diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2023-08-29 08:19:46 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2023-08-29 08:19:46 -0700 |
commit | a031fe8d1d32898582e36ccbffa9847d16f67aa2 (patch) | |
tree | bb097e00fcf06c92efffe95e48163e5658d527fc /rust/kernel/allocator.rs | |
parent | f2586d921cea4feeddd1cc5ee3495700540dba8f (diff) | |
parent | 4af84c6a85c63bec24611e46bb3de2c0a6602a51 (diff) |
Merge tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux
Pull rust updates from Miguel Ojeda:
"In terms of lines, most changes this time are on the pinned-init API
and infrastructure. While we have a Rust version upgrade, and thus a
bunch of changes from the vendored 'alloc' crate as usual, this time
those do not account for many lines.
Toolchain and infrastructure:
- Upgrade to Rust 1.71.1. This is the second such upgrade, which is a
smaller jump compared to the last time.
This version allows us to remove the '__rust_*' allocator functions
-- the compiler now generates them as expected, thus now our
'KernelAllocator' is used.
It also introduces the 'offset_of!' macro in the standard library
(as an unstable feature) which we will need soon. So far, we were
using a declarative macro as a prerequisite in some not-yet-landed
patch series, which did not support sub-fields (i.e. nested
structs):
#[repr(C)]
struct S {
a: u16,
b: (u8, u8),
}
assert_eq!(offset_of!(S, b.1), 3);
- Upgrade to bindgen 0.65.1. This is the first time we upgrade its
version.
Given it is a fairly big jump, it comes with a fair number of
improvements/changes that affect us, such as a fix needed to
support LLVM 16 as well as proper support for '__noreturn' C
functions, which are now mapped to return the '!' type in Rust:
void __noreturn f(void); // C
pub fn f() -> !; // Rust
- 'scripts/rust_is_available.sh' improvements and fixes.
This series takes care of all the issues known so far and adds a
few new checks to cover for even more cases, plus adds some more
help texts. All this together will hopefully make problematic
setups easier to identify and to be solved by users building the
kernel.
In addition, it adds a test suite which covers all branches of the
shell script, as well as tests for the issues found so far.
- Support rust-analyzer for out-of-tree modules too.
- Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates.
- Drop 'scripts/is_rust_module.sh' since it is not needed anymore.
Macros crate:
- New 'paste!' proc macro.
This macro is a more flexible version of 'concat_idents!': it
allows the resulting identifier to be used to declare new items and
it allows to transform the identifiers before concatenating them,
e.g.
let x_1 = 42;
paste!(let [<x _2>] = [<x _1>];);
assert!(x_1 == x_2);
The macro is then used for several of the pinned-init API changes
in this pull.
Pinned-init API:
- Make '#[pin_data]' compatible with conditional compilation of
fields, allowing to write code like:
#[pin_data]
pub struct Foo {
#[cfg(CONFIG_BAR)]
a: Bar,
#[cfg(not(CONFIG_BAR))]
a: Baz,
}
- New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait,
which allows 'unsafe' implementations for structs where every field
implements the 'Zeroable' trait, e.g.:
#[derive(Zeroable)]
pub struct DriverData {
id: i64,
buf_ptr: *mut u8,
len: usize,
}
- Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for
zeroing all other fields, e.g.:
pin_init!(Buf {
buf: [1; 64],
..Zeroable::zeroed()
});
- New '{,pin_}init_array_from_fn()' functions to create array
initializers given a generator function, e.g.:
let b: Box<[usize; 1_000]> = Box::init::<Error>(
init_array_from_fn(|i| i)
).unwrap();
assert_eq!(b.len(), 1_000);
assert_eq!(b[123], 123);
- New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to
execute a closure on the value directly after initialization, e.g.:
let foo = init!(Foo {
buf <- init::zeroed()
}).chain(|foo| {
foo.setup();
Ok(())
});
- Support arbitrary paths in init macros, instead of just identifiers
and generic types.
- Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and
'Opaque<T>' types.
- Make initializer values inaccessible after initialization.
- Make guards in the init macros hygienic.
'allocator' module:
- Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing
misaligned allocations when the Rust 1.71.1 upgrade is applied
later in this pull.
The equivalent fix for the previous compiler version (where
'KernelAllocator' is not yet used) was merged into 6.5 already,
which added the 'krealloc_aligned()' function used here.
- Implement 'KernelAllocator::{realloc, alloc_zeroed}' for
performance, using 'krealloc_aligned()' too, which forwards the
call to the C API.
'types' module:
- Make 'Opaque' be '!Unpin', removing the need to add a
'PhantomPinned' field to Rust structs that contain C structs which
must not be moved.
- Make 'Opaque' use 'UnsafeCell' as the outer type, rather than
inner.
Documentation:
- Suggest obtaining the source code of the Rust's 'core' library
using the tarball instead of the repository.
MAINTAINERS:
- Andreas and Alice, from Samsung and Google respectively, are
joining as reviewers of the "RUST" entry.
As well as a few other minor changes and cleanups"
* tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux: (42 commits)
rust: init: update expanded macro explanation
rust: init: add `{pin_}chain` functions to `{Pin}Init<T, E>`
rust: init: make `PinInit<T, E>` a supertrait of `Init<T, E>`
rust: init: implement `Zeroable` for `UnsafeCell<T>` and `Opaque<T>`
rust: init: add support for arbitrary paths in init macros
rust: init: add functions to create array initializers
rust: init: add `..Zeroable::zeroed()` syntax for zeroing all missing fields
rust: init: make initializer values inaccessible after initializing
rust: init: wrap type checking struct initializers in a closure
rust: init: make guards in the init macros hygienic
rust: add derive macro for `Zeroable`
rust: init: make `#[pin_data]` compatible with conditional compilation of fields
rust: init: consolidate init macros
docs: rust: clarify what 'rustup override' does
docs: rust: update instructions for obtaining 'core' source
docs: rust: add command line to rust-analyzer section
scripts: generate_rust_analyzer: provide `cfg`s for `core` and `alloc`
rust: bindgen: upgrade to 0.65.1
rust: enable `no_mangle_with_rust_abi` Clippy lint
rust: upgrade to Rust 1.71.1
...
Diffstat (limited to 'rust/kernel/allocator.rs')
-rw-r--r-- | rust/kernel/allocator.rs | 84 |
1 files changed, 32 insertions, 52 deletions
diff --git a/rust/kernel/allocator.rs b/rust/kernel/allocator.rs index 9363b527be66..a8f3d5be1af1 100644 --- a/rust/kernel/allocator.rs +++ b/rust/kernel/allocator.rs @@ -41,9 +41,9 @@ unsafe fn krealloc_aligned(ptr: *mut u8, new_layout: Layout, flags: bindings::gf unsafe impl GlobalAlloc for KernelAllocator { unsafe fn alloc(&self, layout: Layout) -> *mut u8 { - // `krealloc()` is used instead of `kmalloc()` because the latter is - // an inline function and cannot be bound to as a result. - unsafe { bindings::krealloc(ptr::null(), layout.size(), bindings::GFP_KERNEL) as *mut u8 } + // SAFETY: `ptr::null_mut()` is null and `layout` has a non-zero size by the function safety + // requirement. + unsafe { krealloc_aligned(ptr::null_mut(), layout, bindings::GFP_KERNEL) } } unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) { @@ -51,58 +51,38 @@ unsafe impl GlobalAlloc for KernelAllocator { bindings::kfree(ptr as *const core::ffi::c_void); } } -} - -#[global_allocator] -static ALLOCATOR: KernelAllocator = KernelAllocator; - -// `rustc` only generates these for some crate types. Even then, we would need -// to extract the object file that has them from the archive. For the moment, -// let's generate them ourselves instead. -// -// Note: Although these are *safe* functions, they are called by the compiler -// with parameters that obey the same `GlobalAlloc` function safety -// requirements: size and align should form a valid layout, and size is -// greater than 0. -// -// Note that `#[no_mangle]` implies exported too, nowadays. -#[no_mangle] -fn __rust_alloc(size: usize, align: usize) -> *mut u8 { - // SAFETY: See assumption above. - let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; - // SAFETY: `ptr::null_mut()` is null, per assumption above the size of `layout` is greater - // than 0. - unsafe { krealloc_aligned(ptr::null_mut(), layout, bindings::GFP_KERNEL) } -} + unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { + // SAFETY: + // - `new_size`, when rounded up to the nearest multiple of `layout.align()`, will not + // overflow `isize` by the function safety requirement. + // - `layout.align()` is a proper alignment (i.e. not zero and must be a power of two). + let layout = unsafe { Layout::from_size_align_unchecked(new_size, layout.align()) }; + + // SAFETY: + // - `ptr` is either null or a pointer allocated by this allocator by the function safety + // requirement. + // - the size of `layout` is not zero because `new_size` is not zero by the function safety + // requirement. + unsafe { krealloc_aligned(ptr, layout, bindings::GFP_KERNEL) } + } -#[no_mangle] -fn __rust_dealloc(ptr: *mut u8, _size: usize, _align: usize) { - unsafe { bindings::kfree(ptr as *const core::ffi::c_void) }; + unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { + // SAFETY: `ptr::null_mut()` is null and `layout` has a non-zero size by the function safety + // requirement. + unsafe { + krealloc_aligned( + ptr::null_mut(), + layout, + bindings::GFP_KERNEL | bindings::__GFP_ZERO, + ) + } + } } -#[no_mangle] -fn __rust_realloc(ptr: *mut u8, _old_size: usize, align: usize, new_size: usize) -> *mut u8 { - // SAFETY: See assumption above. - let new_layout = unsafe { Layout::from_size_align_unchecked(new_size, align) }; - - // SAFETY: Per assumption above, `ptr` is allocated by `__rust_*` before, and the size of - // `new_layout` is greater than 0. - unsafe { krealloc_aligned(ptr, new_layout, bindings::GFP_KERNEL) } -} +#[global_allocator] +static ALLOCATOR: KernelAllocator = KernelAllocator; +// See <https://github.com/rust-lang/rust/pull/86844>. #[no_mangle] -fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8 { - // SAFETY: See assumption above. - let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; - - // SAFETY: `ptr::null_mut()` is null, per assumption above the size of `layout` is greater - // than 0. - unsafe { - krealloc_aligned( - ptr::null_mut(), - layout, - bindings::GFP_KERNEL | bindings::__GFP_ZERO, - ) - } -} +static __rust_no_alloc_shim_is_unstable: u8 = 0; |