diff options
author | Joel Fernandes (Google) <joel@joelfernandes.org> | 2022-10-16 16:22:54 +0000 |
---|---|---|
committer | Paul E. McKenney <paulmck@kernel.org> | 2022-11-29 14:02:23 -0800 |
commit | 3cb278e73be58bfb780ecd55129296d2f74c1fb7 (patch) | |
tree | 2352a3f0691d1b8694a9feaf4bd6ec865475c934 /kernel/rcu/tree.c | |
parent | b8f7aca3f0e0e6223094ba2662bac90353674b04 (diff) |
rcu: Make call_rcu() lazy to save power
Implement timer-based RCU callback batching (also known as lazy
callbacks). With this we save about 5-10% of power consumed due
to RCU requests that happen when system is lightly loaded or idle.
By default, all async callbacks (queued via call_rcu) are marked
lazy. An alternate API call_rcu_hurry() is provided for the few users,
for example synchronize_rcu(), that need the old behavior.
The batch is flushed whenever a certain amount of time has passed, or
the batch on a particular CPU grows too big. Also memory pressure will
flush it in a future patch.
To handle several corner cases automagically (such as rcu_barrier() and
hotplug), we re-use bypass lists which were originally introduced to
address lock contention, to handle lazy CBs as well. The bypass list
length has the lazy CB length included in it. A separate lazy CB length
counter is also introduced to keep track of the number of lazy CBs.
[ paulmck: Fix formatting of inline call_rcu_lazy() definition. ]
[ paulmck: Apply Zqiang feedback. ]
[ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ]
Suggested-by: Paul McKenney <paulmck@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Diffstat (limited to 'kernel/rcu/tree.c')
-rw-r--r-- | kernel/rcu/tree.c | 129 |
1 files changed, 83 insertions, 46 deletions
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c index fb7a1b95af71..4b68e50312d9 100644 --- a/kernel/rcu/tree.c +++ b/kernel/rcu/tree.c @@ -2728,47 +2728,8 @@ static void check_cb_ovld(struct rcu_data *rdp) raw_spin_unlock_rcu_node(rnp); } -/** - * call_rcu() - Queue an RCU callback for invocation after a grace period. - * @head: structure to be used for queueing the RCU updates. - * @func: actual callback function to be invoked after the grace period - * - * The callback function will be invoked some time after a full grace - * period elapses, in other words after all pre-existing RCU read-side - * critical sections have completed. However, the callback function - * might well execute concurrently with RCU read-side critical sections - * that started after call_rcu() was invoked. - * - * RCU read-side critical sections are delimited by rcu_read_lock() - * and rcu_read_unlock(), and may be nested. In addition, but only in - * v5.0 and later, regions of code across which interrupts, preemption, - * or softirqs have been disabled also serve as RCU read-side critical - * sections. This includes hardware interrupt handlers, softirq handlers, - * and NMI handlers. - * - * Note that all CPUs must agree that the grace period extended beyond - * all pre-existing RCU read-side critical section. On systems with more - * than one CPU, this means that when "func()" is invoked, each CPU is - * guaranteed to have executed a full memory barrier since the end of its - * last RCU read-side critical section whose beginning preceded the call - * to call_rcu(). It also means that each CPU executing an RCU read-side - * critical section that continues beyond the start of "func()" must have - * executed a memory barrier after the call_rcu() but before the beginning - * of that RCU read-side critical section. Note that these guarantees - * include CPUs that are offline, idle, or executing in user mode, as - * well as CPUs that are executing in the kernel. - * - * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the - * resulting RCU callback function "func()", then both CPU A and CPU B are - * guaranteed to execute a full memory barrier during the time interval - * between the call to call_rcu() and the invocation of "func()" -- even - * if CPU A and CPU B are the same CPU (but again only if the system has - * more than one CPU). - * - * Implementation of these memory-ordering guarantees is described here: - * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. - */ -void call_rcu(struct rcu_head *head, rcu_callback_t func) +static void +__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy) { static atomic_t doublefrees; unsigned long flags; @@ -2809,7 +2770,7 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func) } check_cb_ovld(rdp); - if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) + if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) return; // Enqueued onto ->nocb_bypass, so just leave. // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. rcu_segcblist_enqueue(&rdp->cblist, head); @@ -2831,8 +2792,84 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func) local_irq_restore(flags); } } -EXPORT_SYMBOL_GPL(call_rcu); +#ifdef CONFIG_RCU_LAZY +/** + * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and + * flush all lazy callbacks (including the new one) to the main ->cblist while + * doing so. + * + * @head: structure to be used for queueing the RCU updates. + * @func: actual callback function to be invoked after the grace period + * + * The callback function will be invoked some time after a full grace + * period elapses, in other words after all pre-existing RCU read-side + * critical sections have completed. + * + * Use this API instead of call_rcu() if you don't want the callback to be + * invoked after very long periods of time, which can happen on systems without + * memory pressure and on systems which are lightly loaded or mostly idle. + * This function will cause callbacks to be invoked sooner than later at the + * expense of extra power. Other than that, this function is identical to, and + * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory + * ordering and other functionality. + */ +void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) +{ + return __call_rcu_common(head, func, false); +} +EXPORT_SYMBOL_GPL(call_rcu_hurry); +#endif + +/** + * call_rcu() - Queue an RCU callback for invocation after a grace period. + * By default the callbacks are 'lazy' and are kept hidden from the main + * ->cblist to prevent starting of grace periods too soon. + * If you desire grace periods to start very soon, use call_rcu_hurry(). + * + * @head: structure to be used for queueing the RCU updates. + * @func: actual callback function to be invoked after the grace period + * + * The callback function will be invoked some time after a full grace + * period elapses, in other words after all pre-existing RCU read-side + * critical sections have completed. However, the callback function + * might well execute concurrently with RCU read-side critical sections + * that started after call_rcu() was invoked. + * + * RCU read-side critical sections are delimited by rcu_read_lock() + * and rcu_read_unlock(), and may be nested. In addition, but only in + * v5.0 and later, regions of code across which interrupts, preemption, + * or softirqs have been disabled also serve as RCU read-side critical + * sections. This includes hardware interrupt handlers, softirq handlers, + * and NMI handlers. + * + * Note that all CPUs must agree that the grace period extended beyond + * all pre-existing RCU read-side critical section. On systems with more + * than one CPU, this means that when "func()" is invoked, each CPU is + * guaranteed to have executed a full memory barrier since the end of its + * last RCU read-side critical section whose beginning preceded the call + * to call_rcu(). It also means that each CPU executing an RCU read-side + * critical section that continues beyond the start of "func()" must have + * executed a memory barrier after the call_rcu() but before the beginning + * of that RCU read-side critical section. Note that these guarantees + * include CPUs that are offline, idle, or executing in user mode, as + * well as CPUs that are executing in the kernel. + * + * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the + * resulting RCU callback function "func()", then both CPU A and CPU B are + * guaranteed to execute a full memory barrier during the time interval + * between the call to call_rcu() and the invocation of "func()" -- even + * if CPU A and CPU B are the same CPU (but again only if the system has + * more than one CPU). + * + * Implementation of these memory-ordering guarantees is described here: + * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. + */ +void call_rcu(struct rcu_head *head, rcu_callback_t func) +{ + return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); +} +EXPORT_SYMBOL_GPL(call_rcu); /* Maximum number of jiffies to wait before draining a batch. */ #define KFREE_DRAIN_JIFFIES (5 * HZ) @@ -3507,7 +3544,7 @@ void synchronize_rcu(void) if (rcu_gp_is_expedited()) synchronize_rcu_expedited(); else - wait_rcu_gp(call_rcu); + wait_rcu_gp(call_rcu_hurry); return; } @@ -3910,7 +3947,7 @@ static void rcu_barrier_entrain(struct rcu_data *rdp) * if it's fully lazy. */ was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); - WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { atomic_inc(&rcu_state.barrier_cpu_count); @@ -4336,7 +4373,7 @@ void rcutree_migrate_callbacks(int cpu) my_rdp = this_cpu_ptr(&rcu_data); my_rnp = my_rdp->mynode; rcu_nocb_lock(my_rdp); /* irqs already disabled. */ - WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); + WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ /* Leverage recent GPs and set GP for new callbacks. */ needwake = rcu_advance_cbs(my_rnp, rdp) || |