diff options
author | Lorenzo Stoakes <lorenzo.stoakes@oracle.com> | 2024-08-30 19:10:18 +0100 |
---|---|---|
committer | Andrew Morton <akpm@linux-foundation.org> | 2024-09-03 21:15:54 -0700 |
commit | cacded5e42b9609b07b22d80c10f0076d439f7d1 (patch) | |
tree | 6f56d19dc4cd92eeac9ceb0fbf3bf22e2890c477 /mm/vma.h | |
parent | fc21959f74bc1138b28e90a02ec224ab8626111e (diff) |
mm: avoid using vma_merge() for new VMAs
Abstract vma_merge_new_vma() to use vma_merge_struct and rename the
resultant function vma_merge_new_range() to be clear what the purpose of
this function is - a new VMA is desired in the specified range, and we
wish to see if it is possible to 'merge' surrounding VMAs into this range
rather than having to allocate a new VMA.
Note that this function uses vma_extend() exclusively, so adopts its
requirement that the iterator point at or before the gap. We add an
assert to this effect.
This is as opposed to vma_merge_existing_range(), which will be introduced
in a subsequent commit, and provide the same functionality for cases in
which we are modifying an existing VMA.
In mmap_region() and do_brk_flags() we open code scenarios where we prefer
to use vma_expand() rather than invoke a full vma_merge() operation.
Abstract this logic and eliminate all of the open-coding, and also use the
same logic for all cases where we add new VMAs to, rather than ultimately
use vma_merge(), rather use vma_expand().
Doing so removes duplication and simplifies VMA merging in all such cases,
laying the ground for us to eliminate the merging of new VMAs in
vma_merge() altogether.
Also add the ability for the vmg to track state, and able to report
errors, allowing for us to differentiate a failed merge from an inability
to allocate memory in callers.
This makes it far easier to understand what is happening in these cases
avoiding confusion, bugs and allowing for future optimisation.
Also introduce vma_iter_next_rewind() to allow for retrieval of the next,
and (optionally) the prev VMA, rewinding to the start of the previous gap.
Introduce are_anon_vmas_compatible() to abstract individual VMA anon_vma
comparison for the case of merging on both sides where the anon_vma of the
VMA being merged maybe compatible with prev and next, but prev and next's
anon_vma's may not be compatible with each other.
Finally also introduce can_vma_merge_left() / can_vma_merge_right() to
check adjacent VMA compatibility and that they are indeed adjacent.
Link: https://lkml.kernel.org/r/49d37c0769b6b9dc03b27fe4d059173832556392.1725040657.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Bert Karwatzki <spasswolf@web.de>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/vma.h')
-rw-r--r-- | mm/vma.h | 48 |
1 files changed, 44 insertions, 4 deletions
@@ -52,6 +52,13 @@ struct vma_munmap_struct { unsigned long data_vm; }; +enum vma_merge_state { + VMA_MERGE_START, + VMA_MERGE_ERROR_NOMEM, + VMA_MERGE_NOMERGE, + VMA_MERGE_SUCCESS, +}; + /* Represents a VMA merge operation. */ struct vma_merge_struct { struct mm_struct *mm; @@ -68,8 +75,14 @@ struct vma_merge_struct { struct mempolicy *policy; struct vm_userfaultfd_ctx uffd_ctx; struct anon_vma_name *anon_name; + enum vma_merge_state state; }; +static inline bool vmg_nomem(struct vma_merge_struct *vmg) +{ + return vmg->state == VMA_MERGE_ERROR_NOMEM; +} + /* Assumes addr >= vma->vm_start. */ static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, unsigned long addr) @@ -85,6 +98,7 @@ static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, .end = end_, \ .flags = flags_, \ .pgoff = pgoff_, \ + .state = VMA_MERGE_START, \ } #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ @@ -103,6 +117,7 @@ static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, .policy = vma_policy(vma_), \ .uffd_ctx = vma_->vm_userfaultfd_ctx, \ .anon_name = anon_vma_name(vma_), \ + .state = VMA_MERGE_START, \ } #ifdef CONFIG_DEBUG_VM_MAPLE_TREE @@ -309,10 +324,7 @@ struct vm_area_struct unsigned long new_flags, struct vm_userfaultfd_ctx new_ctx); -struct vm_area_struct -*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, - struct vm_area_struct *vma, unsigned long start, - unsigned long end, pgoff_t pgoff); +struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg); struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, struct vm_area_struct *vma, @@ -505,6 +517,34 @@ struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) return mas_prev_range(&vmi->mas, 0); } +/* + * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or + * if no previous VMA, to index 0. + */ +static inline +struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, + struct vm_area_struct **pprev) +{ + struct vm_area_struct *next = vma_next(vmi); + struct vm_area_struct *prev = vma_prev(vmi); + + /* + * Consider the case where no previous VMA exists. We advance to the + * next VMA, skipping any gap, then rewind to the start of the range. + * + * If we were to unconditionally advance to the next range we'd wind up + * at the next VMA again, so we check to ensure there is a previous VMA + * to skip over. + */ + if (prev) + vma_iter_next_range(vmi); + + if (pprev) + *pprev = prev; + + return next; +} + #ifdef CONFIG_64BIT static inline bool vma_is_sealed(struct vm_area_struct *vma) |