aboutsummaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/include/asm/kvm_host.h14
-rw-r--r--arch/x86/kvm/mmu/mmu.c532
-rw-r--r--arch/x86/kvm/mmu/mmu_internal.h3
-rw-r--r--arch/x86/kvm/mmu/mmutrace.h1
-rw-r--r--arch/x86/kvm/mmu/paging_tmpl.h63
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c6
-rw-r--r--arch/x86/kvm/x86.c133
7 files changed, 369 insertions, 383 deletions
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 45852c989559..5f794814226f 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -282,10 +282,6 @@ enum x86_intercept_stage;
#define PFERR_PRIVATE_ACCESS BIT_ULL(49)
#define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
-#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
- PFERR_WRITE_MASK | \
- PFERR_PRESENT_MASK)
-
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC 0
/*
@@ -2142,7 +2138,15 @@ int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
void kvm_update_dr7(struct kvm_vcpu *vcpu);
-int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
+bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ bool always_retry);
+
+static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
+ gpa_t cr2_or_gpa)
+{
+ return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
+}
+
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
ulong roots_to_free);
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index b278efb1d179..e081f785fb23 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -614,32 +614,6 @@ static u64 mmu_spte_get_lockless(u64 *sptep)
return __get_spte_lockless(sptep);
}
-/* Returns the Accessed status of the PTE and resets it at the same time. */
-static bool mmu_spte_age(u64 *sptep)
-{
- u64 spte = mmu_spte_get_lockless(sptep);
-
- if (!is_accessed_spte(spte))
- return false;
-
- if (spte_ad_enabled(spte)) {
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- } else {
- /*
- * Capture the dirty status of the page, so that it doesn't get
- * lost when the SPTE is marked for access tracking.
- */
- if (is_writable_pte(spte))
- kvm_set_pfn_dirty(spte_to_pfn(spte));
-
- spte = mark_spte_for_access_track(spte);
- mmu_spte_update_no_track(sptep, spte);
- }
-
- return true;
-}
-
static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
{
return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
@@ -938,6 +912,7 @@ static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu
* in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
* pte_list_desc containing more mappings.
*/
+#define KVM_RMAP_MANY BIT(0)
/*
* Returns the number of pointers in the rmap chain, not counting the new one.
@@ -950,16 +925,16 @@ static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
if (!rmap_head->val) {
rmap_head->val = (unsigned long)spte;
- } else if (!(rmap_head->val & 1)) {
+ } else if (!(rmap_head->val & KVM_RMAP_MANY)) {
desc = kvm_mmu_memory_cache_alloc(cache);
desc->sptes[0] = (u64 *)rmap_head->val;
desc->sptes[1] = spte;
desc->spte_count = 2;
desc->tail_count = 0;
- rmap_head->val = (unsigned long)desc | 1;
+ rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
++count;
} else {
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
count = desc->tail_count + desc->spte_count;
/*
@@ -968,10 +943,10 @@ static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
*/
if (desc->spte_count == PTE_LIST_EXT) {
desc = kvm_mmu_memory_cache_alloc(cache);
- desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
desc->spte_count = 0;
desc->tail_count = count;
- rmap_head->val = (unsigned long)desc | 1;
+ rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
}
desc->sptes[desc->spte_count++] = spte;
}
@@ -982,7 +957,7 @@ static void pte_list_desc_remove_entry(struct kvm *kvm,
struct kvm_rmap_head *rmap_head,
struct pte_list_desc *desc, int i)
{
- struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
int j = head_desc->spte_count - 1;
/*
@@ -1011,7 +986,7 @@ static void pte_list_desc_remove_entry(struct kvm *kvm,
if (!head_desc->more)
rmap_head->val = 0;
else
- rmap_head->val = (unsigned long)head_desc->more | 1;
+ rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
mmu_free_pte_list_desc(head_desc);
}
@@ -1024,13 +999,13 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte,
if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
return;
- if (!(rmap_head->val & 1)) {
+ if (!(rmap_head->val & KVM_RMAP_MANY)) {
if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
return;
rmap_head->val = 0;
} else {
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
while (desc) {
for (i = 0; i < desc->spte_count; ++i) {
if (desc->sptes[i] == spte) {
@@ -1063,12 +1038,12 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
if (!rmap_head->val)
return false;
- if (!(rmap_head->val & 1)) {
+ if (!(rmap_head->val & KVM_RMAP_MANY)) {
mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
goto out;
}
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
for (; desc; desc = next) {
for (i = 0; i < desc->spte_count; i++)
@@ -1088,10 +1063,10 @@ unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
if (!rmap_head->val)
return 0;
- else if (!(rmap_head->val & 1))
+ else if (!(rmap_head->val & KVM_RMAP_MANY))
return 1;
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
return desc->tail_count + desc->spte_count;
}
@@ -1153,13 +1128,13 @@ static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
if (!rmap_head->val)
return NULL;
- if (!(rmap_head->val & 1)) {
+ if (!(rmap_head->val & KVM_RMAP_MANY)) {
iter->desc = NULL;
sptep = (u64 *)rmap_head->val;
goto out;
}
- iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
iter->pos = 0;
sptep = iter->desc->sptes[iter->pos];
out:
@@ -1307,15 +1282,6 @@ static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
return flush;
}
-/**
- * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
- * @kvm: kvm instance
- * @slot: slot to protect
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should protect
- *
- * Used when we do not need to care about huge page mappings.
- */
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
@@ -1339,16 +1305,6 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
}
}
-/**
- * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
- * protect the page if the D-bit isn't supported.
- * @kvm: kvm instance
- * @slot: slot to clear D-bit
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should clear D-bit
- *
- * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
- */
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
@@ -1372,24 +1328,16 @@ static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
}
}
-/**
- * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
- * PT level pages.
- *
- * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
- * enable dirty logging for them.
- *
- * We need to care about huge page mappings: e.g. during dirty logging we may
- * have such mappings.
- */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
/*
- * Huge pages are NOT write protected when we start dirty logging in
- * initially-all-set mode; must write protect them here so that they
- * are split to 4K on the first write.
+ * If the slot was assumed to be "initially all dirty", write-protect
+ * huge pages to ensure they are split to 4KiB on the first write (KVM
+ * dirty logs at 4KiB granularity). If eager page splitting is enabled,
+ * immediately try to split huge pages, e.g. so that vCPUs don't get
+ * saddled with the cost of splitting.
*
* The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
* of memslot has no such restriction, so the range can cross two large
@@ -1411,7 +1359,16 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
PG_LEVEL_2M);
}
- /* Now handle 4K PTEs. */
+ /*
+ * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
+ * mask. If PML is enabled and the GFN doesn't need to be write-
+ * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
+ * Otherwise clear the Writable bit.
+ *
+ * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
+ * enabled but it chooses between clearing the Dirty bit and Writeable
+ * bit based on the context.
+ */
if (kvm_x86_ops.cpu_dirty_log_size)
kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
else
@@ -1453,16 +1410,10 @@ static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
}
-static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- return kvm_zap_all_rmap_sptes(kvm, rmap_head);
-}
-
static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level)
+ const struct kvm_memory_slot *slot)
{
- return __kvm_zap_rmap(kvm, rmap_head, slot);
+ return kvm_zap_all_rmap_sptes(kvm, rmap_head);
}
struct slot_rmap_walk_iterator {
@@ -1513,7 +1464,7 @@ static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
while (++iterator->rmap <= iterator->end_rmap) {
- iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
+ iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
if (iterator->rmap->val)
return;
@@ -1534,23 +1485,71 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
slot_rmap_walk_okay(_iter_); \
slot_rmap_walk_next(_iter_))
-typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level);
+/* The return value indicates if tlb flush on all vcpus is needed. */
+typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot);
-static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
- struct kvm_gfn_range *range,
- rmap_handler_t handler)
+static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ slot_rmaps_handler fn,
+ int start_level, int end_level,
+ gfn_t start_gfn, gfn_t end_gfn,
+ bool can_yield, bool flush_on_yield,
+ bool flush)
{
struct slot_rmap_walk_iterator iterator;
- bool ret = false;
- for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- range->start, range->end - 1, &iterator)
- ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
- iterator.level);
+ lockdep_assert_held_write(&kvm->mmu_lock);
- return ret;
+ for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
+ end_gfn, &iterator) {
+ if (iterator.rmap)
+ flush |= fn(kvm, iterator.rmap, slot);
+
+ if (!can_yield)
+ continue;
+
+ if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
+ if (flush && flush_on_yield) {
+ kvm_flush_remote_tlbs_range(kvm, start_gfn,
+ iterator.gfn - start_gfn + 1);
+ flush = false;
+ }
+ cond_resched_rwlock_write(&kvm->mmu_lock);
+ }
+ }
+
+ return flush;
+}
+
+static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ slot_rmaps_handler fn,
+ int start_level, int end_level,
+ bool flush_on_yield)
+{
+ return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
+ slot->base_gfn, slot->base_gfn + slot->npages - 1,
+ true, flush_on_yield, false);
+}
+
+static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ slot_rmaps_handler fn,
+ bool flush_on_yield)
+{
+ return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
+}
+
+static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ gfn_t start, gfn_t end, bool can_yield,
+ bool flush)
+{
+ return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
+ PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
+ start, end - 1, can_yield, true, flush);
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
@@ -1558,7 +1557,9 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
bool flush = false;
if (kvm_memslots_have_rmaps(kvm))
- flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
+ flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
+ range->start, range->end,
+ range->may_block, flush);
if (tdp_mmu_enabled)
flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
@@ -1570,31 +1571,6 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
return flush;
}
-static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- int young = 0;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- young |= mmu_spte_age(sptep);
-
- return young;
-}
-
-static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level)
-{
- u64 *sptep;
- struct rmap_iterator iter;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (is_accessed_spte(*sptep))
- return true;
- return false;
-}
-
#define RMAP_RECYCLE_THRESHOLD 1000
static void __rmap_add(struct kvm *kvm,
@@ -1629,12 +1605,52 @@ static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
}
+static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
+ struct kvm_gfn_range *range, bool test_only)
+{
+ struct slot_rmap_walk_iterator iterator;
+ struct rmap_iterator iter;
+ bool young = false;
+ u64 *sptep;
+
+ for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
+ range->start, range->end - 1, &iterator) {
+ for_each_rmap_spte(iterator.rmap, &iter, sptep) {
+ u64 spte = *sptep;
+
+ if (!is_accessed_spte(spte))
+ continue;
+
+ if (test_only)
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ } else {
+ /*
+ * Capture the dirty status of the page, so that
+ * it doesn't get lost when the SPTE is marked
+ * for access tracking.
+ */
+ if (is_writable_pte(spte))
+ kvm_set_pfn_dirty(spte_to_pfn(spte));
+
+ spte = mark_spte_for_access_track(spte);
+ mmu_spte_update_no_track(sptep, spte);
+ }
+ young = true;
+ }
+ }
+ return young;
+}
+
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool young = false;
if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
+ young = kvm_rmap_age_gfn_range(kvm, range, false);
if (tdp_mmu_enabled)
young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
@@ -1647,7 +1663,7 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
bool young = false;
if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
+ young = kvm_rmap_age_gfn_range(kvm, range, true);
if (tdp_mmu_enabled)
young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
@@ -2713,36 +2729,49 @@ void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
write_unlock(&kvm->mmu_lock);
}
-int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ bool always_retry)
{
- struct kvm_mmu_page *sp;
+ struct kvm *kvm = vcpu->kvm;
LIST_HEAD(invalid_list);
- int r;
+ struct kvm_mmu_page *sp;
+ gpa_t gpa = cr2_or_gpa;
+ bool r = false;
+
+ /*
+ * Bail early if there aren't any write-protected shadow pages to avoid
+ * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
+ * by a third party. Reading indirect_shadow_pages without holding
+ * mmu_lock is safe, as this is purely an optimization, i.e. a false
+ * positive is benign, and a false negative will simply result in KVM
+ * skipping the unprotect+retry path, which is also an optimization.
+ */
+ if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
+ goto out;
+
+ if (!vcpu->arch.mmu->root_role.direct) {
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
+ if (gpa == INVALID_GPA)
+ goto out;
+ }
- r = 0;
write_lock(&kvm->mmu_lock);
- for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- r = 1;
+ for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- }
+
+ /*
+ * Snapshot the result before zapping, as zapping will remove all list
+ * entries, i.e. checking the list later would yield a false negative.
+ */
+ r = !list_empty(&invalid_list);
kvm_mmu_commit_zap_page(kvm, &invalid_list);
write_unlock(&kvm->mmu_lock);
- return r;
-}
-
-static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
-{
- gpa_t gpa;
- int r;
-
- if (vcpu->arch.mmu->root_role.direct)
- return 0;
-
- gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
-
- r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
-
+out:
+ if (r || always_retry) {
+ vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
+ vcpu->arch.last_retry_addr = cr2_or_gpa;
+ }
return r;
}
@@ -2914,10 +2943,8 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
trace_kvm_mmu_set_spte(level, gfn, sptep);
}
- if (wrprot) {
- if (write_fault)
- ret = RET_PF_EMULATE;
- }
+ if (wrprot && write_fault)
+ ret = RET_PF_WRITE_PROTECTED;
if (flush)
kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
@@ -4549,7 +4576,7 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
return RET_PF_RETRY;
if (page_fault_handle_page_track(vcpu, fault))
- return RET_PF_EMULATE;
+ return RET_PF_WRITE_PROTECTED;
r = fast_page_fault(vcpu, fault);
if (r != RET_PF_INVALID)
@@ -4618,8 +4645,6 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
if (!flags) {
trace_kvm_page_fault(vcpu, fault_address, error_code);
- if (kvm_event_needs_reinjection(vcpu))
- kvm_mmu_unprotect_page_virt(vcpu, fault_address);
r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
insn_len);
} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
@@ -4642,7 +4667,7 @@ static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
int r;
if (page_fault_handle_page_track(vcpu, fault))
- return RET_PF_EMULATE;
+ return RET_PF_WRITE_PROTECTED;
r = fast_page_fault(vcpu, fault);
if (r != RET_PF_INVALID)
@@ -4721,6 +4746,7 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
switch (r) {
case RET_PF_FIXED:
case RET_PF_SPURIOUS:
+ case RET_PF_WRITE_PROTECTED:
return 0;
case RET_PF_EMULATE:
@@ -5965,6 +5991,106 @@ void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
write_unlock(&vcpu->kvm->mmu_lock);
}
+static bool is_write_to_guest_page_table(u64 error_code)
+{
+ const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
+
+ return (error_code & mask) == mask;
+}
+
+static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ u64 error_code, int *emulation_type)
+{
+ bool direct = vcpu->arch.mmu->root_role.direct;
+
+ /*
+ * Do not try to unprotect and retry if the vCPU re-faulted on the same
+ * RIP with the same address that was previously unprotected, as doing
+ * so will likely put the vCPU into an infinite. E.g. if the vCPU uses
+ * a non-page-table modifying instruction on the PDE that points to the
+ * instruction, then unprotecting the gfn will unmap the instruction's
+ * code, i.e. make it impossible for the instruction to ever complete.
+ */
+ if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
+ vcpu->arch.last_retry_addr == cr2_or_gpa)
+ return RET_PF_EMULATE;
+
+ /*
+ * Reset the unprotect+retry values that guard against infinite loops.
+ * The values will be refreshed if KVM explicitly unprotects a gfn and
+ * retries, in all other cases it's safe to retry in the future even if
+ * the next page fault happens on the same RIP+address.
+ */
+ vcpu->arch.last_retry_eip = 0;
+ vcpu->arch.last_retry_addr = 0;
+
+ /*
+ * It should be impossible to reach this point with an MMIO cache hit,
+ * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
+ * writable memslot, and creating a memslot should invalidate the MMIO
+ * cache by way of changing the memslot generation. WARN and disallow
+ * retry if MMIO is detected, as retrying MMIO emulation is pointless
+ * and could put the vCPU into an infinite loop because the processor
+ * will keep faulting on the non-existent MMIO address.
+ */
+ if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
+ return RET_PF_EMULATE;
+
+ /*
+ * Before emulating the instruction, check to see if the access was due
+ * to a read-only violation while the CPU was walking non-nested NPT
+ * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
+ * If L1 is sharing (a subset of) its page tables with L2, e.g. by
+ * having nCR3 share lower level page tables with hCR3, then when KVM
+ * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
+ * unknowingly write-protecting L1's guest page tables, which KVM isn't
+ * shadowing.
+ *
+ * Because the CPU (by default) walks NPT page tables using a write
+ * access (to ensure the CPU can do A/D updates), page walks in L1 can
+ * trigger write faults for the above case even when L1 isn't modifying
+ * PTEs. As a result, KVM will unnecessarily emulate (or at least, try
+ * to emulate) an excessive number of L1 instructions; because L1's MMU
+ * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
+ * and thus no need to emulate in order to guarantee forward progress.
+ *
+ * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
+ * proceed without triggering emulation. If one or more shadow pages
+ * was zapped, skip emulation and resume L1 to let it natively execute
+ * the instruction. If no shadow pages were zapped, then the write-
+ * fault is due to something else entirely, i.e. KVM needs to emulate,
+ * as resuming the guest will put it into an infinite loop.
+ *
+ * Note, this code also applies to Intel CPUs, even though it is *very*
+ * unlikely that an L1 will share its page tables (IA32/PAE/paging64
+ * format) with L2's page tables (EPT format).
+ *
+ * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
+ * unprotect the gfn and retry if an event is awaiting reinjection. If
+ * KVM emulates multiple instructions before completing event injection,
+ * the event could be delayed beyond what is architecturally allowed,
+ * e.g. KVM could inject an IRQ after the TPR has been raised.
+ */
+ if (((direct && is_write_to_guest_page_table(error_code)) ||
+ (!direct && kvm_event_needs_reinjection(vcpu))) &&
+ kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
+ return RET_PF_RETRY;
+
+ /*
+ * The gfn is write-protected, but if KVM detects its emulating an
+ * instruction that is unlikely to be used to modify page tables, or if
+ * emulation fails, KVM can try to unprotect the gfn and let the CPU
+ * re-execute the instruction that caused the page fault. Do not allow
+ * retrying an instruction from a nested guest as KVM is only explicitly
+ * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
+ * going to magically fix whatever issue caused L2 to fail.
+ */
+ if (!is_guest_mode(vcpu))
+ *emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
+
+ return RET_PF_EMULATE;
+}
+
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
void *insn, int insn_len)
{
@@ -6010,6 +6136,10 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err
if (r < 0)
return r;
+ if (r == RET_PF_WRITE_PROTECTED)
+ r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
+ &emulation_type);
+
if (r == RET_PF_FIXED)
vcpu->stat.pf_fixed++;
else if (r == RET_PF_EMULATE)
@@ -6020,32 +6150,6 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err
if (r != RET_PF_EMULATE)
return 1;
- /*
- * Before emulating the instruction, check if the error code
- * was due to a RO violation while translating the guest page.
- * This can occur when using nested virtualization with nested
- * paging in both guests. If true, we simply unprotect the page
- * and resume the guest.
- */
- if (vcpu->arch.mmu->root_role.direct &&
- (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
- kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
- return 1;
- }
-
- /*
- * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
- * optimistically try to just unprotect the page and let the processor
- * re-execute the instruction that caused the page fault. Do not allow
- * retrying MMIO emulation, as it's not only pointless but could also
- * cause us to enter an infinite loop because the processor will keep
- * faulting on the non-existent MMIO address. Retrying an instruction
- * from a nested guest is also pointless and dangerous as we are only
- * explicitly shadowing L1's page tables, i.e. unprotecting something
- * for L1 isn't going to magically fix whatever issue cause L2 to fail.
- */
- if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
- emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
emulate:
return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
insn_len);
@@ -6204,59 +6308,6 @@ void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
}
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
-/* The return value indicates if tlb flush on all vcpus is needed. */
-typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot);
-
-static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- slot_rmaps_handler fn,
- int start_level, int end_level,
- gfn_t start_gfn, gfn_t end_gfn,
- bool flush_on_yield, bool flush)
-{
- struct slot_rmap_walk_iterator iterator;
-
- lockdep_assert_held_write(&kvm->mmu_lock);
-
- for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
- end_gfn, &iterator) {
- if (iterator.rmap)
- flush |= fn(kvm, iterator.rmap, slot);
-
- if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
- if (flush && flush_on_yield) {
- kvm_flush_remote_tlbs_range(kvm, start_gfn,
- iterator.gfn - start_gfn + 1);
- flush = false;
- }
- cond_resched_rwlock_write(&kvm->mmu_lock);
- }
- }
-
- return flush;
-}
-
-static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- slot_rmaps_handler fn,
- int start_level, int end_level,
- bool flush_on_yield)
-{
- return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
- slot->base_gfn, slot->base_gfn + slot->npages - 1,
- flush_on_yield, false);
-}
-
-static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- slot_rmaps_handler fn,
- bool flush_on_yield)
-{
- return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
-}
-
static void free_mmu_pages(struct kvm_mmu *mmu)
{
if (!tdp_enabled && mmu->pae_root)
@@ -6530,9 +6581,8 @@ static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_e
if (WARN_ON_ONCE(start >= end))
continue;
- flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
- PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- start, end - 1, true, flush);
+ flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
+ end, true, flush);
}
}
@@ -6820,7 +6870,7 @@ static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
*/
for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
- level, level, start, end - 1, true, false);
+ level, level, start, end - 1, true, true, false);
}
/* Must be called with the mmu_lock held in write-mode. */
@@ -7014,17 +7064,9 @@ static void kvm_mmu_zap_memslot_leafs(struct kvm *kvm, struct kvm_memory_slot *s
.end = slot->base_gfn + slot->npages,
.may_block = true,
};
- bool flush = false;
write_lock(&kvm->mmu_lock);
-
- if (kvm_memslots_have_rmaps(kvm))
- flush = kvm_handle_gfn_range(kvm, &range, kvm_zap_rmap);
-
- if (tdp_mmu_enabled)
- flush = kvm_tdp_mmu_unmap_gfn_range(kvm, &range, flush);
-
- if (flush)
+ if (kvm_unmap_gfn_range(kvm, &range))
kvm_flush_remote_tlbs_memslot(kvm, slot);
write_unlock(&kvm->mmu_lock);
diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h
index 1469a1d9782d..c98827840e07 100644
--- a/arch/x86/kvm/mmu/mmu_internal.h
+++ b/arch/x86/kvm/mmu/mmu_internal.h
@@ -258,6 +258,8 @@ int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
* RET_PF_CONTINUE: So far, so good, keep handling the page fault.
* RET_PF_RETRY: let CPU fault again on the address.
* RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
+ * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
+ * gfn and retry, or emulate the instruction directly.
* RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
* RET_PF_FIXED: The faulting entry has been fixed.
* RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
@@ -274,6 +276,7 @@ enum {
RET_PF_CONTINUE = 0,
RET_PF_RETRY,
RET_PF_EMULATE,
+ RET_PF_WRITE_PROTECTED,
RET_PF_INVALID,
RET_PF_FIXED,
RET_PF_SPURIOUS,
diff --git a/arch/x86/kvm/mmu/mmutrace.h b/arch/x86/kvm/mmu/mmutrace.h
index 195d98bc8de8..f35a830ce469 100644
--- a/arch/x86/kvm/mmu/mmutrace.h
+++ b/arch/x86/kvm/mmu/mmutrace.h
@@ -57,6 +57,7 @@
TRACE_DEFINE_ENUM(RET_PF_CONTINUE);
TRACE_DEFINE_ENUM(RET_PF_RETRY);
TRACE_DEFINE_ENUM(RET_PF_EMULATE);
+TRACE_DEFINE_ENUM(RET_PF_WRITE_PROTECTED);
TRACE_DEFINE_ENUM(RET_PF_INVALID);
TRACE_DEFINE_ENUM(RET_PF_FIXED);
TRACE_DEFINE_ENUM(RET_PF_SPURIOUS);
diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h
index 69941cebb3a8..ae7d39ff2d07 100644
--- a/arch/x86/kvm/mmu/paging_tmpl.h
+++ b/arch/x86/kvm/mmu/paging_tmpl.h
@@ -646,10 +646,10 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
* really care if it changes underneath us after this point).
*/
if (FNAME(gpte_changed)(vcpu, gw, top_level))
- goto out_gpte_changed;
+ return RET_PF_RETRY;
if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
- goto out_gpte_changed;
+ return RET_PF_RETRY;
/*
* Load a new root and retry the faulting instruction in the extremely
@@ -659,7 +659,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
*/
if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
- goto out_gpte_changed;
+ return RET_PF_RETRY;
}
for_each_shadow_entry(vcpu, fault->addr, it) {
@@ -674,34 +674,38 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
false, access);
- if (sp != ERR_PTR(-EEXIST)) {
- /*
- * We must synchronize the pagetable before linking it
- * because the guest doesn't need to flush tlb when
- * the gpte is changed from non-present to present.
- * Otherwise, the guest may use the wrong mapping.
- *
- * For PG_LEVEL_4K, kvm_mmu_get_page() has already
- * synchronized it transiently via kvm_sync_page().
- *
- * For higher level pagetable, we synchronize it via
- * the slower mmu_sync_children(). If it needs to
- * break, some progress has been made; return
- * RET_PF_RETRY and retry on the next #PF.
- * KVM_REQ_MMU_SYNC is not necessary but it
- * expedites the process.
- */
- if (sp->unsync_children &&
- mmu_sync_children(vcpu, sp, false))
- return RET_PF_RETRY;
- }
+ /*
+ * Synchronize the new page before linking it, as the CPU (KVM)
+ * is architecturally disallowed from inserting non-present
+ * entries into the TLB, i.e. the guest isn't required to flush
+ * the TLB when changing the gPTE from non-present to present.
+ *
+ * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already
+ * synchronized the page via kvm_sync_page().
+ *
+ * For higher level pages, which cannot be unsync themselves
+ * but can have unsync children, synchronize via the slower
+ * mmu_sync_children(). If KVM needs to drop mmu_lock due to
+ * contention or to reschedule, instruct the caller to retry
+ * the #PF (mmu_sync_children() ensures forward progress will
+ * be made).
+ */
+ if (sp != ERR_PTR(-EEXIST) && sp->unsync_children &&
+ mmu_sync_children(vcpu, sp, false))
+ return RET_PF_RETRY;
/*
- * Verify that the gpte in the page we've just write
- * protected is still there.
+ * Verify that the gpte in the page, which is now either
+ * write-protected or unsync, wasn't modified between the fault
+ * and acquiring mmu_lock. This needs to be done even when
+ * reusing an existing shadow page to ensure the information
+ * gathered by the walker matches the information stored in the
+ * shadow page (which could have been modified by a different
+ * vCPU even if the page was already linked). Holding mmu_lock
+ * prevents the shadow page from changing after this point.
*/
if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
- goto out_gpte_changed;
+ return RET_PF_RETRY;
if (sp != ERR_PTR(-EEXIST))
link_shadow_page(vcpu, it.sptep, sp);
@@ -755,9 +759,6 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
FNAME(pte_prefetch)(vcpu, gw, it.sptep);
return ret;
-
-out_gpte_changed:
- return RET_PF_RETRY;
}
/*
@@ -805,7 +806,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
if (page_fault_handle_page_track(vcpu, fault)) {
shadow_page_table_clear_flood(vcpu, fault->addr);
- return RET_PF_EMULATE;
+ return RET_PF_WRITE_PROTECTED;
}
r = mmu_topup_memory_caches(vcpu, true);
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index 3c55955bcaf8..3b996c1fdaab 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -1046,10 +1046,8 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
* protected, emulation is needed. If the emulation was skipped,
* the vCPU would have the same fault again.
*/
- if (wrprot) {
- if (fault->write)
- ret = RET_PF_EMULATE;
- }
+ if (wrprot && fault->write)
+ ret = RET_PF_WRITE_PROTECTED;
/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) {
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index a877c0764fc5..553f8962cec2 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -8854,60 +8854,13 @@ static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
return 1;
}
-static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
- int emulation_type)
+static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
+ gpa_t cr2_or_gpa,
+ int emulation_type)
{
- gpa_t gpa = cr2_or_gpa;
- kvm_pfn_t pfn;
-
if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
return false;
- if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
- WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
- return false;
-
- if (!vcpu->arch.mmu->root_role.direct) {
- /*
- * Write permission should be allowed since only
- * write access need to be emulated.
- */
- gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
-
- /*
- * If the mapping is invalid in guest, let cpu retry
- * it to generate fault.
- */
- if (gpa == INVALID_GPA)
- return true;
- }
-
- /*
- * Do not retry the unhandleable instruction if it faults on the
- * readonly host memory, otherwise it will goto a infinite loop:
- * retry instruction -> write #PF -> emulation fail -> retry
- * instruction -> ...
- */
- pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
-
- /*
- * If the instruction failed on the error pfn, it can not be fixed,
- * report the error to userspace.
- */
- if (is_error_noslot_pfn(pfn))
- return false;
-
- kvm_release_pfn_clean(pfn);
-
- /*
- * If emulation may have been triggered by a write to a shadowed page
- * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
- * guest to let the CPU re-execute the instruction in the hope that the
- * CPU can cleanly execute the instruction that KVM failed to emulate.
- */
- if (vcpu->kvm->arch.indirect_shadow_pages)
- kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
-
/*
* If the failed instruction faulted on an access to page tables that
* are used to translate any part of the instruction, KVM can't resolve
@@ -8918,54 +8871,24 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
* then zap the SPTE to unprotect the gfn, and then do it all over
* again. Report the error to userspace.
*/
- return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
-}
-
-static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
- gpa_t cr2_or_gpa, int emulation_type)
-{
- struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
- unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
-
- last_retry_eip = vcpu->arch.last_retry_eip;
- last_retry_addr = vcpu->arch.last_retry_addr;
+ if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
+ return false;
/*
- * If the emulation is caused by #PF and it is non-page_table
- * writing instruction, it means the VM-EXIT is caused by shadow
- * page protected, we can zap the shadow page and retry this
- * instruction directly.
- *
- * Note: if the guest uses a non-page-table modifying instruction
- * on the PDE that points to the instruction, then we will unmap
- * the instruction and go to an infinite loop. So, we cache the
- * last retried eip and the last fault address, if we meet the eip
- * and the address again, we can break out of the potential infinite
- * loop.
+ * If emulation may have been triggered by a write to a shadowed page
+ * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
+ * guest to let the CPU re-execute the instruction in the hope that the
+ * CPU can cleanly execute the instruction that KVM failed to emulate.
*/
- vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
-
- if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
- return false;
-
- if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
- WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
- return false;
-
- if (x86_page_table_writing_insn(ctxt))
- return false;
-
- if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
- return false;
-
- vcpu->arch.last_retry_eip = ctxt->eip;
- vcpu->arch.last_retry_addr = cr2_or_gpa;
-
- if (!vcpu->arch.mmu->root_role.direct)
- gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
-
- kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+ __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
+ /*
+ * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
+ * all SPTEs were already zapped by a different task. The alternative
+ * is to report the error to userspace and likely terminate the guest,
+ * and the last_retry_{eip,addr} checks will prevent retrying the page
+ * fault indefinitely, i.e. there's nothing to lose by retrying.
+ */
return true;
}
@@ -9165,6 +9088,11 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
bool writeback = true;
+ if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
+ (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
+ WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
+ emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
+
r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
if (r != X86EMUL_CONTINUE) {
if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
@@ -9195,8 +9123,8 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
- if (reexecute_instruction(vcpu, cr2_or_gpa,
- emulation_type))
+ if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
+ emulation_type))
return 1;
if (ctxt->have_exception &&
@@ -9243,7 +9171,15 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
return 1;
}
- if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
+ /*
+ * If emulation was caused by a write-protection #PF on a non-page_table
+ * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
+ * and retry the instruction, as the vCPU is likely no longer using the
+ * gfn as a page table.
+ */
+ if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
+ !x86_page_table_writing_insn(ctxt) &&
+ kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
return 1;
/* this is needed for vmware backdoor interface to work since it
@@ -9274,7 +9210,8 @@ restart:
return 1;
if (r == EMULATION_FAILED) {
- if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
+ if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
+ emulation_type))
return 1;
return handle_emulation_failure(vcpu, emulation_type);