aboutsummaryrefslogtreecommitdiff
path: root/arch/mips/kernel/sync-r4k.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/kernel/sync-r4k.c')
-rw-r--r--arch/mips/kernel/sync-r4k.c281
1 files changed, 202 insertions, 79 deletions
diff --git a/arch/mips/kernel/sync-r4k.c b/arch/mips/kernel/sync-r4k.c
index abdd7aaa3311..39156592582e 100644
--- a/arch/mips/kernel/sync-r4k.c
+++ b/arch/mips/kernel/sync-r4k.c
@@ -2,121 +2,244 @@
/*
* Count register synchronisation.
*
- * All CPUs will have their count registers synchronised to the CPU0 next time
- * value. This can cause a small timewarp for CPU0. All other CPU's should
- * not have done anything significant (but they may have had interrupts
- * enabled briefly - prom_smp_finish() should not be responsible for enabling
- * interrupts...)
+ * Derived from arch/x86/kernel/tsc_sync.c
+ * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
*/
#include <linux/kernel.h>
#include <linux/irqflags.h>
#include <linux/cpumask.h>
+#include <linux/atomic.h>
+#include <linux/nmi.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
#include <asm/r4k-timer.h>
-#include <linux/atomic.h>
-#include <asm/barrier.h>
#include <asm/mipsregs.h>
+#include <asm/time.h>
-static unsigned int initcount = 0;
-static atomic_t count_count_start = ATOMIC_INIT(0);
-static atomic_t count_count_stop = ATOMIC_INIT(0);
-
-#define COUNTON 100
-#define NR_LOOPS 3
-
-void synchronise_count_master(int cpu)
-{
- int i;
- unsigned long flags;
-
- pr_info("Synchronize counters for CPU %u: ", cpu);
+#define COUNTON 100
+#define NR_LOOPS 3
+#define LOOP_TIMEOUT 20
- local_irq_save(flags);
+/*
+ * Entry/exit counters that make sure that both CPUs
+ * run the measurement code at once:
+ */
+static atomic_t start_count;
+static atomic_t stop_count;
+static atomic_t test_runs;
- /*
- * We loop a few times to get a primed instruction cache,
- * then the last pass is more or less synchronised and
- * the master and slaves each set their cycle counters to a known
- * value all at once. This reduces the chance of having random offsets
- * between the processors, and guarantees that the maximum
- * delay between the cycle counters is never bigger than
- * the latency of information-passing (cachelines) between
- * two CPUs.
- */
+/*
+ * We use a raw spinlock in this exceptional case, because
+ * we want to have the fastest, inlined, non-debug version
+ * of a critical section, to be able to prove counter time-warps:
+ */
+static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
- for (i = 0; i < NR_LOOPS; i++) {
- /* slaves loop on '!= 2' */
- while (atomic_read(&count_count_start) != 1)
- mb();
- atomic_set(&count_count_stop, 0);
- smp_wmb();
+static uint32_t last_counter;
+static uint32_t max_warp;
+static int nr_warps;
+static int random_warps;
- /* Let the slave writes its count register */
- atomic_inc(&count_count_start);
+/*
+ * Counter warp measurement loop running on both CPUs.
+ */
+static uint32_t check_counter_warp(void)
+{
+ uint32_t start, now, prev, end, cur_max_warp = 0;
+ int i, cur_warps = 0;
- /* Count will be initialised to current timer */
- if (i == 1)
- initcount = read_c0_count();
+ start = read_c0_count();
+ end = start + (uint32_t) mips_hpt_frequency / 1000 * LOOP_TIMEOUT;
+ for (i = 0; ; i++) {
/*
- * Everyone initialises count in the last loop:
+ * We take the global lock, measure counter, save the
+ * previous counter that was measured (possibly on
+ * another CPU) and update the previous counter timestamp.
*/
- if (i == NR_LOOPS-1)
- write_c0_count(initcount);
+ arch_spin_lock(&sync_lock);
+ prev = last_counter;
+ now = read_c0_count();
+ last_counter = now;
+ arch_spin_unlock(&sync_lock);
/*
- * Wait for slave to leave the synchronization point:
+ * Be nice every now and then (and also check whether
+ * measurement is done [we also insert a 10 million
+ * loops safety exit, so we dont lock up in case the
+ * counter is totally broken]):
*/
- while (atomic_read(&count_count_stop) != 1)
- mb();
- atomic_set(&count_count_start, 0);
- smp_wmb();
- atomic_inc(&count_count_stop);
+ if (unlikely(!(i & 7))) {
+ if (now > end || i > 10000000)
+ break;
+ cpu_relax();
+ touch_nmi_watchdog();
+ }
+ /*
+ * Outside the critical section we can now see whether
+ * we saw a time-warp of the counter going backwards:
+ */
+ if (unlikely(prev > now)) {
+ arch_spin_lock(&sync_lock);
+ max_warp = max(max_warp, prev - now);
+ cur_max_warp = max_warp;
+ /*
+ * Check whether this bounces back and forth. Only
+ * one CPU should observe time going backwards.
+ */
+ if (cur_warps != nr_warps)
+ random_warps++;
+ nr_warps++;
+ cur_warps = nr_warps;
+ arch_spin_unlock(&sync_lock);
+ }
+ }
+ WARN(!(now-start),
+ "Warning: zero counter calibration delta: %d [max: %d]\n",
+ now-start, end-start);
+ return cur_max_warp;
+}
+
+/*
+ * The freshly booted CPU initiates this via an async SMP function call.
+ */
+static void check_counter_sync_source(void *__cpu)
+{
+ unsigned int cpu = (unsigned long)__cpu;
+ int cpus = 2;
+
+ atomic_set(&test_runs, NR_LOOPS);
+retry:
+ /* Wait for the target to start. */
+ while (atomic_read(&start_count) != cpus - 1)
+ cpu_relax();
+
+ /*
+ * Trigger the target to continue into the measurement too:
+ */
+ atomic_inc(&start_count);
+
+ check_counter_warp();
+
+ while (atomic_read(&stop_count) != cpus-1)
+ cpu_relax();
+
+ /*
+ * If the test was successful set the number of runs to zero and
+ * stop. If not, decrement the number of runs an check if we can
+ * retry. In case of random warps no retry is attempted.
+ */
+ if (!nr_warps) {
+ atomic_set(&test_runs, 0);
+
+ pr_info("Counter synchronization [CPU#%d -> CPU#%u]: passed\n",
+ smp_processor_id(), cpu);
+ } else if (atomic_dec_and_test(&test_runs) || random_warps) {
+ /* Force it to 0 if random warps brought us here */
+ atomic_set(&test_runs, 0);
+
+ pr_info("Counter synchronization [CPU#%d -> CPU#%u]:\n",
+ smp_processor_id(), cpu);
+ pr_info("Measured %d cycles counter warp between CPUs", max_warp);
+ if (random_warps)
+ pr_warn("Counter warped randomly between CPUs\n");
}
- /* Arrange for an interrupt in a short while */
- write_c0_compare(read_c0_count() + COUNTON);
- local_irq_restore(flags);
+ /*
+ * Reset it - just in case we boot another CPU later:
+ */
+ atomic_set(&start_count, 0);
+ random_warps = 0;
+ nr_warps = 0;
+ max_warp = 0;
+ last_counter = 0;
+
+ /*
+ * Let the target continue with the bootup:
+ */
+ atomic_inc(&stop_count);
/*
- * i386 code reported the skew here, but the
- * count registers were almost certainly out of sync
- * so no point in alarming people
+ * Retry, if there is a chance to do so.
*/
- pr_cont("done.\n");
+ if (atomic_read(&test_runs) > 0)
+ goto retry;
}
+/*
+ * Freshly booted CPUs call into this:
+ */
void synchronise_count_slave(int cpu)
{
- int i;
- unsigned long flags;
+ uint32_t cur_max_warp, gbl_max_warp, count;
+ int cpus = 2;
- local_irq_save(flags);
+ if (!cpu_has_counter || !mips_hpt_frequency)
+ return;
+ /* Kick the control CPU into the counter synchronization function */
+ smp_call_function_single(cpumask_first(cpu_online_mask),
+ check_counter_sync_source,
+ (unsigned long *)(unsigned long)cpu, 0);
+retry:
/*
- * Not every cpu is online at the time this gets called,
- * so we first wait for the master to say everyone is ready
+ * Register this CPU's participation and wait for the
+ * source CPU to start the measurement:
*/
+ atomic_inc(&start_count);
+ while (atomic_read(&start_count) != cpus)
+ cpu_relax();
- for (i = 0; i < NR_LOOPS; i++) {
- atomic_inc(&count_count_start);
- while (atomic_read(&count_count_start) != 2)
- mb();
+ cur_max_warp = check_counter_warp();
- /*
- * Everyone initialises count in the last loop:
- */
- if (i == NR_LOOPS-1)
- write_c0_count(initcount);
+ /*
+ * Store the maximum observed warp value for a potential retry:
+ */
+ gbl_max_warp = max_warp;
+
+ /*
+ * Ok, we are done:
+ */
+ atomic_inc(&stop_count);
+
+ /*
+ * Wait for the source CPU to print stuff:
+ */
+ while (atomic_read(&stop_count) != cpus)
+ cpu_relax();
- atomic_inc(&count_count_stop);
- while (atomic_read(&count_count_stop) != 2)
- mb();
+ /*
+ * Reset it for the next sync test:
+ */
+ atomic_set(&stop_count, 0);
+
+ /*
+ * Check the number of remaining test runs. If not zero, the test
+ * failed and a retry with adjusted counter is possible. If zero the
+ * test was either successful or failed terminally.
+ */
+ if (!atomic_read(&test_runs)) {
+ /* Arrange for an interrupt in a short while */
+ write_c0_compare(read_c0_count() + COUNTON);
+ return;
}
- /* Arrange for an interrupt in a short while */
- write_c0_compare(read_c0_count() + COUNTON);
- local_irq_restore(flags);
+ /*
+ * If the warp value of this CPU is 0, then the other CPU
+ * observed time going backwards so this counter was ahead and
+ * needs to move backwards.
+ */
+ if (!cur_max_warp)
+ cur_max_warp = -gbl_max_warp;
+
+ count = read_c0_count();
+ count += cur_max_warp;
+ write_c0_count(count);
+
+ pr_debug("Counter compensate: CPU%u observed %d warp\n", cpu, cur_max_warp);
+
+ goto retry;
+
}
-#undef NR_LOOPS