm/stm
instructions instead like memcpy does (but with appropriate fixup
tables).
This speeds up a "dd if=foo of=bar bs=32k" on a tmpfs filesystem by
about 4% on my Cortex-A9.
before:134217728 bytes (128.0MB) copied, 0.543848 seconds, 235.4MB/s
before:134217728 bytes (128.0MB) copied, 0.538610 seconds, 237.6MB/s
before:134217728 bytes (128.0MB) copied, 0.544356 seconds, 235.1MB/s
before:134217728 bytes (128.0MB) copied, 0.544364 seconds, 235.1MB/s
before:134217728 bytes (128.0MB) copied, 0.537130 seconds, 238.3MB/s
before:134217728 bytes (128.0MB) copied, 0.533443 seconds, 240.0MB/s
before:134217728 bytes (128.0MB) copied, 0.545691 seconds, 234.6MB/s
before:134217728 bytes (128.0MB) copied, 0.534695 seconds, 239.4MB/s
before:134217728 bytes (128.0MB) copied, 0.540561 seconds, 236.8MB/s
before:134217728 bytes (128.0MB) copied, 0.541025 seconds, 236.6MB/s
after:134217728 bytes (128.0MB) copied, 0.520445 seconds, 245.9MB/s
after:134217728 bytes (128.0MB) copied, 0.527846 seconds, 242.5MB/s
after:134217728 bytes (128.0MB) copied, 0.519510 seconds, 246.4MB/s
after:134217728 bytes (128.0MB) copied, 0.527231 seconds, 242.8MB/s
after:134217728 bytes (128.0MB) copied, 0.525030 seconds, 243.8MB/s
after:134217728 bytes (128.0MB) copied, 0.524236 seconds, 244.2MB/s
after:134217728 bytes (128.0MB) copied, 0.523659 seconds, 244.4MB/s
after:134217728 bytes (128.0MB) copied, 0.525018 seconds, 243.8MB/s
after:134217728 bytes (128.0MB) copied, 0.519249 seconds, 246.5MB/s
after:134217728 bytes (128.0MB) copied, 0.518527 seconds, 246.9MB/s
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
Introduce C and asm helpers to sanitize user address, taking the
address range they target into account.
Use asm helper for existing sanitization in __copy_from_user().
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Conflicts:
arch/arm/include/asm/uaccess.h
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Spectre variant 1 attacks are about this sequence of pseudo-code:
index = load(user-manipulated pointer);
access(base + index * stride);
In order for the cache side-channel to work, the access() must me made
to memory which userspace can detect whether cache lines have been
loaded. On 32-bit ARM, this must be either user accessible memory, or
a kernel mapping of that same user accessible memory.
The problem occurs when the load() speculatively loads privileged data,
and the subsequent access() is made to user accessible memory.
Any load() which makes use of a user-maniplated pointer is a potential
problem if the data it has loaded is used in a subsequent access. This
also applies for the access() if the data loaded by that access is used
by a subsequent access.
Harden the get_user() accessors against Spectre attacks by forcing out
of bounds addresses to a NULL pointer. This prevents get_user() being
used as the load() step above. As a side effect, put_user() will also
be affected even though it isn't implicated.
Also harden copy_from_user() by redoing the bounds check within the
arm_copy_from_user() code, and NULLing the pointer if out of bounds.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
|
|
Add assembly and C macros for the new CSDB instruction.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Boot-tested-by: Tony Lindgren <tony@atomide.com>
Reviewed-by: Tony Lindgren <tony@atomide.com>
|
|
Since do_undefinstr() uses get_user to get the undefined
instruction, it can be called before kprobes processes
recursive check. This can cause an infinit recursive
exception.
Prohibit probing on get_user functions.
Fixes: 24ba613c9d6c ("ARM kprobes: core code")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Detect if we are returning to usermode via the normal kernel exit paths
but the saved PSR value indicates that we are in kernel mode. This
could occur due to corrupted stack state, which has been observed with
"ftracetest".
This ensures that we catch the problem case before we get to user code.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
With the new task struct randomization, we can run into a build
failure for certain random seeds, which will place fields beyond
the allow immediate size in the assembly:
arch/arm/kernel/entry-armv.S: Assembler messages:
arch/arm/kernel/entry-armv.S:803: Error: bad immediate value for offset (4096)
Only two constants in asm-offset.h are affected, and I'm changing
both of them here to work correctly in all configurations.
One more macro has the problem, but is currently unused, so this
removes it instead of adding complexity.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[kees: Adjust commit log slightly]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Commit 8e43a905 "ARM: 7325/1: fix v7 boot with lockdep enabled"
introduced notrace variant of save_and_disable_irqs to balance notrace
variant of restore_irqs; however V7M case has been missed. It was not
noticed because cache-v7.S the only place where notrace variant is used.
So fix it, since we are going to extend V7 cache routines to handle V7M
case too.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Tested-by: Joachim Eastwood <manabian@gmail.com>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Since the privileged mode pt_regs are an extended version of the saved
userland pt_regs, introduce a new svc_pt_regs structure to describe this
layout.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
S_FRAME_SIZE is no longer the size of the kernel stack frame, so this
name is misleading. It is the size of the kernel pt_regs structure.
Name it so.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Pull ARM fixes from Russell King:
"A number of fixes for the merge window, fixing a number of cases
missed when testing the uaccess code, particularly cases which only
show up with certain compiler versions"
* 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm:
ARM: 8431/1: fix alignement of __bug_table section entries
arm/xen: Enable user access to the kernel before issuing a privcmd call
ARM: domains: add memory dependencies to get_domain/set_domain
ARM: domains: thread_info.h no longer needs asm/domains.h
ARM: uaccess: fix undefined instruction on ARMv7M/noMMU
ARM: uaccess: remove unneeded uaccess_save_and_disable macro
ARM: swpan: fix nwfpe for uaccess changes
ARM: 8429/1: disable GCC SRA optimization
|
|
This macro is never referenced, remove it.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
for-linus
|
|
Provide a software-based implementation of the priviledged no access
support found in ARMv8.1.
Userspace pages are mapped using a different domain number from the
kernel and IO mappings. If we switch the user domain to "no access"
when we enter the kernel, we can prevent the kernel from touching
userspace.
However, the kernel needs to be able to access userspace via the
various user accessor functions. With the wrapping in the previous
patch, we can temporarily enable access when the kernel needs user
access, and re-disable it afterwards.
This allows us to trap non-intended accesses to userspace, eg, caused
by an inadvertent dereference of the LIST_POISON* values, which, with
appropriate user mappings setup, can be made to succeed. This in turn
can allow use-after-free bugs to be further exploited than would
otherwise be possible.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Provide hooks into the kernel entry and exit paths to permit control
of userspace visibility to the kernel. The intended use is:
- on entry to kernel from user, uaccess_disable will be called to
disable userspace visibility
- on exit from kernel to user, uaccess_enable will be called to
enable userspace visibility
- on entry from a kernel exception, uaccess_save_and_disable will be
called to save the current userspace visibility setting, and disable
access
- on exit from a kernel exception, uaccess_restore will be called to
restore the userspace visibility as it was before the exception
occurred.
These hooks allows us to keep userspace visibility disabled for the
vast majority of the kernel, except for localised regions where we
want to explicitly access userspace.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Make the "fast" syscall return path fast again. The addition of IRQ
tracing and context tracking has made this path grossly inefficient.
We can do much better if these options are enabled if we save the
syscall return code on the stack - we then don't need to save a bunch
of registers around every single callout to C code.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
There's no need for this macro, it can use a default for the
condition argument.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
BSYM() was invented to allow us to work around a problem with the
assembler, where local symbols resolved by the assembler for the 'adr'
instruction did not take account of their ISA.
Since we don't want BSYM() used elsewhere, replace BSYM() with a new
macro 'badr', which is like the 'adr' pseudo-op, but with the BSYM()
mechanics integrated into it. This ensures that the BSYM()-ification
is only used in conjunction with 'adr'.
Acked-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Allow ALT_UP() to cope with a 16-bit Thumb instruction by automatically
inserting a following nop instruction. This allows us to care less
about getting the assembler to emit a 32-bit thumb instruction.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|