diff options
| author | Mark Brown <[email protected]> | 2015-10-12 18:09:27 +0100 | 
|---|---|---|
| committer | Mark Brown <[email protected]> | 2015-10-12 18:09:27 +0100 | 
| commit | 79828b4fa835f73cdaf4bffa48696abdcbea9d02 (patch) | |
| tree | 5e0fa7156acb75ba603022bc807df8f2fedb97a8 /fs/ext3/inode.c | |
| parent | 721b51fcf91898299d96f4b72cb9434cda29dce6 (diff) | |
| parent | 8c1a9d6323abf0fb1e5dad96cf3f1c783505ea5a (diff) | |
Merge remote-tracking branch 'asoc/fix/rt5645' into asoc-fix-rt5645
Diffstat (limited to 'fs/ext3/inode.c')
| -rw-r--r-- | fs/ext3/inode.c | 3574 | 
1 files changed, 0 insertions, 3574 deletions
diff --git a/fs/ext3/inode.c b/fs/ext3/inode.c deleted file mode 100644 index 6c7e5468a2f8..000000000000 --- a/fs/ext3/inode.c +++ /dev/null @@ -1,3574 +0,0 @@ -/* - *  linux/fs/ext3/inode.c - * - * Copyright (C) 1992, 1993, 1994, 1995 - * Remy Card ([email protected]) - * Laboratoire MASI - Institut Blaise Pascal - * Universite Pierre et Marie Curie (Paris VI) - * - *  from - * - *  linux/fs/minix/inode.c - * - *  Copyright (C) 1991, 1992  Linus Torvalds - * - *  Goal-directed block allocation by Stephen Tweedie - *	([email protected]), 1993, 1998 - *  Big-endian to little-endian byte-swapping/bitmaps by - *        David S. Miller ([email protected]), 1995 - *  64-bit file support on 64-bit platforms by Jakub Jelinek - *	([email protected]) - * - *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 - */ - -#include <linux/highuid.h> -#include <linux/quotaops.h> -#include <linux/writeback.h> -#include <linux/mpage.h> -#include <linux/namei.h> -#include <linux/uio.h> -#include "ext3.h" -#include "xattr.h" -#include "acl.h" - -static int ext3_writepage_trans_blocks(struct inode *inode); -static int ext3_block_truncate_page(struct inode *inode, loff_t from); - -/* - * Test whether an inode is a fast symlink. - */ -static int ext3_inode_is_fast_symlink(struct inode *inode) -{ -	int ea_blocks = EXT3_I(inode)->i_file_acl ? -		(inode->i_sb->s_blocksize >> 9) : 0; - -	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); -} - -/* - * The ext3 forget function must perform a revoke if we are freeing data - * which has been journaled.  Metadata (eg. indirect blocks) must be - * revoked in all cases. - * - * "bh" may be NULL: a metadata block may have been freed from memory - * but there may still be a record of it in the journal, and that record - * still needs to be revoked. - */ -int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, -			struct buffer_head *bh, ext3_fsblk_t blocknr) -{ -	int err; - -	might_sleep(); - -	trace_ext3_forget(inode, is_metadata, blocknr); -	BUFFER_TRACE(bh, "enter"); - -	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " -		  "data mode %lx\n", -		  bh, is_metadata, inode->i_mode, -		  test_opt(inode->i_sb, DATA_FLAGS)); - -	/* Never use the revoke function if we are doing full data -	 * journaling: there is no need to, and a V1 superblock won't -	 * support it.  Otherwise, only skip the revoke on un-journaled -	 * data blocks. */ - -	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || -	    (!is_metadata && !ext3_should_journal_data(inode))) { -		if (bh) { -			BUFFER_TRACE(bh, "call journal_forget"); -			return ext3_journal_forget(handle, bh); -		} -		return 0; -	} - -	/* -	 * data!=journal && (is_metadata || should_journal_data(inode)) -	 */ -	BUFFER_TRACE(bh, "call ext3_journal_revoke"); -	err = ext3_journal_revoke(handle, blocknr, bh); -	if (err) -		ext3_abort(inode->i_sb, __func__, -			   "error %d when attempting revoke", err); -	BUFFER_TRACE(bh, "exit"); -	return err; -} - -/* - * Work out how many blocks we need to proceed with the next chunk of a - * truncate transaction. - */ -static unsigned long blocks_for_truncate(struct inode *inode) -{ -	unsigned long needed; - -	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); - -	/* Give ourselves just enough room to cope with inodes in which -	 * i_blocks is corrupt: we've seen disk corruptions in the past -	 * which resulted in random data in an inode which looked enough -	 * like a regular file for ext3 to try to delete it.  Things -	 * will go a bit crazy if that happens, but at least we should -	 * try not to panic the whole kernel. */ -	if (needed < 2) -		needed = 2; - -	/* But we need to bound the transaction so we don't overflow the -	 * journal. */ -	if (needed > EXT3_MAX_TRANS_DATA) -		needed = EXT3_MAX_TRANS_DATA; - -	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; -} - -/* - * Truncate transactions can be complex and absolutely huge.  So we need to - * be able to restart the transaction at a conventient checkpoint to make - * sure we don't overflow the journal. - * - * start_transaction gets us a new handle for a truncate transaction, - * and extend_transaction tries to extend the existing one a bit.  If - * extend fails, we need to propagate the failure up and restart the - * transaction in the top-level truncate loop. --sct - */ -static handle_t *start_transaction(struct inode *inode) -{ -	handle_t *result; - -	result = ext3_journal_start(inode, blocks_for_truncate(inode)); -	if (!IS_ERR(result)) -		return result; - -	ext3_std_error(inode->i_sb, PTR_ERR(result)); -	return result; -} - -/* - * Try to extend this transaction for the purposes of truncation. - * - * Returns 0 if we managed to create more room.  If we can't create more - * room, and the transaction must be restarted we return 1. - */ -static int try_to_extend_transaction(handle_t *handle, struct inode *inode) -{ -	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) -		return 0; -	if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) -		return 0; -	return 1; -} - -/* - * Restart the transaction associated with *handle.  This does a commit, - * so before we call here everything must be consistently dirtied against - * this transaction. - */ -static int truncate_restart_transaction(handle_t *handle, struct inode *inode) -{ -	int ret; - -	jbd_debug(2, "restarting handle %p\n", handle); -	/* -	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle -	 * At this moment, get_block can be called only for blocks inside -	 * i_size since page cache has been already dropped and writes are -	 * blocked by i_mutex. So we can safely drop the truncate_mutex. -	 */ -	mutex_unlock(&EXT3_I(inode)->truncate_mutex); -	ret = ext3_journal_restart(handle, blocks_for_truncate(inode)); -	mutex_lock(&EXT3_I(inode)->truncate_mutex); -	return ret; -} - -/* - * Called at inode eviction from icache - */ -void ext3_evict_inode (struct inode *inode) -{ -	struct ext3_inode_info *ei = EXT3_I(inode); -	struct ext3_block_alloc_info *rsv; -	handle_t *handle; -	int want_delete = 0; - -	trace_ext3_evict_inode(inode); -	if (!inode->i_nlink && !is_bad_inode(inode)) { -		dquot_initialize(inode); -		want_delete = 1; -	} - -	/* -	 * When journalling data dirty buffers are tracked only in the journal. -	 * So although mm thinks everything is clean and ready for reaping the -	 * inode might still have some pages to write in the running -	 * transaction or waiting to be checkpointed. Thus calling -	 * journal_invalidatepage() (via truncate_inode_pages()) to discard -	 * these buffers can cause data loss. Also even if we did not discard -	 * these buffers, we would have no way to find them after the inode -	 * is reaped and thus user could see stale data if he tries to read -	 * them before the transaction is checkpointed. So be careful and -	 * force everything to disk here... We use ei->i_datasync_tid to -	 * store the newest transaction containing inode's data. -	 * -	 * Note that directories do not have this problem because they don't -	 * use page cache. -	 * -	 * The s_journal check handles the case when ext3_get_journal() fails -	 * and puts the journal inode. -	 */ -	if (inode->i_nlink && ext3_should_journal_data(inode) && -	    EXT3_SB(inode->i_sb)->s_journal && -	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && -	    inode->i_ino != EXT3_JOURNAL_INO) { -		tid_t commit_tid = atomic_read(&ei->i_datasync_tid); -		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal; - -		log_start_commit(journal, commit_tid); -		log_wait_commit(journal, commit_tid); -		filemap_write_and_wait(&inode->i_data); -	} -	truncate_inode_pages_final(&inode->i_data); - -	ext3_discard_reservation(inode); -	rsv = ei->i_block_alloc_info; -	ei->i_block_alloc_info = NULL; -	if (unlikely(rsv)) -		kfree(rsv); - -	if (!want_delete) -		goto no_delete; - -	handle = start_transaction(inode); -	if (IS_ERR(handle)) { -		/* -		 * If we're going to skip the normal cleanup, we still need to -		 * make sure that the in-core orphan linked list is properly -		 * cleaned up. -		 */ -		ext3_orphan_del(NULL, inode); -		goto no_delete; -	} - -	if (IS_SYNC(inode)) -		handle->h_sync = 1; -	inode->i_size = 0; -	if (inode->i_blocks) -		ext3_truncate(inode); -	/* -	 * Kill off the orphan record created when the inode lost the last -	 * link.  Note that ext3_orphan_del() has to be able to cope with the -	 * deletion of a non-existent orphan - ext3_truncate() could -	 * have removed the record. -	 */ -	ext3_orphan_del(handle, inode); -	ei->i_dtime = get_seconds(); - -	/* -	 * One subtle ordering requirement: if anything has gone wrong -	 * (transaction abort, IO errors, whatever), then we can still -	 * do these next steps (the fs will already have been marked as -	 * having errors), but we can't free the inode if the mark_dirty -	 * fails. -	 */ -	if (ext3_mark_inode_dirty(handle, inode)) { -		/* If that failed, just dquot_drop() and be done with that */ -		dquot_drop(inode); -		clear_inode(inode); -	} else { -		ext3_xattr_delete_inode(handle, inode); -		dquot_free_inode(inode); -		dquot_drop(inode); -		clear_inode(inode); -		ext3_free_inode(handle, inode); -	} -	ext3_journal_stop(handle); -	return; -no_delete: -	clear_inode(inode); -	dquot_drop(inode); -} - -typedef struct { -	__le32	*p; -	__le32	key; -	struct buffer_head *bh; -} Indirect; - -static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) -{ -	p->key = *(p->p = v); -	p->bh = bh; -} - -static int verify_chain(Indirect *from, Indirect *to) -{ -	while (from <= to && from->key == *from->p) -		from++; -	return (from > to); -} - -/** - *	ext3_block_to_path - parse the block number into array of offsets - *	@inode: inode in question (we are only interested in its superblock) - *	@i_block: block number to be parsed - *	@offsets: array to store the offsets in - *      @boundary: set this non-zero if the referred-to block is likely to be - *             followed (on disk) by an indirect block. - * - *	To store the locations of file's data ext3 uses a data structure common - *	for UNIX filesystems - tree of pointers anchored in the inode, with - *	data blocks at leaves and indirect blocks in intermediate nodes. - *	This function translates the block number into path in that tree - - *	return value is the path length and @offsets[n] is the offset of - *	pointer to (n+1)th node in the nth one. If @block is out of range - *	(negative or too large) warning is printed and zero returned. - * - *	Note: function doesn't find node addresses, so no IO is needed. All - *	we need to know is the capacity of indirect blocks (taken from the - *	inode->i_sb). - */ - -/* - * Portability note: the last comparison (check that we fit into triple - * indirect block) is spelled differently, because otherwise on an - * architecture with 32-bit longs and 8Kb pages we might get into trouble - * if our filesystem had 8Kb blocks. We might use long long, but that would - * kill us on x86. Oh, well, at least the sign propagation does not matter - - * i_block would have to be negative in the very beginning, so we would not - * get there at all. - */ - -static int ext3_block_to_path(struct inode *inode, -			long i_block, int offsets[4], int *boundary) -{ -	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); -	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); -	const long direct_blocks = EXT3_NDIR_BLOCKS, -		indirect_blocks = ptrs, -		double_blocks = (1 << (ptrs_bits * 2)); -	int n = 0; -	int final = 0; - -	if (i_block < 0) { -		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); -	} else if (i_block < direct_blocks) { -		offsets[n++] = i_block; -		final = direct_blocks; -	} else if ( (i_block -= direct_blocks) < indirect_blocks) { -		offsets[n++] = EXT3_IND_BLOCK; -		offsets[n++] = i_block; -		final = ptrs; -	} else if ((i_block -= indirect_blocks) < double_blocks) { -		offsets[n++] = EXT3_DIND_BLOCK; -		offsets[n++] = i_block >> ptrs_bits; -		offsets[n++] = i_block & (ptrs - 1); -		final = ptrs; -	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { -		offsets[n++] = EXT3_TIND_BLOCK; -		offsets[n++] = i_block >> (ptrs_bits * 2); -		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); -		offsets[n++] = i_block & (ptrs - 1); -		final = ptrs; -	} else { -		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); -	} -	if (boundary) -		*boundary = final - 1 - (i_block & (ptrs - 1)); -	return n; -} - -/** - *	ext3_get_branch - read the chain of indirect blocks leading to data - *	@inode: inode in question - *	@depth: depth of the chain (1 - direct pointer, etc.) - *	@offsets: offsets of pointers in inode/indirect blocks - *	@chain: place to store the result - *	@err: here we store the error value - * - *	Function fills the array of triples <key, p, bh> and returns %NULL - *	if everything went OK or the pointer to the last filled triple - *	(incomplete one) otherwise. Upon the return chain[i].key contains - *	the number of (i+1)-th block in the chain (as it is stored in memory, - *	i.e. little-endian 32-bit), chain[i].p contains the address of that - *	number (it points into struct inode for i==0 and into the bh->b_data - *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect - *	block for i>0 and NULL for i==0. In other words, it holds the block - *	numbers of the chain, addresses they were taken from (and where we can - *	verify that chain did not change) and buffer_heads hosting these - *	numbers. - * - *	Function stops when it stumbles upon zero pointer (absent block) - *		(pointer to last triple returned, *@err == 0) - *	or when it gets an IO error reading an indirect block - *		(ditto, *@err == -EIO) - *	or when it notices that chain had been changed while it was reading - *		(ditto, *@err == -EAGAIN) - *	or when it reads all @depth-1 indirect blocks successfully and finds - *	the whole chain, all way to the data (returns %NULL, *err == 0). - */ -static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, -				 Indirect chain[4], int *err) -{ -	struct super_block *sb = inode->i_sb; -	Indirect *p = chain; -	struct buffer_head *bh; - -	*err = 0; -	/* i_data is not going away, no lock needed */ -	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); -	if (!p->key) -		goto no_block; -	while (--depth) { -		bh = sb_bread(sb, le32_to_cpu(p->key)); -		if (!bh) -			goto failure; -		/* Reader: pointers */ -		if (!verify_chain(chain, p)) -			goto changed; -		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); -		/* Reader: end */ -		if (!p->key) -			goto no_block; -	} -	return NULL; - -changed: -	brelse(bh); -	*err = -EAGAIN; -	goto no_block; -failure: -	*err = -EIO; -no_block: -	return p; -} - -/** - *	ext3_find_near - find a place for allocation with sufficient locality - *	@inode: owner - *	@ind: descriptor of indirect block. - * - *	This function returns the preferred place for block allocation. - *	It is used when heuristic for sequential allocation fails. - *	Rules are: - *	  + if there is a block to the left of our position - allocate near it. - *	  + if pointer will live in indirect block - allocate near that block. - *	  + if pointer will live in inode - allocate in the same - *	    cylinder group. - * - * In the latter case we colour the starting block by the callers PID to - * prevent it from clashing with concurrent allocations for a different inode - * in the same block group.   The PID is used here so that functionally related - * files will be close-by on-disk. - * - *	Caller must make sure that @ind is valid and will stay that way. - */ -static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) -{ -	struct ext3_inode_info *ei = EXT3_I(inode); -	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; -	__le32 *p; -	ext3_fsblk_t bg_start; -	ext3_grpblk_t colour; - -	/* Try to find previous block */ -	for (p = ind->p - 1; p >= start; p--) { -		if (*p) -			return le32_to_cpu(*p); -	} - -	/* No such thing, so let's try location of indirect block */ -	if (ind->bh) -		return ind->bh->b_blocknr; - -	/* -	 * It is going to be referred to from the inode itself? OK, just put it -	 * into the same cylinder group then. -	 */ -	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); -	colour = (current->pid % 16) * -			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); -	return bg_start + colour; -} - -/** - *	ext3_find_goal - find a preferred place for allocation. - *	@inode: owner - *	@block:  block we want - *	@partial: pointer to the last triple within a chain - * - *	Normally this function find the preferred place for block allocation, - *	returns it. - */ - -static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, -				   Indirect *partial) -{ -	struct ext3_block_alloc_info *block_i; - -	block_i =  EXT3_I(inode)->i_block_alloc_info; - -	/* -	 * try the heuristic for sequential allocation, -	 * failing that at least try to get decent locality. -	 */ -	if (block_i && (block == block_i->last_alloc_logical_block + 1) -		&& (block_i->last_alloc_physical_block != 0)) { -		return block_i->last_alloc_physical_block + 1; -	} - -	return ext3_find_near(inode, partial); -} - -/** - *	ext3_blks_to_allocate - Look up the block map and count the number - *	of direct blocks need to be allocated for the given branch. - * - *	@branch: chain of indirect blocks - *	@k: number of blocks need for indirect blocks - *	@blks: number of data blocks to be mapped. - *	@blocks_to_boundary:  the offset in the indirect block - * - *	return the total number of blocks to be allocate, including the - *	direct and indirect blocks. - */ -static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, -		int blocks_to_boundary) -{ -	unsigned long count = 0; - -	/* -	 * Simple case, [t,d]Indirect block(s) has not allocated yet -	 * then it's clear blocks on that path have not allocated -	 */ -	if (k > 0) { -		/* right now we don't handle cross boundary allocation */ -		if (blks < blocks_to_boundary + 1) -			count += blks; -		else -			count += blocks_to_boundary + 1; -		return count; -	} - -	count++; -	while (count < blks && count <= blocks_to_boundary && -		le32_to_cpu(*(branch[0].p + count)) == 0) { -		count++; -	} -	return count; -} - -/** - *	ext3_alloc_blocks - multiple allocate blocks needed for a branch - *	@handle: handle for this transaction - *	@inode: owner - *	@goal: preferred place for allocation - *	@indirect_blks: the number of blocks need to allocate for indirect - *			blocks - *	@blks:	number of blocks need to allocated for direct blocks - *	@new_blocks: on return it will store the new block numbers for - *	the indirect blocks(if needed) and the first direct block, - *	@err: here we store the error value - * - *	return the number of direct blocks allocated - */ -static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, -			ext3_fsblk_t goal, int indirect_blks, int blks, -			ext3_fsblk_t new_blocks[4], int *err) -{ -	int target, i; -	unsigned long count = 0; -	int index = 0; -	ext3_fsblk_t current_block = 0; -	int ret = 0; - -	/* -	 * Here we try to allocate the requested multiple blocks at once, -	 * on a best-effort basis. -	 * To build a branch, we should allocate blocks for -	 * the indirect blocks(if not allocated yet), and at least -	 * the first direct block of this branch.  That's the -	 * minimum number of blocks need to allocate(required) -	 */ -	target = blks + indirect_blks; - -	while (1) { -		count = target; -		/* allocating blocks for indirect blocks and direct blocks */ -		current_block = ext3_new_blocks(handle,inode,goal,&count,err); -		if (*err) -			goto failed_out; - -		target -= count; -		/* allocate blocks for indirect blocks */ -		while (index < indirect_blks && count) { -			new_blocks[index++] = current_block++; -			count--; -		} - -		if (count > 0) -			break; -	} - -	/* save the new block number for the first direct block */ -	new_blocks[index] = current_block; - -	/* total number of blocks allocated for direct blocks */ -	ret = count; -	*err = 0; -	return ret; -failed_out: -	for (i = 0; i <index; i++) -		ext3_free_blocks(handle, inode, new_blocks[i], 1); -	return ret; -} - -/** - *	ext3_alloc_branch - allocate and set up a chain of blocks. - *	@handle: handle for this transaction - *	@inode: owner - *	@indirect_blks: number of allocated indirect blocks - *	@blks: number of allocated direct blocks - *	@goal: preferred place for allocation - *	@offsets: offsets (in the blocks) to store the pointers to next. - *	@branch: place to store the chain in. - * - *	This function allocates blocks, zeroes out all but the last one, - *	links them into chain and (if we are synchronous) writes them to disk. - *	In other words, it prepares a branch that can be spliced onto the - *	inode. It stores the information about that chain in the branch[], in - *	the same format as ext3_get_branch() would do. We are calling it after - *	we had read the existing part of chain and partial points to the last - *	triple of that (one with zero ->key). Upon the exit we have the same - *	picture as after the successful ext3_get_block(), except that in one - *	place chain is disconnected - *branch->p is still zero (we did not - *	set the last link), but branch->key contains the number that should - *	be placed into *branch->p to fill that gap. - * - *	If allocation fails we free all blocks we've allocated (and forget - *	their buffer_heads) and return the error value the from failed - *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain - *	as described above and return 0. - */ -static int ext3_alloc_branch(handle_t *handle, struct inode *inode, -			int indirect_blks, int *blks, ext3_fsblk_t goal, -			int *offsets, Indirect *branch) -{ -	int blocksize = inode->i_sb->s_blocksize; -	int i, n = 0; -	int err = 0; -	struct buffer_head *bh; -	int num; -	ext3_fsblk_t new_blocks[4]; -	ext3_fsblk_t current_block; - -	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, -				*blks, new_blocks, &err); -	if (err) -		return err; - -	branch[0].key = cpu_to_le32(new_blocks[0]); -	/* -	 * metadata blocks and data blocks are allocated. -	 */ -	for (n = 1; n <= indirect_blks;  n++) { -		/* -		 * Get buffer_head for parent block, zero it out -		 * and set the pointer to new one, then send -		 * parent to disk. -		 */ -		bh = sb_getblk(inode->i_sb, new_blocks[n-1]); -		if (unlikely(!bh)) { -			err = -ENOMEM; -			goto failed; -		} -		branch[n].bh = bh; -		lock_buffer(bh); -		BUFFER_TRACE(bh, "call get_create_access"); -		err = ext3_journal_get_create_access(handle, bh); -		if (err) { -			unlock_buffer(bh); -			brelse(bh); -			goto failed; -		} - -		memset(bh->b_data, 0, blocksize); -		branch[n].p = (__le32 *) bh->b_data + offsets[n]; -		branch[n].key = cpu_to_le32(new_blocks[n]); -		*branch[n].p = branch[n].key; -		if ( n == indirect_blks) { -			current_block = new_blocks[n]; -			/* -			 * End of chain, update the last new metablock of -			 * the chain to point to the new allocated -			 * data blocks numbers -			 */ -			for (i=1; i < num; i++) -				*(branch[n].p + i) = cpu_to_le32(++current_block); -		} -		BUFFER_TRACE(bh, "marking uptodate"); -		set_buffer_uptodate(bh); -		unlock_buffer(bh); - -		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); -		err = ext3_journal_dirty_metadata(handle, bh); -		if (err) -			goto failed; -	} -	*blks = num; -	return err; -failed: -	/* Allocation failed, free what we already allocated */ -	for (i = 1; i <= n ; i++) { -		BUFFER_TRACE(branch[i].bh, "call journal_forget"); -		ext3_journal_forget(handle, branch[i].bh); -	} -	for (i = 0; i < indirect_blks; i++) -		ext3_free_blocks(handle, inode, new_blocks[i], 1); - -	ext3_free_blocks(handle, inode, new_blocks[i], num); - -	return err; -} - -/** - * ext3_splice_branch - splice the allocated branch onto inode. - * @handle: handle for this transaction - * @inode: owner - * @block: (logical) number of block we are adding - * @where: location of missing link - * @num:   number of indirect blocks we are adding - * @blks:  number of direct blocks we are adding - * - * This function fills the missing link and does all housekeeping needed in - * inode (->i_blocks, etc.). In case of success we end up with the full - * chain to new block and return 0. - */ -static int ext3_splice_branch(handle_t *handle, struct inode *inode, -			long block, Indirect *where, int num, int blks) -{ -	int i; -	int err = 0; -	struct ext3_block_alloc_info *block_i; -	ext3_fsblk_t current_block; -	struct ext3_inode_info *ei = EXT3_I(inode); -	struct timespec now; - -	block_i = ei->i_block_alloc_info; -	/* -	 * If we're splicing into a [td]indirect block (as opposed to the -	 * inode) then we need to get write access to the [td]indirect block -	 * before the splice. -	 */ -	if (where->bh) { -		BUFFER_TRACE(where->bh, "get_write_access"); -		err = ext3_journal_get_write_access(handle, where->bh); -		if (err) -			goto err_out; -	} -	/* That's it */ - -	*where->p = where->key; - -	/* -	 * Update the host buffer_head or inode to point to more just allocated -	 * direct blocks blocks -	 */ -	if (num == 0 && blks > 1) { -		current_block = le32_to_cpu(where->key) + 1; -		for (i = 1; i < blks; i++) -			*(where->p + i ) = cpu_to_le32(current_block++); -	} - -	/* -	 * update the most recently allocated logical & physical block -	 * in i_block_alloc_info, to assist find the proper goal block for next -	 * allocation -	 */ -	if (block_i) { -		block_i->last_alloc_logical_block = block + blks - 1; -		block_i->last_alloc_physical_block = -				le32_to_cpu(where[num].key) + blks - 1; -	} - -	/* We are done with atomic stuff, now do the rest of housekeeping */ -	now = CURRENT_TIME_SEC; -	if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) { -		inode->i_ctime = now; -		ext3_mark_inode_dirty(handle, inode); -	} -	/* ext3_mark_inode_dirty already updated i_sync_tid */ -	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); - -	/* had we spliced it onto indirect block? */ -	if (where->bh) { -		/* -		 * If we spliced it onto an indirect block, we haven't -		 * altered the inode.  Note however that if it is being spliced -		 * onto an indirect block at the very end of the file (the -		 * file is growing) then we *will* alter the inode to reflect -		 * the new i_size.  But that is not done here - it is done in -		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. -		 */ -		jbd_debug(5, "splicing indirect only\n"); -		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); -		err = ext3_journal_dirty_metadata(handle, where->bh); -		if (err) -			goto err_out; -	} else { -		/* -		 * OK, we spliced it into the inode itself on a direct block. -		 * Inode was dirtied above. -		 */ -		jbd_debug(5, "splicing direct\n"); -	} -	return err; - -err_out: -	for (i = 1; i <= num; i++) { -		BUFFER_TRACE(where[i].bh, "call journal_forget"); -		ext3_journal_forget(handle, where[i].bh); -		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); -	} -	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); - -	return err; -} - -/* - * Allocation strategy is simple: if we have to allocate something, we will - * have to go the whole way to leaf. So let's do it before attaching anything - * to tree, set linkage between the newborn blocks, write them if sync is - * required, recheck the path, free and repeat if check fails, otherwise - * set the last missing link (that will protect us from any truncate-generated - * removals - all blocks on the path are immune now) and possibly force the - * write on the parent block. - * That has a nice additional property: no special recovery from the failed - * allocations is needed - we simply release blocks and do not touch anything - * reachable from inode. - * - * `handle' can be NULL if create == 0. - * - * The BKL may not be held on entry here.  Be sure to take it early. - * return > 0, # of blocks mapped or allocated. - * return = 0, if plain lookup failed. - * return < 0, error case. - */ -int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, -		sector_t iblock, unsigned long maxblocks, -		struct buffer_head *bh_result, -		int create) -{ -	int err = -EIO; -	int offsets[4]; -	Indirect chain[4]; -	Indirect *partial; -	ext3_fsblk_t goal; -	int indirect_blks; -	int blocks_to_boundary = 0; -	int depth; -	struct ext3_inode_info *ei = EXT3_I(inode); -	int count = 0; -	ext3_fsblk_t first_block = 0; - - -	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create); -	J_ASSERT(handle != NULL || create == 0); -	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); - -	if (depth == 0) -		goto out; - -	partial = ext3_get_branch(inode, depth, offsets, chain, &err); - -	/* Simplest case - block found, no allocation needed */ -	if (!partial) { -		first_block = le32_to_cpu(chain[depth - 1].key); -		clear_buffer_new(bh_result); -		count++; -		/*map more blocks*/ -		while (count < maxblocks && count <= blocks_to_boundary) { -			ext3_fsblk_t blk; - -			if (!verify_chain(chain, chain + depth - 1)) { -				/* -				 * Indirect block might be removed by -				 * truncate while we were reading it. -				 * Handling of that case: forget what we've -				 * got now. Flag the err as EAGAIN, so it -				 * will reread. -				 */ -				err = -EAGAIN; -				count = 0; -				break; -			} -			blk = le32_to_cpu(*(chain[depth-1].p + count)); - -			if (blk == first_block + count) -				count++; -			else -				break; -		} -		if (err != -EAGAIN) -			goto got_it; -	} - -	/* Next simple case - plain lookup or failed read of indirect block */ -	if (!create || err == -EIO) -		goto cleanup; - -	/* -	 * Block out ext3_truncate while we alter the tree -	 */ -	mutex_lock(&ei->truncate_mutex); - -	/* -	 * If the indirect block is missing while we are reading -	 * the chain(ext3_get_branch() returns -EAGAIN err), or -	 * if the chain has been changed after we grab the semaphore, -	 * (either because another process truncated this branch, or -	 * another get_block allocated this branch) re-grab the chain to see if -	 * the request block has been allocated or not. -	 * -	 * Since we already block the truncate/other get_block -	 * at this point, we will have the current copy of the chain when we -	 * splice the branch into the tree. -	 */ -	if (err == -EAGAIN || !verify_chain(chain, partial)) { -		while (partial > chain) { -			brelse(partial->bh); -			partial--; -		} -		partial = ext3_get_branch(inode, depth, offsets, chain, &err); -		if (!partial) { -			count++; -			mutex_unlock(&ei->truncate_mutex); -			if (err) -				goto cleanup; -			clear_buffer_new(bh_result); -			goto got_it; -		} -	} - -	/* -	 * Okay, we need to do block allocation.  Lazily initialize the block -	 * allocation info here if necessary -	*/ -	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) -		ext3_init_block_alloc_info(inode); - -	goal = ext3_find_goal(inode, iblock, partial); - -	/* the number of blocks need to allocate for [d,t]indirect blocks */ -	indirect_blks = (chain + depth) - partial - 1; - -	/* -	 * Next look up the indirect map to count the totoal number of -	 * direct blocks to allocate for this branch. -	 */ -	count = ext3_blks_to_allocate(partial, indirect_blks, -					maxblocks, blocks_to_boundary); -	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, -				offsets + (partial - chain), partial); - -	/* -	 * The ext3_splice_branch call will free and forget any buffers -	 * on the new chain if there is a failure, but that risks using -	 * up transaction credits, especially for bitmaps where the -	 * credits cannot be returned.  Can we handle this somehow?  We -	 * may need to return -EAGAIN upwards in the worst case.  --sct -	 */ -	if (!err) -		err = ext3_splice_branch(handle, inode, iblock, -					partial, indirect_blks, count); -	mutex_unlock(&ei->truncate_mutex); -	if (err) -		goto cleanup; - -	set_buffer_new(bh_result); -got_it: -	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); -	if (count > blocks_to_boundary) -		set_buffer_boundary(bh_result); -	err = count; -	/* Clean up and exit */ -	partial = chain + depth - 1;	/* the whole chain */ -cleanup: -	while (partial > chain) { -		BUFFER_TRACE(partial->bh, "call brelse"); -		brelse(partial->bh); -		partial--; -	} -	BUFFER_TRACE(bh_result, "returned"); -out: -	trace_ext3_get_blocks_exit(inode, iblock, -				   depth ? le32_to_cpu(chain[depth-1].key) : 0, -				   count, err); -	return err; -} - -/* Maximum number of blocks we map for direct IO at once. */ -#define DIO_MAX_BLOCKS 4096 -/* - * Number of credits we need for writing DIO_MAX_BLOCKS: - * We need sb + group descriptor + bitmap + inode -> 4 - * For B blocks with A block pointers per block we need: - * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). - * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. - */ -#define DIO_CREDITS 25 - -static int ext3_get_block(struct inode *inode, sector_t iblock, -			struct buffer_head *bh_result, int create) -{ -	handle_t *handle = ext3_journal_current_handle(); -	int ret = 0, started = 0; -	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; - -	if (create && !handle) {	/* Direct IO write... */ -		if (max_blocks > DIO_MAX_BLOCKS) -			max_blocks = DIO_MAX_BLOCKS; -		handle = ext3_journal_start(inode, DIO_CREDITS + -				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb)); -		if (IS_ERR(handle)) { -			ret = PTR_ERR(handle); -			goto out; -		} -		started = 1; -	} - -	ret = ext3_get_blocks_handle(handle, inode, iblock, -					max_blocks, bh_result, create); -	if (ret > 0) { -		bh_result->b_size = (ret << inode->i_blkbits); -		ret = 0; -	} -	if (started) -		ext3_journal_stop(handle); -out: -	return ret; -} - -int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, -		u64 start, u64 len) -{ -	return generic_block_fiemap(inode, fieinfo, start, len, -				    ext3_get_block); -} - -/* - * `handle' can be NULL if create is zero - */ -struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, -				long block, int create, int *errp) -{ -	struct buffer_head dummy; -	int fatal = 0, err; - -	J_ASSERT(handle != NULL || create == 0); - -	dummy.b_state = 0; -	dummy.b_blocknr = -1000; -	buffer_trace_init(&dummy.b_history); -	err = ext3_get_blocks_handle(handle, inode, block, 1, -					&dummy, create); -	/* -	 * ext3_get_blocks_handle() returns number of blocks -	 * mapped. 0 in case of a HOLE. -	 */ -	if (err > 0) { -		WARN_ON(err > 1); -		err = 0; -	} -	*errp = err; -	if (!err && buffer_mapped(&dummy)) { -		struct buffer_head *bh; -		bh = sb_getblk(inode->i_sb, dummy.b_blocknr); -		if (unlikely(!bh)) { -			*errp = -ENOMEM; -			goto err; -		} -		if (buffer_new(&dummy)) { -			J_ASSERT(create != 0); -			J_ASSERT(handle != NULL); - -			/* -			 * Now that we do not always journal data, we should -			 * keep in mind whether this should always journal the -			 * new buffer as metadata.  For now, regular file -			 * writes use ext3_get_block instead, so it's not a -			 * problem. -			 */ -			lock_buffer(bh); -			BUFFER_TRACE(bh, "call get_create_access"); -			fatal = ext3_journal_get_create_access(handle, bh); -			if (!fatal && !buffer_uptodate(bh)) { -				memset(bh->b_data,0,inode->i_sb->s_blocksize); -				set_buffer_uptodate(bh); -			} -			unlock_buffer(bh); -			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); -			err = ext3_journal_dirty_metadata(handle, bh); -			if (!fatal) -				fatal = err; -		} else { -			BUFFER_TRACE(bh, "not a new buffer"); -		} -		if (fatal) { -			*errp = fatal; -			brelse(bh); -			bh = NULL; -		} -		return bh; -	} -err: -	return NULL; -} - -struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, -			       int block, int create, int *err) -{ -	struct buffer_head * bh; - -	bh = ext3_getblk(handle, inode, block, create, err); -	if (!bh) -		return bh; -	if (bh_uptodate_or_lock(bh)) -		return bh; -	get_bh(bh); -	bh->b_end_io = end_buffer_read_sync; -	submit_bh(READ | REQ_META | REQ_PRIO, bh); -	wait_on_buffer(bh); -	if (buffer_uptodate(bh)) -		return bh; -	put_bh(bh); -	*err = -EIO; -	return NULL; -} - -static int walk_page_buffers(	handle_t *handle, -				struct buffer_head *head, -				unsigned from, -				unsigned to, -				int *partial, -				int (*fn)(	handle_t *handle, -						struct buffer_head *bh)) -{ -	struct buffer_head *bh; -	unsigned block_start, block_end; -	unsigned blocksize = head->b_size; -	int err, ret = 0; -	struct buffer_head *next; - -	for (	bh = head, block_start = 0; -		ret == 0 && (bh != head || !block_start); -		block_start = block_end, bh = next) -	{ -		next = bh->b_this_page; -		block_end = block_start + blocksize; -		if (block_end <= from || block_start >= to) { -			if (partial && !buffer_uptodate(bh)) -				*partial = 1; -			continue; -		} -		err = (*fn)(handle, bh); -		if (!ret) -			ret = err; -	} -	return ret; -} - -/* - * To preserve ordering, it is essential that the hole instantiation and - * the data write be encapsulated in a single transaction.  We cannot - * close off a transaction and start a new one between the ext3_get_block() - * and the commit_write().  So doing the journal_start at the start of - * prepare_write() is the right place. - * - * Also, this function can nest inside ext3_writepage() -> - * block_write_full_page(). In that case, we *know* that ext3_writepage() - * has generated enough buffer credits to do the whole page.  So we won't - * block on the journal in that case, which is good, because the caller may - * be PF_MEMALLOC. - * - * By accident, ext3 can be reentered when a transaction is open via - * quota file writes.  If we were to commit the transaction while thus - * reentered, there can be a deadlock - we would be holding a quota - * lock, and the commit would never complete if another thread had a - * transaction open and was blocking on the quota lock - a ranking - * violation. - * - * So what we do is to rely on the fact that journal_stop/journal_start - * will _not_ run commit under these circumstances because handle->h_ref - * is elevated.  We'll still have enough credits for the tiny quotafile - * write. - */ -static int do_journal_get_write_access(handle_t *handle, -					struct buffer_head *bh) -{ -	int dirty = buffer_dirty(bh); -	int ret; - -	if (!buffer_mapped(bh) || buffer_freed(bh)) -		return 0; -	/* -	 * __block_prepare_write() could have dirtied some buffers. Clean -	 * the dirty bit as jbd2_journal_get_write_access() could complain -	 * otherwise about fs integrity issues. Setting of the dirty bit -	 * by __block_prepare_write() isn't a real problem here as we clear -	 * the bit before releasing a page lock and thus writeback cannot -	 * ever write the buffer. -	 */ -	if (dirty) -		clear_buffer_dirty(bh); -	ret = ext3_journal_get_write_access(handle, bh); -	if (!ret && dirty) -		ret = ext3_journal_dirty_metadata(handle, bh); -	return ret; -} - -/* - * Truncate blocks that were not used by write. We have to truncate the - * pagecache as well so that corresponding buffers get properly unmapped. - */ -static void ext3_truncate_failed_write(struct inode *inode) -{ -	truncate_inode_pages(inode->i_mapping, inode->i_size); -	ext3_truncate(inode); -} - -/* - * Truncate blocks that were not used by direct IO write. We have to zero out - * the last file block as well because direct IO might have written to it. - */ -static void ext3_truncate_failed_direct_write(struct inode *inode) -{ -	ext3_block_truncate_page(inode, inode->i_size); -	ext3_truncate(inode); -} - -static int ext3_write_begin(struct file *file, struct address_space *mapping, -				loff_t pos, unsigned len, unsigned flags, -				struct page **pagep, void **fsdata) -{ -	struct inode *inode = mapping->host; -	int ret; -	handle_t *handle; -	int retries = 0; -	struct page *page; -	pgoff_t index; -	unsigned from, to; -	/* Reserve one block more for addition to orphan list in case -	 * we allocate blocks but write fails for some reason */ -	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1; - -	trace_ext3_write_begin(inode, pos, len, flags); - -	index = pos >> PAGE_CACHE_SHIFT; -	from = pos & (PAGE_CACHE_SIZE - 1); -	to = from + len; - -retry: -	page = grab_cache_page_write_begin(mapping, index, flags); -	if (!page) -		return -ENOMEM; -	*pagep = page; - -	handle = ext3_journal_start(inode, needed_blocks); -	if (IS_ERR(handle)) { -		unlock_page(page); -		page_cache_release(page); -		ret = PTR_ERR(handle); -		goto out; -	} -	ret = __block_write_begin(page, pos, len, ext3_get_block); -	if (ret) -		goto write_begin_failed; - -	if (ext3_should_journal_data(inode)) { -		ret = walk_page_buffers(handle, page_buffers(page), -				from, to, NULL, do_journal_get_write_access); -	} -write_begin_failed: -	if (ret) { -		/* -		 * block_write_begin may have instantiated a few blocks -		 * outside i_size.  Trim these off again. Don't need -		 * i_size_read because we hold i_mutex. -		 * -		 * Add inode to orphan list in case we crash before truncate -		 * finishes. Do this only if ext3_can_truncate() agrees so -		 * that orphan processing code is happy. -		 */ -		if (pos + len > inode->i_size && ext3_can_truncate(inode)) -			ext3_orphan_add(handle, inode); -		ext3_journal_stop(handle); -		unlock_page(page); -		page_cache_release(page); -		if (pos + len > inode->i_size) -			ext3_truncate_failed_write(inode); -	} -	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) -		goto retry; -out: -	return ret; -} - - -int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) -{ -	int err = journal_dirty_data(handle, bh); -	if (err) -		ext3_journal_abort_handle(__func__, __func__, -						bh, handle, err); -	return err; -} - -/* For ordered writepage and write_end functions */ -static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) -{ -	/* -	 * Write could have mapped the buffer but it didn't copy the data in -	 * yet. So avoid filing such buffer into a transaction. -	 */ -	if (buffer_mapped(bh) && buffer_uptodate(bh)) -		return ext3_journal_dirty_data(handle, bh); -	return 0; -} - -/* For write_end() in data=journal mode */ -static int write_end_fn(handle_t *handle, struct buffer_head *bh) -{ -	if (!buffer_mapped(bh) || buffer_freed(bh)) -		return 0; -	set_buffer_uptodate(bh); -	return ext3_journal_dirty_metadata(handle, bh); -} - -/* - * This is nasty and subtle: ext3_write_begin() could have allocated blocks - * for the whole page but later we failed to copy the data in. Update inode - * size according to what we managed to copy. The rest is going to be - * truncated in write_end function. - */ -static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied) -{ -	/* What matters to us is i_disksize. We don't write i_size anywhere */ -	if (pos + copied > inode->i_size) -		i_size_write(inode, pos + copied); -	if (pos + copied > EXT3_I(inode)->i_disksize) { -		EXT3_I(inode)->i_disksize = pos + copied; -		mark_inode_dirty(inode); -	} -} - -/* - * We need to pick up the new inode size which generic_commit_write gave us - * `file' can be NULL - eg, when called from page_symlink(). - * - * ext3 never places buffers on inode->i_mapping->private_list.  metadata - * buffers are managed internally. - */ -static int ext3_ordered_write_end(struct file *file, -				struct address_space *mapping, -				loff_t pos, unsigned len, unsigned copied, -				struct page *page, void *fsdata) -{ -	handle_t *handle = ext3_journal_current_handle(); -	struct inode *inode = file->f_mapping->host; -	unsigned from, to; -	int ret = 0, ret2; - -	trace_ext3_ordered_write_end(inode, pos, len, copied); -	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); - -	from = pos & (PAGE_CACHE_SIZE - 1); -	to = from + copied; -	ret = walk_page_buffers(handle, page_buffers(page), -		from, to, NULL, journal_dirty_data_fn); - -	if (ret == 0) -		update_file_sizes(inode, pos, copied); -	/* -	 * There may be allocated blocks outside of i_size because -	 * we failed to copy some data. Prepare for truncate. -	 */ -	if (pos + len > inode->i_size && ext3_can_truncate(inode)) -		ext3_orphan_add(handle, inode); -	ret2 = ext3_journal_stop(handle); -	if (!ret) -		ret = ret2; -	unlock_page(page); -	page_cache_release(page); - -	if (pos + len > inode->i_size) -		ext3_truncate_failed_write(inode); -	return ret ? ret : copied; -} - -static int ext3_writeback_write_end(struct file *file, -				struct address_space *mapping, -				loff_t pos, unsigned len, unsigned copied, -				struct page *page, void *fsdata) -{ -	handle_t *handle = ext3_journal_current_handle(); -	struct inode *inode = file->f_mapping->host; -	int ret; - -	trace_ext3_writeback_write_end(inode, pos, len, copied); -	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); -	update_file_sizes(inode, pos, copied); -	/* -	 * There may be allocated blocks outside of i_size because -	 * we failed to copy some data. Prepare for truncate. -	 */ -	if (pos + len > inode->i_size && ext3_can_truncate(inode)) -		ext3_orphan_add(handle, inode); -	ret = ext3_journal_stop(handle); -	unlock_page(page); -	page_cache_release(page); - -	if (pos + len > inode->i_size) -		ext3_truncate_failed_write(inode); -	return ret ? ret : copied; -} - -static int ext3_journalled_write_end(struct file *file, -				struct address_space *mapping, -				loff_t pos, unsigned len, unsigned copied, -				struct page *page, void *fsdata) -{ -	handle_t *handle = ext3_journal_current_handle(); -	struct inode *inode = mapping->host; -	struct ext3_inode_info *ei = EXT3_I(inode); -	int ret = 0, ret2; -	int partial = 0; -	unsigned from, to; - -	trace_ext3_journalled_write_end(inode, pos, len, copied); -	from = pos & (PAGE_CACHE_SIZE - 1); -	to = from + len; - -	if (copied < len) { -		if (!PageUptodate(page)) -			copied = 0; -		page_zero_new_buffers(page, from + copied, to); -		to = from + copied; -	} - -	ret = walk_page_buffers(handle, page_buffers(page), from, -				to, &partial, write_end_fn); -	if (!partial) -		SetPageUptodate(page); - -	if (pos + copied > inode->i_size) -		i_size_write(inode, pos + copied); -	/* -	 * There may be allocated blocks outside of i_size because -	 * we failed to copy some data. Prepare for truncate. -	 */ -	if (pos + len > inode->i_size && ext3_can_truncate(inode)) -		ext3_orphan_add(handle, inode); -	ext3_set_inode_state(inode, EXT3_STATE_JDATA); -	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); -	if (inode->i_size > ei->i_disksize) { -		ei->i_disksize = inode->i_size; -		ret2 = ext3_mark_inode_dirty(handle, inode); -		if (!ret) -			ret = ret2; -	} - -	ret2 = ext3_journal_stop(handle); -	if (!ret) -		ret = ret2; -	unlock_page(page); -	page_cache_release(page); - -	if (pos + len > inode->i_size) -		ext3_truncate_failed_write(inode); -	return ret ? ret : copied; -} - -/* - * bmap() is special.  It gets used by applications such as lilo and by - * the swapper to find the on-disk block of a specific piece of data. - * - * Naturally, this is dangerous if the block concerned is still in the - * journal.  If somebody makes a swapfile on an ext3 data-journaling - * filesystem and enables swap, then they may get a nasty shock when the - * data getting swapped to that swapfile suddenly gets overwritten by - * the original zero's written out previously to the journal and - * awaiting writeback in the kernel's buffer cache. - * - * So, if we see any bmap calls here on a modified, data-journaled file, - * take extra steps to flush any blocks which might be in the cache. - */ -static sector_t ext3_bmap(struct address_space *mapping, sector_t block) -{ -	struct inode *inode = mapping->host; -	journal_t *journal; -	int err; - -	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) { -		/* -		 * This is a REALLY heavyweight approach, but the use of -		 * bmap on dirty files is expected to be extremely rare: -		 * only if we run lilo or swapon on a freshly made file -		 * do we expect this to happen. -		 * -		 * (bmap requires CAP_SYS_RAWIO so this does not -		 * represent an unprivileged user DOS attack --- we'd be -		 * in trouble if mortal users could trigger this path at -		 * will.) -		 * -		 * NB. EXT3_STATE_JDATA is not set on files other than -		 * regular files.  If somebody wants to bmap a directory -		 * or symlink and gets confused because the buffer -		 * hasn't yet been flushed to disk, they deserve -		 * everything they get. -		 */ - -		ext3_clear_inode_state(inode, EXT3_STATE_JDATA); -		journal = EXT3_JOURNAL(inode); -		journal_lock_updates(journal); -		err = journal_flush(journal); -		journal_unlock_updates(journal); - -		if (err) -			return 0; -	} - -	return generic_block_bmap(mapping,block,ext3_get_block); -} - -static int bget_one(handle_t *handle, struct buffer_head *bh) -{ -	get_bh(bh); -	return 0; -} - -static int bput_one(handle_t *handle, struct buffer_head *bh) -{ -	put_bh(bh); -	return 0; -} - -static int buffer_unmapped(handle_t *handle, struct buffer_head *bh) -{ -	return !buffer_mapped(bh); -} - -/* - * Note that whenever we need to map blocks we start a transaction even if - * we're not journalling data.  This is to preserve ordering: any hole - * instantiation within __block_write_full_page -> ext3_get_block() should be - * journalled along with the data so we don't crash and then get metadata which - * refers to old data. - * - * In all journalling modes block_write_full_page() will start the I/O. - * - * We don't honour synchronous mounts for writepage().  That would be - * disastrous.  Any write() or metadata operation will sync the fs for - * us. - */ -static int ext3_ordered_writepage(struct page *page, -				struct writeback_control *wbc) -{ -	struct inode *inode = page->mapping->host; -	struct buffer_head *page_bufs; -	handle_t *handle = NULL; -	int ret = 0; -	int err; - -	J_ASSERT(PageLocked(page)); -	/* -	 * We don't want to warn for emergency remount. The condition is -	 * ordered to avoid dereferencing inode->i_sb in non-error case to -	 * avoid slow-downs. -	 */ -	WARN_ON_ONCE(IS_RDONLY(inode) && -		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); - -	/* -	 * We give up here if we're reentered, because it might be for a -	 * different filesystem. -	 */ -	if (ext3_journal_current_handle()) -		goto out_fail; - -	trace_ext3_ordered_writepage(page); -	if (!page_has_buffers(page)) { -		create_empty_buffers(page, inode->i_sb->s_blocksize, -				(1 << BH_Dirty)|(1 << BH_Uptodate)); -		page_bufs = page_buffers(page); -	} else { -		page_bufs = page_buffers(page); -		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE, -				       NULL, buffer_unmapped)) { -			/* Provide NULL get_block() to catch bugs if buffers -			 * weren't really mapped */ -			return block_write_full_page(page, NULL, wbc); -		} -	} -	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); - -	if (IS_ERR(handle)) { -		ret = PTR_ERR(handle); -		goto out_fail; -	} - -	walk_page_buffers(handle, page_bufs, 0, -			PAGE_CACHE_SIZE, NULL, bget_one); - -	ret = block_write_full_page(page, ext3_get_block, wbc); - -	/* -	 * The page can become unlocked at any point now, and -	 * truncate can then come in and change things.  So we -	 * can't touch *page from now on.  But *page_bufs is -	 * safe due to elevated refcount. -	 */ - -	/* -	 * And attach them to the current transaction.  But only if -	 * block_write_full_page() succeeded.  Otherwise they are unmapped, -	 * and generally junk. -	 */ -	if (ret == 0) -		ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, -					NULL, journal_dirty_data_fn); -	walk_page_buffers(handle, page_bufs, 0, -			PAGE_CACHE_SIZE, NULL, bput_one); -	err = ext3_journal_stop(handle); -	if (!ret) -		ret = err; -	return ret; - -out_fail: -	redirty_page_for_writepage(wbc, page); -	unlock_page(page); -	return ret; -} - -static int ext3_writeback_writepage(struct page *page, -				struct writeback_control *wbc) -{ -	struct inode *inode = page->mapping->host; -	handle_t *handle = NULL; -	int ret = 0; -	int err; - -	J_ASSERT(PageLocked(page)); -	/* -	 * We don't want to warn for emergency remount. The condition is -	 * ordered to avoid dereferencing inode->i_sb in non-error case to -	 * avoid slow-downs. -	 */ -	WARN_ON_ONCE(IS_RDONLY(inode) && -		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); - -	if (ext3_journal_current_handle()) -		goto out_fail; - -	trace_ext3_writeback_writepage(page); -	if (page_has_buffers(page)) { -		if (!walk_page_buffers(NULL, page_buffers(page), 0, -				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) { -			/* Provide NULL get_block() to catch bugs if buffers -			 * weren't really mapped */ -			return block_write_full_page(page, NULL, wbc); -		} -	} - -	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); -	if (IS_ERR(handle)) { -		ret = PTR_ERR(handle); -		goto out_fail; -	} - -	ret = block_write_full_page(page, ext3_get_block, wbc); - -	err = ext3_journal_stop(handle); -	if (!ret) -		ret = err; -	return ret; - -out_fail: -	redirty_page_for_writepage(wbc, page); -	unlock_page(page); -	return ret; -} - -static int ext3_journalled_writepage(struct page *page, -				struct writeback_control *wbc) -{ -	struct inode *inode = page->mapping->host; -	handle_t *handle = NULL; -	int ret = 0; -	int err; - -	J_ASSERT(PageLocked(page)); -	/* -	 * We don't want to warn for emergency remount. The condition is -	 * ordered to avoid dereferencing inode->i_sb in non-error case to -	 * avoid slow-downs. -	 */ -	WARN_ON_ONCE(IS_RDONLY(inode) && -		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); - -	trace_ext3_journalled_writepage(page); -	if (!page_has_buffers(page) || PageChecked(page)) { -		if (ext3_journal_current_handle()) -			goto no_write; - -		handle = ext3_journal_start(inode, -					    ext3_writepage_trans_blocks(inode)); -		if (IS_ERR(handle)) { -			ret = PTR_ERR(handle); -			goto no_write; -		} -		/* -		 * It's mmapped pagecache.  Add buffers and journal it.  There -		 * doesn't seem much point in redirtying the page here. -		 */ -		ClearPageChecked(page); -		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE, -					  ext3_get_block); -		if (ret != 0) { -			ext3_journal_stop(handle); -			goto out_unlock; -		} -		ret = walk_page_buffers(handle, page_buffers(page), 0, -			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); - -		err = walk_page_buffers(handle, page_buffers(page), 0, -				PAGE_CACHE_SIZE, NULL, write_end_fn); -		if (ret == 0) -			ret = err; -		ext3_set_inode_state(inode, EXT3_STATE_JDATA); -		atomic_set(&EXT3_I(inode)->i_datasync_tid, -			   handle->h_transaction->t_tid); -		unlock_page(page); -		err = ext3_journal_stop(handle); -		if (!ret) -			ret = err; -	} else { -		/* -		 * It is a page full of checkpoint-mode buffers. Go and write -		 * them. They should have been already mapped when they went -		 * to the journal so provide NULL get_block function to catch -		 * errors. -		 */ -		ret = block_write_full_page(page, NULL, wbc); -	} -out: -	return ret; - -no_write: -	redirty_page_for_writepage(wbc, page); -out_unlock: -	unlock_page(page); -	goto out; -} - -static int ext3_readpage(struct file *file, struct page *page) -{ -	trace_ext3_readpage(page); -	return mpage_readpage(page, ext3_get_block); -} - -static int -ext3_readpages(struct file *file, struct address_space *mapping, -		struct list_head *pages, unsigned nr_pages) -{ -	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); -} - -static void ext3_invalidatepage(struct page *page, unsigned int offset, -				unsigned int length) -{ -	journal_t *journal = EXT3_JOURNAL(page->mapping->host); - -	trace_ext3_invalidatepage(page, offset, length); - -	/* -	 * If it's a full truncate we just forget about the pending dirtying -	 */ -	if (offset == 0 && length == PAGE_CACHE_SIZE) -		ClearPageChecked(page); - -	journal_invalidatepage(journal, page, offset, length); -} - -static int ext3_releasepage(struct page *page, gfp_t wait) -{ -	journal_t *journal = EXT3_JOURNAL(page->mapping->host); - -	trace_ext3_releasepage(page); -	WARN_ON(PageChecked(page)); -	if (!page_has_buffers(page)) -		return 0; -	return journal_try_to_free_buffers(journal, page, wait); -} - -/* - * If the O_DIRECT write will extend the file then add this inode to the - * orphan list.  So recovery will truncate it back to the original size - * if the machine crashes during the write. - * - * If the O_DIRECT write is intantiating holes inside i_size and the machine - * crashes then stale disk data _may_ be exposed inside the file. But current - * VFS code falls back into buffered path in that case so we are safe. - */ -static ssize_t ext3_direct_IO(struct kiocb *iocb, struct iov_iter *iter, -			      loff_t offset) -{ -	struct file *file = iocb->ki_filp; -	struct inode *inode = file->f_mapping->host; -	struct ext3_inode_info *ei = EXT3_I(inode); -	handle_t *handle; -	ssize_t ret; -	int orphan = 0; -	size_t count = iov_iter_count(iter); -	int retries = 0; - -	trace_ext3_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); - -	if (iov_iter_rw(iter) == WRITE) { -		loff_t final_size = offset + count; - -		if (final_size > inode->i_size) { -			/* Credits for sb + inode write */ -			handle = ext3_journal_start(inode, 2); -			if (IS_ERR(handle)) { -				ret = PTR_ERR(handle); -				goto out; -			} -			ret = ext3_orphan_add(handle, inode); -			if (ret) { -				ext3_journal_stop(handle); -				goto out; -			} -			orphan = 1; -			ei->i_disksize = inode->i_size; -			ext3_journal_stop(handle); -		} -	} - -retry: -	ret = blockdev_direct_IO(iocb, inode, iter, offset, ext3_get_block); -	/* -	 * In case of error extending write may have instantiated a few -	 * blocks outside i_size. Trim these off again. -	 */ -	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { -		loff_t isize = i_size_read(inode); -		loff_t end = offset + count; - -		if (end > isize) -			ext3_truncate_failed_direct_write(inode); -	} -	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) -		goto retry; - -	if (orphan) { -		int err; - -		/* Credits for sb + inode write */ -		handle = ext3_journal_start(inode, 2); -		if (IS_ERR(handle)) { -			/* This is really bad luck. We've written the data -			 * but cannot extend i_size. Truncate allocated blocks -			 * and pretend the write failed... */ -			ext3_truncate_failed_direct_write(inode); -			ret = PTR_ERR(handle); -			if (inode->i_nlink) -				ext3_orphan_del(NULL, inode); -			goto out; -		} -		if (inode->i_nlink) -			ext3_orphan_del(handle, inode); -		if (ret > 0) { -			loff_t end = offset + ret; -			if (end > inode->i_size) { -				ei->i_disksize = end; -				i_size_write(inode, end); -				/* -				 * We're going to return a positive `ret' -				 * here due to non-zero-length I/O, so there's -				 * no way of reporting error returns from -				 * ext3_mark_inode_dirty() to userspace.  So -				 * ignore it. -				 */ -				ext3_mark_inode_dirty(handle, inode); -			} -		} -		err = ext3_journal_stop(handle); -		if (ret == 0) -			ret = err; -	} -out: -	trace_ext3_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); -	return ret; -} - -/* - * Pages can be marked dirty completely asynchronously from ext3's journalling - * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do - * much here because ->set_page_dirty is called under VFS locks.  The page is - * not necessarily locked. - * - * We cannot just dirty the page and leave attached buffers clean, because the - * buffers' dirty state is "definitive".  We cannot just set the buffers dirty - * or jbddirty because all the journalling code will explode. - * - * So what we do is to mark the page "pending dirty" and next time writepage - * is called, propagate that into the buffers appropriately. - */ -static int ext3_journalled_set_page_dirty(struct page *page) -{ -	SetPageChecked(page); -	return __set_page_dirty_nobuffers(page); -} - -static const struct address_space_operations ext3_ordered_aops = { -	.readpage		= ext3_readpage, -	.readpages		= ext3_readpages, -	.writepage		= ext3_ordered_writepage, -	.write_begin		= ext3_write_begin, -	.write_end		= ext3_ordered_write_end, -	.bmap			= ext3_bmap, -	.invalidatepage		= ext3_invalidatepage, -	.releasepage		= ext3_releasepage, -	.direct_IO		= ext3_direct_IO, -	.migratepage		= buffer_migrate_page, -	.is_partially_uptodate  = block_is_partially_uptodate, -	.is_dirty_writeback	= buffer_check_dirty_writeback, -	.error_remove_page	= generic_error_remove_page, -}; - -static const struct address_space_operations ext3_writeback_aops = { -	.readpage		= ext3_readpage, -	.readpages		= ext3_readpages, -	.writepage		= ext3_writeback_writepage, -	.write_begin		= ext3_write_begin, -	.write_end		= ext3_writeback_write_end, -	.bmap			= ext3_bmap, -	.invalidatepage		= ext3_invalidatepage, -	.releasepage		= ext3_releasepage, -	.direct_IO		= ext3_direct_IO, -	.migratepage		= buffer_migrate_page, -	.is_partially_uptodate  = block_is_partially_uptodate, -	.error_remove_page	= generic_error_remove_page, -}; - -static const struct address_space_operations ext3_journalled_aops = { -	.readpage		= ext3_readpage, -	.readpages		= ext3_readpages, -	.writepage		= ext3_journalled_writepage, -	.write_begin		= ext3_write_begin, -	.write_end		= ext3_journalled_write_end, -	.set_page_dirty		= ext3_journalled_set_page_dirty, -	.bmap			= ext3_bmap, -	.invalidatepage		= ext3_invalidatepage, -	.releasepage		= ext3_releasepage, -	.is_partially_uptodate  = block_is_partially_uptodate, -	.error_remove_page	= generic_error_remove_page, -}; - -void ext3_set_aops(struct inode *inode) -{ -	if (ext3_should_order_data(inode)) -		inode->i_mapping->a_ops = &ext3_ordered_aops; -	else if (ext3_should_writeback_data(inode)) -		inode->i_mapping->a_ops = &ext3_writeback_aops; -	else -		inode->i_mapping->a_ops = &ext3_journalled_aops; -} - -/* - * ext3_block_truncate_page() zeroes out a mapping from file offset `from' - * up to the end of the block which corresponds to `from'. - * This required during truncate. We need to physically zero the tail end - * of that block so it doesn't yield old data if the file is later grown. - */ -static int ext3_block_truncate_page(struct inode *inode, loff_t from) -{ -	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; -	unsigned offset = from & (PAGE_CACHE_SIZE - 1); -	unsigned blocksize, iblock, length, pos; -	struct page *page; -	handle_t *handle = NULL; -	struct buffer_head *bh; -	int err = 0; - -	/* Truncated on block boundary - nothing to do */ -	blocksize = inode->i_sb->s_blocksize; -	if ((from & (blocksize - 1)) == 0) -		return 0; - -	page = grab_cache_page(inode->i_mapping, index); -	if (!page) -		return -ENOMEM; -	length = blocksize - (offset & (blocksize - 1)); -	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); - -	if (!page_has_buffers(page)) -		create_empty_buffers(page, blocksize, 0); - -	/* Find the buffer that contains "offset" */ -	bh = page_buffers(page); -	pos = blocksize; -	while (offset >= pos) { -		bh = bh->b_this_page; -		iblock++; -		pos += blocksize; -	} - -	err = 0; -	if (buffer_freed(bh)) { -		BUFFER_TRACE(bh, "freed: skip"); -		goto unlock; -	} - -	if (!buffer_mapped(bh)) { -		BUFFER_TRACE(bh, "unmapped"); -		ext3_get_block(inode, iblock, bh, 0); -		/* unmapped? It's a hole - nothing to do */ -		if (!buffer_mapped(bh)) { -			BUFFER_TRACE(bh, "still unmapped"); -			goto unlock; -		} -	} - -	/* Ok, it's mapped. Make sure it's up-to-date */ -	if (PageUptodate(page)) -		set_buffer_uptodate(bh); - -	if (!bh_uptodate_or_lock(bh)) { -		err = bh_submit_read(bh); -		/* Uhhuh. Read error. Complain and punt. */ -		if (err) -			goto unlock; -	} - -	/* data=writeback mode doesn't need transaction to zero-out data */ -	if (!ext3_should_writeback_data(inode)) { -		/* We journal at most one block */ -		handle = ext3_journal_start(inode, 1); -		if (IS_ERR(handle)) { -			clear_highpage(page); -			flush_dcache_page(page); -			err = PTR_ERR(handle); -			goto unlock; -		} -	} - -	if (ext3_should_journal_data(inode)) { -		BUFFER_TRACE(bh, "get write access"); -		err = ext3_journal_get_write_access(handle, bh); -		if (err) -			goto stop; -	} - -	zero_user(page, offset, length); -	BUFFER_TRACE(bh, "zeroed end of block"); - -	err = 0; -	if (ext3_should_journal_data(inode)) { -		err = ext3_journal_dirty_metadata(handle, bh); -	} else { -		if (ext3_should_order_data(inode)) -			err = ext3_journal_dirty_data(handle, bh); -		mark_buffer_dirty(bh); -	} -stop: -	if (handle) -		ext3_journal_stop(handle); - -unlock: -	unlock_page(page); -	page_cache_release(page); -	return err; -} - -/* - * Probably it should be a library function... search for first non-zero word - * or memcmp with zero_page, whatever is better for particular architecture. - * Linus? - */ -static inline int all_zeroes(__le32 *p, __le32 *q) -{ -	while (p < q) -		if (*p++) -			return 0; -	return 1; -} - -/** - *	ext3_find_shared - find the indirect blocks for partial truncation. - *	@inode:	  inode in question - *	@depth:	  depth of the affected branch - *	@offsets: offsets of pointers in that branch (see ext3_block_to_path) - *	@chain:	  place to store the pointers to partial indirect blocks - *	@top:	  place to the (detached) top of branch - * - *	This is a helper function used by ext3_truncate(). - * - *	When we do truncate() we may have to clean the ends of several - *	indirect blocks but leave the blocks themselves alive. Block is - *	partially truncated if some data below the new i_size is referred - *	from it (and it is on the path to the first completely truncated - *	data block, indeed).  We have to free the top of that path along - *	with everything to the right of the path. Since no allocation - *	past the truncation point is possible until ext3_truncate() - *	finishes, we may safely do the latter, but top of branch may - *	require special attention - pageout below the truncation point - *	might try to populate it. - * - *	We atomically detach the top of branch from the tree, store the - *	block number of its root in *@top, pointers to buffer_heads of - *	partially truncated blocks - in @chain[].bh and pointers to - *	their last elements that should not be removed - in - *	@chain[].p. Return value is the pointer to last filled element - *	of @chain. - * - *	The work left to caller to do the actual freeing of subtrees: - *		a) free the subtree starting from *@top - *		b) free the subtrees whose roots are stored in - *			(@chain[i].p+1 .. end of @chain[i].bh->b_data) - *		c) free the subtrees growing from the inode past the @chain[0]. - *			(no partially truncated stuff there).  */ - -static Indirect *ext3_find_shared(struct inode *inode, int depth, -			int offsets[4], Indirect chain[4], __le32 *top) -{ -	Indirect *partial, *p; -	int k, err; - -	*top = 0; -	/* Make k index the deepest non-null offset + 1 */ -	for (k = depth; k > 1 && !offsets[k-1]; k--) -		; -	partial = ext3_get_branch(inode, k, offsets, chain, &err); -	/* Writer: pointers */ -	if (!partial) -		partial = chain + k-1; -	/* -	 * If the branch acquired continuation since we've looked at it - -	 * fine, it should all survive and (new) top doesn't belong to us. -	 */ -	if (!partial->key && *partial->p) -		/* Writer: end */ -		goto no_top; -	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) -		; -	/* -	 * OK, we've found the last block that must survive. The rest of our -	 * branch should be detached before unlocking. However, if that rest -	 * of branch is all ours and does not grow immediately from the inode -	 * it's easier to cheat and just decrement partial->p. -	 */ -	if (p == chain + k - 1 && p > chain) { -		p->p--; -	} else { -		*top = *p->p; -		/* Nope, don't do this in ext3.  Must leave the tree intact */ -#if 0 -		*p->p = 0; -#endif -	} -	/* Writer: end */ - -	while(partial > p) { -		brelse(partial->bh); -		partial--; -	} -no_top: -	return partial; -} - -/* - * Zero a number of block pointers in either an inode or an indirect block. - * If we restart the transaction we must again get write access to the - * indirect block for further modification. - * - * We release `count' blocks on disk, but (last - first) may be greater - * than `count' because there can be holes in there. - */ -static void ext3_clear_blocks(handle_t *handle, struct inode *inode, -		struct buffer_head *bh, ext3_fsblk_t block_to_free, -		unsigned long count, __le32 *first, __le32 *last) -{ -	__le32 *p; -	if (try_to_extend_transaction(handle, inode)) { -		if (bh) { -			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); -			if (ext3_journal_dirty_metadata(handle, bh)) -				return; -		} -		ext3_mark_inode_dirty(handle, inode); -		truncate_restart_transaction(handle, inode); -		if (bh) { -			BUFFER_TRACE(bh, "retaking write access"); -			if (ext3_journal_get_write_access(handle, bh)) -				return; -		} -	} - -	/* -	 * Any buffers which are on the journal will be in memory. We find -	 * them on the hash table so journal_revoke() will run journal_forget() -	 * on them.  We've already detached each block from the file, so -	 * bforget() in journal_forget() should be safe. -	 * -	 * AKPM: turn on bforget in journal_forget()!!! -	 */ -	for (p = first; p < last; p++) { -		u32 nr = le32_to_cpu(*p); -		if (nr) { -			struct buffer_head *bh; - -			*p = 0; -			bh = sb_find_get_block(inode->i_sb, nr); -			ext3_forget(handle, 0, inode, bh, nr); -		} -	} - -	ext3_free_blocks(handle, inode, block_to_free, count); -} - -/** - * ext3_free_data - free a list of data blocks - * @handle:	handle for this transaction - * @inode:	inode we are dealing with - * @this_bh:	indirect buffer_head which contains *@first and *@last - * @first:	array of block numbers - * @last:	points immediately past the end of array - * - * We are freeing all blocks referred from that array (numbers are stored as - * little-endian 32-bit) and updating @inode->i_blocks appropriately. - * - * We accumulate contiguous runs of blocks to free.  Conveniently, if these - * blocks are contiguous then releasing them at one time will only affect one - * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't - * actually use a lot of journal space. - * - * @this_bh will be %NULL if @first and @last point into the inode's direct - * block pointers. - */ -static void ext3_free_data(handle_t *handle, struct inode *inode, -			   struct buffer_head *this_bh, -			   __le32 *first, __le32 *last) -{ -	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */ -	unsigned long count = 0;	    /* Number of blocks in the run */ -	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind -					       corresponding to -					       block_to_free */ -	ext3_fsblk_t nr;		    /* Current block # */ -	__le32 *p;			    /* Pointer into inode/ind -					       for current block */ -	int err; - -	if (this_bh) {				/* For indirect block */ -		BUFFER_TRACE(this_bh, "get_write_access"); -		err = ext3_journal_get_write_access(handle, this_bh); -		/* Important: if we can't update the indirect pointers -		 * to the blocks, we can't free them. */ -		if (err) -			return; -	} - -	for (p = first; p < last; p++) { -		nr = le32_to_cpu(*p); -		if (nr) { -			/* accumulate blocks to free if they're contiguous */ -			if (count == 0) { -				block_to_free = nr; -				block_to_free_p = p; -				count = 1; -			} else if (nr == block_to_free + count) { -				count++; -			} else { -				ext3_clear_blocks(handle, inode, this_bh, -						  block_to_free, -						  count, block_to_free_p, p); -				block_to_free = nr; -				block_to_free_p = p; -				count = 1; -			} -		} -	} - -	if (count > 0) -		ext3_clear_blocks(handle, inode, this_bh, block_to_free, -				  count, block_to_free_p, p); - -	if (this_bh) { -		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); - -		/* -		 * The buffer head should have an attached journal head at this -		 * point. However, if the data is corrupted and an indirect -		 * block pointed to itself, it would have been detached when -		 * the block was cleared. Check for this instead of OOPSing. -		 */ -		if (bh2jh(this_bh)) -			ext3_journal_dirty_metadata(handle, this_bh); -		else -			ext3_error(inode->i_sb, "ext3_free_data", -				   "circular indirect block detected, " -				   "inode=%lu, block=%llu", -				   inode->i_ino, -				   (unsigned long long)this_bh->b_blocknr); -	} -} - -/** - *	ext3_free_branches - free an array of branches - *	@handle: JBD handle for this transaction - *	@inode:	inode we are dealing with - *	@parent_bh: the buffer_head which contains *@first and *@last - *	@first:	array of block numbers - *	@last:	pointer immediately past the end of array - *	@depth:	depth of the branches to free - * - *	We are freeing all blocks referred from these branches (numbers are - *	stored as little-endian 32-bit) and updating @inode->i_blocks - *	appropriately. - */ -static void ext3_free_branches(handle_t *handle, struct inode *inode, -			       struct buffer_head *parent_bh, -			       __le32 *first, __le32 *last, int depth) -{ -	ext3_fsblk_t nr; -	__le32 *p; - -	if (is_handle_aborted(handle)) -		return; - -	if (depth--) { -		struct buffer_head *bh; -		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); -		p = last; -		while (--p >= first) { -			nr = le32_to_cpu(*p); -			if (!nr) -				continue;		/* A hole */ - -			/* Go read the buffer for the next level down */ -			bh = sb_bread(inode->i_sb, nr); - -			/* -			 * A read failure? Report error and clear slot -			 * (should be rare). -			 */ -			if (!bh) { -				ext3_error(inode->i_sb, "ext3_free_branches", -					   "Read failure, inode=%lu, block="E3FSBLK, -					   inode->i_ino, nr); -				continue; -			} - -			/* This zaps the entire block.  Bottom up. */ -			BUFFER_TRACE(bh, "free child branches"); -			ext3_free_branches(handle, inode, bh, -					   (__le32*)bh->b_data, -					   (__le32*)bh->b_data + addr_per_block, -					   depth); - -			/* -			 * Everything below this this pointer has been -			 * released.  Now let this top-of-subtree go. -			 * -			 * We want the freeing of this indirect block to be -			 * atomic in the journal with the updating of the -			 * bitmap block which owns it.  So make some room in -			 * the journal. -			 * -			 * We zero the parent pointer *after* freeing its -			 * pointee in the bitmaps, so if extend_transaction() -			 * for some reason fails to put the bitmap changes and -			 * the release into the same transaction, recovery -			 * will merely complain about releasing a free block, -			 * rather than leaking blocks. -			 */ -			if (is_handle_aborted(handle)) -				return; -			if (try_to_extend_transaction(handle, inode)) { -				ext3_mark_inode_dirty(handle, inode); -				truncate_restart_transaction(handle, inode); -			} - -			/* -			 * We've probably journalled the indirect block several -			 * times during the truncate.  But it's no longer -			 * needed and we now drop it from the transaction via -			 * journal_revoke(). -			 * -			 * That's easy if it's exclusively part of this -			 * transaction.  But if it's part of the committing -			 * transaction then journal_forget() will simply -			 * brelse() it.  That means that if the underlying -			 * block is reallocated in ext3_get_block(), -			 * unmap_underlying_metadata() will find this block -			 * and will try to get rid of it.  damn, damn. Thus -			 * we don't allow a block to be reallocated until -			 * a transaction freeing it has fully committed. -			 * -			 * We also have to make sure journal replay after a -			 * crash does not overwrite non-journaled data blocks -			 * with old metadata when the block got reallocated for -			 * data.  Thus we have to store a revoke record for a -			 * block in the same transaction in which we free the -			 * block. -			 */ -			ext3_forget(handle, 1, inode, bh, bh->b_blocknr); - -			ext3_free_blocks(handle, inode, nr, 1); - -			if (parent_bh) { -				/* -				 * The block which we have just freed is -				 * pointed to by an indirect block: journal it -				 */ -				BUFFER_TRACE(parent_bh, "get_write_access"); -				if (!ext3_journal_get_write_access(handle, -								   parent_bh)){ -					*p = 0; -					BUFFER_TRACE(parent_bh, -					"call ext3_journal_dirty_metadata"); -					ext3_journal_dirty_metadata(handle, -								    parent_bh); -				} -			} -		} -	} else { -		/* We have reached the bottom of the tree. */ -		BUFFER_TRACE(parent_bh, "free data blocks"); -		ext3_free_data(handle, inode, parent_bh, first, last); -	} -} - -int ext3_can_truncate(struct inode *inode) -{ -	if (S_ISREG(inode->i_mode)) -		return 1; -	if (S_ISDIR(inode->i_mode)) -		return 1; -	if (S_ISLNK(inode->i_mode)) -		return !ext3_inode_is_fast_symlink(inode); -	return 0; -} - -/* - * ext3_truncate() - * - * We block out ext3_get_block() block instantiations across the entire - * transaction, and VFS/VM ensures that ext3_truncate() cannot run - * simultaneously on behalf of the same inode. - * - * As we work through the truncate and commit bits of it to the journal there - * is one core, guiding principle: the file's tree must always be consistent on - * disk.  We must be able to restart the truncate after a crash. - * - * The file's tree may be transiently inconsistent in memory (although it - * probably isn't), but whenever we close off and commit a journal transaction, - * the contents of (the filesystem + the journal) must be consistent and - * restartable.  It's pretty simple, really: bottom up, right to left (although - * left-to-right works OK too). - * - * Note that at recovery time, journal replay occurs *before* the restart of - * truncate against the orphan inode list. - * - * The committed inode has the new, desired i_size (which is the same as - * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see - * that this inode's truncate did not complete and it will again call - * ext3_truncate() to have another go.  So there will be instantiated blocks - * to the right of the truncation point in a crashed ext3 filesystem.  But - * that's fine - as long as they are linked from the inode, the post-crash - * ext3_truncate() run will find them and release them. - */ -void ext3_truncate(struct inode *inode) -{ -	handle_t *handle; -	struct ext3_inode_info *ei = EXT3_I(inode); -	__le32 *i_data = ei->i_data; -	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); -	int offsets[4]; -	Indirect chain[4]; -	Indirect *partial; -	__le32 nr = 0; -	int n; -	long last_block; -	unsigned blocksize = inode->i_sb->s_blocksize; - -	trace_ext3_truncate_enter(inode); - -	if (!ext3_can_truncate(inode)) -		goto out_notrans; - -	if (inode->i_size == 0 && ext3_should_writeback_data(inode)) -		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE); - -	handle = start_transaction(inode); -	if (IS_ERR(handle)) -		goto out_notrans; - -	last_block = (inode->i_size + blocksize-1) -					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb); -	n = ext3_block_to_path(inode, last_block, offsets, NULL); -	if (n == 0) -		goto out_stop;	/* error */ - -	/* -	 * OK.  This truncate is going to happen.  We add the inode to the -	 * orphan list, so that if this truncate spans multiple transactions, -	 * and we crash, we will resume the truncate when the filesystem -	 * recovers.  It also marks the inode dirty, to catch the new size. -	 * -	 * Implication: the file must always be in a sane, consistent -	 * truncatable state while each transaction commits. -	 */ -	if (ext3_orphan_add(handle, inode)) -		goto out_stop; - -	/* -	 * The orphan list entry will now protect us from any crash which -	 * occurs before the truncate completes, so it is now safe to propagate -	 * the new, shorter inode size (held for now in i_size) into the -	 * on-disk inode. We do this via i_disksize, which is the value which -	 * ext3 *really* writes onto the disk inode. -	 */ -	ei->i_disksize = inode->i_size; - -	/* -	 * From here we block out all ext3_get_block() callers who want to -	 * modify the block allocation tree. -	 */ -	mutex_lock(&ei->truncate_mutex); - -	if (n == 1) {		/* direct blocks */ -		ext3_free_data(handle, inode, NULL, i_data+offsets[0], -			       i_data + EXT3_NDIR_BLOCKS); -		goto do_indirects; -	} - -	partial = ext3_find_shared(inode, n, offsets, chain, &nr); -	/* Kill the top of shared branch (not detached) */ -	if (nr) { -		if (partial == chain) { -			/* Shared branch grows from the inode */ -			ext3_free_branches(handle, inode, NULL, -					   &nr, &nr+1, (chain+n-1) - partial); -			*partial->p = 0; -			/* -			 * We mark the inode dirty prior to restart, -			 * and prior to stop.  No need for it here. -			 */ -		} else { -			/* Shared branch grows from an indirect block */ -			ext3_free_branches(handle, inode, partial->bh, -					partial->p, -					partial->p+1, (chain+n-1) - partial); -		} -	} -	/* Clear the ends of indirect blocks on the shared branch */ -	while (partial > chain) { -		ext3_free_branches(handle, inode, partial->bh, partial->p + 1, -				   (__le32*)partial->bh->b_data+addr_per_block, -				   (chain+n-1) - partial); -		BUFFER_TRACE(partial->bh, "call brelse"); -		brelse (partial->bh); -		partial--; -	} -do_indirects: -	/* Kill the remaining (whole) subtrees */ -	switch (offsets[0]) { -	default: -		nr = i_data[EXT3_IND_BLOCK]; -		if (nr) { -			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); -			i_data[EXT3_IND_BLOCK] = 0; -		} -	case EXT3_IND_BLOCK: -		nr = i_data[EXT3_DIND_BLOCK]; -		if (nr) { -			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); -			i_data[EXT3_DIND_BLOCK] = 0; -		} -	case EXT3_DIND_BLOCK: -		nr = i_data[EXT3_TIND_BLOCK]; -		if (nr) { -			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); -			i_data[EXT3_TIND_BLOCK] = 0; -		} -	case EXT3_TIND_BLOCK: -		; -	} - -	ext3_discard_reservation(inode); - -	mutex_unlock(&ei->truncate_mutex); -	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; -	ext3_mark_inode_dirty(handle, inode); - -	/* -	 * In a multi-transaction truncate, we only make the final transaction -	 * synchronous -	 */ -	if (IS_SYNC(inode)) -		handle->h_sync = 1; -out_stop: -	/* -	 * If this was a simple ftruncate(), and the file will remain alive -	 * then we need to clear up the orphan record which we created above. -	 * However, if this was a real unlink then we were called by -	 * ext3_evict_inode(), and we allow that function to clean up the -	 * orphan info for us. -	 */ -	if (inode->i_nlink) -		ext3_orphan_del(handle, inode); - -	ext3_journal_stop(handle); -	trace_ext3_truncate_exit(inode); -	return; -out_notrans: -	/* -	 * Delete the inode from orphan list so that it doesn't stay there -	 * forever and trigger assertion on umount. -	 */ -	if (inode->i_nlink) -		ext3_orphan_del(NULL, inode); -	trace_ext3_truncate_exit(inode); -} - -static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, -		unsigned long ino, struct ext3_iloc *iloc) -{ -	unsigned long block_group; -	unsigned long offset; -	ext3_fsblk_t block; -	struct ext3_group_desc *gdp; - -	if (!ext3_valid_inum(sb, ino)) { -		/* -		 * This error is already checked for in namei.c unless we are -		 * looking at an NFS filehandle, in which case no error -		 * report is needed -		 */ -		return 0; -	} - -	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); -	gdp = ext3_get_group_desc(sb, block_group, NULL); -	if (!gdp) -		return 0; -	/* -	 * Figure out the offset within the block group inode table -	 */ -	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * -		EXT3_INODE_SIZE(sb); -	block = le32_to_cpu(gdp->bg_inode_table) + -		(offset >> EXT3_BLOCK_SIZE_BITS(sb)); - -	iloc->block_group = block_group; -	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); -	return block; -} - -/* - * ext3_get_inode_loc returns with an extra refcount against the inode's - * underlying buffer_head on success. If 'in_mem' is true, we have all - * data in memory that is needed to recreate the on-disk version of this - * inode. - */ -static int __ext3_get_inode_loc(struct inode *inode, -				struct ext3_iloc *iloc, int in_mem) -{ -	ext3_fsblk_t block; -	struct buffer_head *bh; - -	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); -	if (!block) -		return -EIO; - -	bh = sb_getblk(inode->i_sb, block); -	if (unlikely(!bh)) { -		ext3_error (inode->i_sb, "ext3_get_inode_loc", -				"unable to read inode block - " -				"inode=%lu, block="E3FSBLK, -				 inode->i_ino, block); -		return -ENOMEM; -	} -	if (!buffer_uptodate(bh)) { -		lock_buffer(bh); - -		/* -		 * If the buffer has the write error flag, we have failed -		 * to write out another inode in the same block.  In this -		 * case, we don't have to read the block because we may -		 * read the old inode data successfully. -		 */ -		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) -			set_buffer_uptodate(bh); - -		if (buffer_uptodate(bh)) { -			/* someone brought it uptodate while we waited */ -			unlock_buffer(bh); -			goto has_buffer; -		} - -		/* -		 * If we have all information of the inode in memory and this -		 * is the only valid inode in the block, we need not read the -		 * block. -		 */ -		if (in_mem) { -			struct buffer_head *bitmap_bh; -			struct ext3_group_desc *desc; -			int inodes_per_buffer; -			int inode_offset, i; -			int block_group; -			int start; - -			block_group = (inode->i_ino - 1) / -					EXT3_INODES_PER_GROUP(inode->i_sb); -			inodes_per_buffer = bh->b_size / -				EXT3_INODE_SIZE(inode->i_sb); -			inode_offset = ((inode->i_ino - 1) % -					EXT3_INODES_PER_GROUP(inode->i_sb)); -			start = inode_offset & ~(inodes_per_buffer - 1); - -			/* Is the inode bitmap in cache? */ -			desc = ext3_get_group_desc(inode->i_sb, -						block_group, NULL); -			if (!desc) -				goto make_io; - -			bitmap_bh = sb_getblk(inode->i_sb, -					le32_to_cpu(desc->bg_inode_bitmap)); -			if (unlikely(!bitmap_bh)) -				goto make_io; - -			/* -			 * If the inode bitmap isn't in cache then the -			 * optimisation may end up performing two reads instead -			 * of one, so skip it. -			 */ -			if (!buffer_uptodate(bitmap_bh)) { -				brelse(bitmap_bh); -				goto make_io; -			} -			for (i = start; i < start + inodes_per_buffer; i++) { -				if (i == inode_offset) -					continue; -				if (ext3_test_bit(i, bitmap_bh->b_data)) -					break; -			} -			brelse(bitmap_bh); -			if (i == start + inodes_per_buffer) { -				/* all other inodes are free, so skip I/O */ -				memset(bh->b_data, 0, bh->b_size); -				set_buffer_uptodate(bh); -				unlock_buffer(bh); -				goto has_buffer; -			} -		} - -make_io: -		/* -		 * There are other valid inodes in the buffer, this inode -		 * has in-inode xattrs, or we don't have this inode in memory. -		 * Read the block from disk. -		 */ -		trace_ext3_load_inode(inode); -		get_bh(bh); -		bh->b_end_io = end_buffer_read_sync; -		submit_bh(READ | REQ_META | REQ_PRIO, bh); -		wait_on_buffer(bh); -		if (!buffer_uptodate(bh)) { -			ext3_error(inode->i_sb, "ext3_get_inode_loc", -					"unable to read inode block - " -					"inode=%lu, block="E3FSBLK, -					inode->i_ino, block); -			brelse(bh); -			return -EIO; -		} -	} -has_buffer: -	iloc->bh = bh; -	return 0; -} - -int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) -{ -	/* We have all inode data except xattrs in memory here. */ -	return __ext3_get_inode_loc(inode, iloc, -		!ext3_test_inode_state(inode, EXT3_STATE_XATTR)); -} - -void ext3_set_inode_flags(struct inode *inode) -{ -	unsigned int flags = EXT3_I(inode)->i_flags; - -	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); -	if (flags & EXT3_SYNC_FL) -		inode->i_flags |= S_SYNC; -	if (flags & EXT3_APPEND_FL) -		inode->i_flags |= S_APPEND; -	if (flags & EXT3_IMMUTABLE_FL) -		inode->i_flags |= S_IMMUTABLE; -	if (flags & EXT3_NOATIME_FL) -		inode->i_flags |= S_NOATIME; -	if (flags & EXT3_DIRSYNC_FL) -		inode->i_flags |= S_DIRSYNC; -} - -/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */ -void ext3_get_inode_flags(struct ext3_inode_info *ei) -{ -	unsigned int flags = ei->vfs_inode.i_flags; - -	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL| -			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL); -	if (flags & S_SYNC) -		ei->i_flags |= EXT3_SYNC_FL; -	if (flags & S_APPEND) -		ei->i_flags |= EXT3_APPEND_FL; -	if (flags & S_IMMUTABLE) -		ei->i_flags |= EXT3_IMMUTABLE_FL; -	if (flags & S_NOATIME) -		ei->i_flags |= EXT3_NOATIME_FL; -	if (flags & S_DIRSYNC) -		ei->i_flags |= EXT3_DIRSYNC_FL; -} - -struct inode *ext3_iget(struct super_block *sb, unsigned long ino) -{ -	struct ext3_iloc iloc; -	struct ext3_inode *raw_inode; -	struct ext3_inode_info *ei; -	struct buffer_head *bh; -	struct inode *inode; -	journal_t *journal = EXT3_SB(sb)->s_journal; -	transaction_t *transaction; -	long ret; -	int block; -	uid_t i_uid; -	gid_t i_gid; - -	inode = iget_locked(sb, ino); -	if (!inode) -		return ERR_PTR(-ENOMEM); -	if (!(inode->i_state & I_NEW)) -		return inode; - -	ei = EXT3_I(inode); -	ei->i_block_alloc_info = NULL; - -	ret = __ext3_get_inode_loc(inode, &iloc, 0); -	if (ret < 0) -		goto bad_inode; -	bh = iloc.bh; -	raw_inode = ext3_raw_inode(&iloc); -	inode->i_mode = le16_to_cpu(raw_inode->i_mode); -	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); -	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); -	if(!(test_opt (inode->i_sb, NO_UID32))) { -		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; -		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; -	} -	i_uid_write(inode, i_uid); -	i_gid_write(inode, i_gid); -	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); -	inode->i_size = le32_to_cpu(raw_inode->i_size); -	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); -	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); -	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); -	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; - -	ei->i_state_flags = 0; -	ei->i_dir_start_lookup = 0; -	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); -	/* We now have enough fields to check if the inode was active or not. -	 * This is needed because nfsd might try to access dead inodes -	 * the test is that same one that e2fsck uses -	 * NeilBrown 1999oct15 -	 */ -	if (inode->i_nlink == 0) { -		if (inode->i_mode == 0 || -		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { -			/* this inode is deleted */ -			brelse (bh); -			ret = -ESTALE; -			goto bad_inode; -		} -		/* The only unlinked inodes we let through here have -		 * valid i_mode and are being read by the orphan -		 * recovery code: that's fine, we're about to complete -		 * the process of deleting those. */ -	} -	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); -	ei->i_flags = le32_to_cpu(raw_inode->i_flags); -#ifdef EXT3_FRAGMENTS -	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); -	ei->i_frag_no = raw_inode->i_frag; -	ei->i_frag_size = raw_inode->i_fsize; -#endif -	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); -	if (!S_ISREG(inode->i_mode)) { -		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); -	} else { -		inode->i_size |= -			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; -	} -	ei->i_disksize = inode->i_size; -	inode->i_generation = le32_to_cpu(raw_inode->i_generation); -	ei->i_block_group = iloc.block_group; -	/* -	 * NOTE! The in-memory inode i_data array is in little-endian order -	 * even on big-endian machines: we do NOT byteswap the block numbers! -	 */ -	for (block = 0; block < EXT3_N_BLOCKS; block++) -		ei->i_data[block] = raw_inode->i_block[block]; -	INIT_LIST_HEAD(&ei->i_orphan); - -	/* -	 * Set transaction id's of transactions that have to be committed -	 * to finish f[data]sync. We set them to currently running transaction -	 * as we cannot be sure that the inode or some of its metadata isn't -	 * part of the transaction - the inode could have been reclaimed and -	 * now it is reread from disk. -	 */ -	if (journal) { -		tid_t tid; - -		spin_lock(&journal->j_state_lock); -		if (journal->j_running_transaction) -			transaction = journal->j_running_transaction; -		else -			transaction = journal->j_committing_transaction; -		if (transaction) -			tid = transaction->t_tid; -		else -			tid = journal->j_commit_sequence; -		spin_unlock(&journal->j_state_lock); -		atomic_set(&ei->i_sync_tid, tid); -		atomic_set(&ei->i_datasync_tid, tid); -	} - -	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && -	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { -		/* -		 * When mke2fs creates big inodes it does not zero out -		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, -		 * so ignore those first few inodes. -		 */ -		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); -		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > -		    EXT3_INODE_SIZE(inode->i_sb)) { -			brelse (bh); -			ret = -EIO; -			goto bad_inode; -		} -		if (ei->i_extra_isize == 0) { -			/* The extra space is currently unused. Use it. */ -			ei->i_extra_isize = sizeof(struct ext3_inode) - -					    EXT3_GOOD_OLD_INODE_SIZE; -		} else { -			__le32 *magic = (void *)raw_inode + -					EXT3_GOOD_OLD_INODE_SIZE + -					ei->i_extra_isize; -			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) -				 ext3_set_inode_state(inode, EXT3_STATE_XATTR); -		} -	} else -		ei->i_extra_isize = 0; - -	if (S_ISREG(inode->i_mode)) { -		inode->i_op = &ext3_file_inode_operations; -		inode->i_fop = &ext3_file_operations; -		ext3_set_aops(inode); -	} else if (S_ISDIR(inode->i_mode)) { -		inode->i_op = &ext3_dir_inode_operations; -		inode->i_fop = &ext3_dir_operations; -	} else if (S_ISLNK(inode->i_mode)) { -		if (ext3_inode_is_fast_symlink(inode)) { -			inode->i_op = &ext3_fast_symlink_inode_operations; -			nd_terminate_link(ei->i_data, inode->i_size, -				sizeof(ei->i_data) - 1); -			inode->i_link = (char *)ei->i_data; -		} else { -			inode->i_op = &ext3_symlink_inode_operations; -			ext3_set_aops(inode); -		} -	} else { -		inode->i_op = &ext3_special_inode_operations; -		if (raw_inode->i_block[0]) -			init_special_inode(inode, inode->i_mode, -			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); -		else -			init_special_inode(inode, inode->i_mode, -			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); -	} -	brelse (iloc.bh); -	ext3_set_inode_flags(inode); -	unlock_new_inode(inode); -	return inode; - -bad_inode: -	iget_failed(inode); -	return ERR_PTR(ret); -} - -/* - * Post the struct inode info into an on-disk inode location in the - * buffer-cache.  This gobbles the caller's reference to the - * buffer_head in the inode location struct. - * - * The caller must have write access to iloc->bh. - */ -static int ext3_do_update_inode(handle_t *handle, -				struct inode *inode, -				struct ext3_iloc *iloc) -{ -	struct ext3_inode *raw_inode = ext3_raw_inode(iloc); -	struct ext3_inode_info *ei = EXT3_I(inode); -	struct buffer_head *bh = iloc->bh; -	int err = 0, rc, block; -	int need_datasync = 0; -	__le32 disksize; -	uid_t i_uid; -	gid_t i_gid; - -again: -	/* we can't allow multiple procs in here at once, its a bit racey */ -	lock_buffer(bh); - -	/* For fields not not tracking in the in-memory inode, -	 * initialise them to zero for new inodes. */ -	if (ext3_test_inode_state(inode, EXT3_STATE_NEW)) -		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); - -	ext3_get_inode_flags(ei); -	raw_inode->i_mode = cpu_to_le16(inode->i_mode); -	i_uid = i_uid_read(inode); -	i_gid = i_gid_read(inode); -	if(!(test_opt(inode->i_sb, NO_UID32))) { -		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); -		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); -/* - * Fix up interoperability with old kernels. Otherwise, old inodes get - * re-used with the upper 16 bits of the uid/gid intact - */ -		if(!ei->i_dtime) { -			raw_inode->i_uid_high = -				cpu_to_le16(high_16_bits(i_uid)); -			raw_inode->i_gid_high = -				cpu_to_le16(high_16_bits(i_gid)); -		} else { -			raw_inode->i_uid_high = 0; -			raw_inode->i_gid_high = 0; -		} -	} else { -		raw_inode->i_uid_low = -			cpu_to_le16(fs_high2lowuid(i_uid)); -		raw_inode->i_gid_low = -			cpu_to_le16(fs_high2lowgid(i_gid)); -		raw_inode->i_uid_high = 0; -		raw_inode->i_gid_high = 0; -	} -	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); -	disksize = cpu_to_le32(ei->i_disksize); -	if (disksize != raw_inode->i_size) { -		need_datasync = 1; -		raw_inode->i_size = disksize; -	} -	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); -	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); -	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); -	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); -	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); -	raw_inode->i_flags = cpu_to_le32(ei->i_flags); -#ifdef EXT3_FRAGMENTS -	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); -	raw_inode->i_frag = ei->i_frag_no; -	raw_inode->i_fsize = ei->i_frag_size; -#endif -	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); -	if (!S_ISREG(inode->i_mode)) { -		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); -	} else { -		disksize = cpu_to_le32(ei->i_disksize >> 32); -		if (disksize != raw_inode->i_size_high) { -			raw_inode->i_size_high = disksize; -			need_datasync = 1; -		} -		if (ei->i_disksize > 0x7fffffffULL) { -			struct super_block *sb = inode->i_sb; -			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, -					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || -			    EXT3_SB(sb)->s_es->s_rev_level == -					cpu_to_le32(EXT3_GOOD_OLD_REV)) { -			       /* If this is the first large file -				* created, add a flag to the superblock. -				*/ -				unlock_buffer(bh); -				err = ext3_journal_get_write_access(handle, -						EXT3_SB(sb)->s_sbh); -				if (err) -					goto out_brelse; - -				ext3_update_dynamic_rev(sb); -				EXT3_SET_RO_COMPAT_FEATURE(sb, -					EXT3_FEATURE_RO_COMPAT_LARGE_FILE); -				handle->h_sync = 1; -				err = ext3_journal_dirty_metadata(handle, -						EXT3_SB(sb)->s_sbh); -				/* get our lock and start over */ -				goto again; -			} -		} -	} -	raw_inode->i_generation = cpu_to_le32(inode->i_generation); -	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { -		if (old_valid_dev(inode->i_rdev)) { -			raw_inode->i_block[0] = -				cpu_to_le32(old_encode_dev(inode->i_rdev)); -			raw_inode->i_block[1] = 0; -		} else { -			raw_inode->i_block[0] = 0; -			raw_inode->i_block[1] = -				cpu_to_le32(new_encode_dev(inode->i_rdev)); -			raw_inode->i_block[2] = 0; -		} -	} else for (block = 0; block < EXT3_N_BLOCKS; block++) -		raw_inode->i_block[block] = ei->i_data[block]; - -	if (ei->i_extra_isize) -		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); - -	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); -	unlock_buffer(bh); -	rc = ext3_journal_dirty_metadata(handle, bh); -	if (!err) -		err = rc; -	ext3_clear_inode_state(inode, EXT3_STATE_NEW); - -	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid); -	if (need_datasync) -		atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); -out_brelse: -	brelse (bh); -	ext3_std_error(inode->i_sb, err); -	return err; -} - -/* - * ext3_write_inode() - * - * We are called from a few places: - * - * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. - *   Here, there will be no transaction running. We wait for any running - *   transaction to commit. - * - * - Within flush work (for sys_sync(), kupdate and such). - *   We wait on commit, if told to. - * - * - Within iput_final() -> write_inode_now() - *   We wait on commit, if told to. - * - * In all cases it is actually safe for us to return without doing anything, - * because the inode has been copied into a raw inode buffer in - * ext3_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL - * writeback. - * - * Note that we are absolutely dependent upon all inode dirtiers doing the - * right thing: they *must* call mark_inode_dirty() after dirtying info in - * which we are interested. - * - * It would be a bug for them to not do this.  The code: - * - *	mark_inode_dirty(inode) - *	stuff(); - *	inode->i_size = expr; - * - * is in error because write_inode() could occur while `stuff()' is running, - * and the new i_size will be lost.  Plus the inode will no longer be on the - * superblock's dirty inode list. - */ -int ext3_write_inode(struct inode *inode, struct writeback_control *wbc) -{ -	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) -		return 0; - -	if (ext3_journal_current_handle()) { -		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); -		dump_stack(); -		return -EIO; -	} - -	/* -	 * No need to force transaction in WB_SYNC_NONE mode. Also -	 * ext3_sync_fs() will force the commit after everything is -	 * written. -	 */ -	if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) -		return 0; - -	return ext3_force_commit(inode->i_sb); -} - -/* - * ext3_setattr() - * - * Called from notify_change. - * - * We want to trap VFS attempts to truncate the file as soon as - * possible.  In particular, we want to make sure that when the VFS - * shrinks i_size, we put the inode on the orphan list and modify - * i_disksize immediately, so that during the subsequent flushing of - * dirty pages and freeing of disk blocks, we can guarantee that any - * commit will leave the blocks being flushed in an unused state on - * disk.  (On recovery, the inode will get truncated and the blocks will - * be freed, so we have a strong guarantee that no future commit will - * leave these blocks visible to the user.) - * - * Called with inode->sem down. - */ -int ext3_setattr(struct dentry *dentry, struct iattr *attr) -{ -	struct inode *inode = d_inode(dentry); -	int error, rc = 0; -	const unsigned int ia_valid = attr->ia_valid; - -	error = inode_change_ok(inode, attr); -	if (error) -		return error; - -	if (is_quota_modification(inode, attr)) -		dquot_initialize(inode); -	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || -	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { -		handle_t *handle; - -		/* (user+group)*(old+new) structure, inode write (sb, -		 * inode block, ? - but truncate inode update has it) */ -		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ -					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3); -		if (IS_ERR(handle)) { -			error = PTR_ERR(handle); -			goto err_out; -		} -		error = dquot_transfer(inode, attr); -		if (error) { -			ext3_journal_stop(handle); -			return error; -		} -		/* Update corresponding info in inode so that everything is in -		 * one transaction */ -		if (attr->ia_valid & ATTR_UID) -			inode->i_uid = attr->ia_uid; -		if (attr->ia_valid & ATTR_GID) -			inode->i_gid = attr->ia_gid; -		error = ext3_mark_inode_dirty(handle, inode); -		ext3_journal_stop(handle); -	} - -	if (attr->ia_valid & ATTR_SIZE) -		inode_dio_wait(inode); - -	if (S_ISREG(inode->i_mode) && -	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { -		handle_t *handle; - -		handle = ext3_journal_start(inode, 3); -		if (IS_ERR(handle)) { -			error = PTR_ERR(handle); -			goto err_out; -		} - -		error = ext3_orphan_add(handle, inode); -		if (error) { -			ext3_journal_stop(handle); -			goto err_out; -		} -		EXT3_I(inode)->i_disksize = attr->ia_size; -		error = ext3_mark_inode_dirty(handle, inode); -		ext3_journal_stop(handle); -		if (error) { -			/* Some hard fs error must have happened. Bail out. */ -			ext3_orphan_del(NULL, inode); -			goto err_out; -		} -		rc = ext3_block_truncate_page(inode, attr->ia_size); -		if (rc) { -			/* Cleanup orphan list and exit */ -			handle = ext3_journal_start(inode, 3); -			if (IS_ERR(handle)) { -				ext3_orphan_del(NULL, inode); -				goto err_out; -			} -			ext3_orphan_del(handle, inode); -			ext3_journal_stop(handle); -			goto err_out; -		} -	} - -	if ((attr->ia_valid & ATTR_SIZE) && -	    attr->ia_size != i_size_read(inode)) { -		truncate_setsize(inode, attr->ia_size); -		ext3_truncate(inode); -	} - -	setattr_copy(inode, attr); -	mark_inode_dirty(inode); - -	if (ia_valid & ATTR_MODE) -		rc = posix_acl_chmod(inode, inode->i_mode); - -err_out: -	ext3_std_error(inode->i_sb, error); -	if (!error) -		error = rc; -	return error; -} - - -/* - * How many blocks doth make a writepage()? - * - * With N blocks per page, it may be: - * N data blocks - * 2 indirect block - * 2 dindirect - * 1 tindirect - * N+5 bitmap blocks (from the above) - * N+5 group descriptor summary blocks - * 1 inode block - * 1 superblock. - * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files - * - * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS - * - * With ordered or writeback data it's the same, less the N data blocks. - * - * If the inode's direct blocks can hold an integral number of pages then a - * page cannot straddle two indirect blocks, and we can only touch one indirect - * and dindirect block, and the "5" above becomes "3". - * - * This still overestimates under most circumstances.  If we were to pass the - * start and end offsets in here as well we could do block_to_path() on each - * block and work out the exact number of indirects which are touched.  Pah. - */ - -static int ext3_writepage_trans_blocks(struct inode *inode) -{ -	int bpp = ext3_journal_blocks_per_page(inode); -	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; -	int ret; - -	if (ext3_should_journal_data(inode)) -		ret = 3 * (bpp + indirects) + 2; -	else -		ret = 2 * (bpp + indirects) + indirects + 2; - -#ifdef CONFIG_QUOTA -	/* We know that structure was already allocated during dquot_initialize so -	 * we will be updating only the data blocks + inodes */ -	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); -#endif - -	return ret; -} - -/* - * The caller must have previously called ext3_reserve_inode_write(). - * Give this, we know that the caller already has write access to iloc->bh. - */ -int ext3_mark_iloc_dirty(handle_t *handle, -		struct inode *inode, struct ext3_iloc *iloc) -{ -	int err = 0; - -	/* the do_update_inode consumes one bh->b_count */ -	get_bh(iloc->bh); - -	/* ext3_do_update_inode() does journal_dirty_metadata */ -	err = ext3_do_update_inode(handle, inode, iloc); -	put_bh(iloc->bh); -	return err; -} - -/* - * On success, We end up with an outstanding reference count against - * iloc->bh.  This _must_ be cleaned up later. - */ - -int -ext3_reserve_inode_write(handle_t *handle, struct inode *inode, -			 struct ext3_iloc *iloc) -{ -	int err = 0; -	if (handle) { -		err = ext3_get_inode_loc(inode, iloc); -		if (!err) { -			BUFFER_TRACE(iloc->bh, "get_write_access"); -			err = ext3_journal_get_write_access(handle, iloc->bh); -			if (err) { -				brelse(iloc->bh); -				iloc->bh = NULL; -			} -		} -	} -	ext3_std_error(inode->i_sb, err); -	return err; -} - -/* - * What we do here is to mark the in-core inode as clean with respect to inode - * dirtiness (it may still be data-dirty). - * This means that the in-core inode may be reaped by prune_icache - * without having to perform any I/O.  This is a very good thing, - * because *any* task may call prune_icache - even ones which - * have a transaction open against a different journal. - * - * Is this cheating?  Not really.  Sure, we haven't written the - * inode out, but prune_icache isn't a user-visible syncing function. - * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) - * we start and wait on commits. - */ -int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) -{ -	struct ext3_iloc iloc; -	int err; - -	might_sleep(); -	trace_ext3_mark_inode_dirty(inode, _RET_IP_); -	err = ext3_reserve_inode_write(handle, inode, &iloc); -	if (!err) -		err = ext3_mark_iloc_dirty(handle, inode, &iloc); -	return err; -} - -/* - * ext3_dirty_inode() is called from __mark_inode_dirty() - * - * We're really interested in the case where a file is being extended. - * i_size has been changed by generic_commit_write() and we thus need - * to include the updated inode in the current transaction. - * - * Also, dquot_alloc_space() will always dirty the inode when blocks - * are allocated to the file. - * - * If the inode is marked synchronous, we don't honour that here - doing - * so would cause a commit on atime updates, which we don't bother doing. - * We handle synchronous inodes at the highest possible level. - */ -void ext3_dirty_inode(struct inode *inode, int flags) -{ -	handle_t *current_handle = ext3_journal_current_handle(); -	handle_t *handle; - -	handle = ext3_journal_start(inode, 2); -	if (IS_ERR(handle)) -		goto out; -	if (current_handle && -		current_handle->h_transaction != handle->h_transaction) { -		/* This task has a transaction open against a different fs */ -		printk(KERN_EMERG "%s: transactions do not match!\n", -		       __func__); -	} else { -		jbd_debug(5, "marking dirty.  outer handle=%p\n", -				current_handle); -		ext3_mark_inode_dirty(handle, inode); -	} -	ext3_journal_stop(handle); -out: -	return; -} - -#if 0 -/* - * Bind an inode's backing buffer_head into this transaction, to prevent - * it from being flushed to disk early.  Unlike - * ext3_reserve_inode_write, this leaves behind no bh reference and - * returns no iloc structure, so the caller needs to repeat the iloc - * lookup to mark the inode dirty later. - */ -static int ext3_pin_inode(handle_t *handle, struct inode *inode) -{ -	struct ext3_iloc iloc; - -	int err = 0; -	if (handle) { -		err = ext3_get_inode_loc(inode, &iloc); -		if (!err) { -			BUFFER_TRACE(iloc.bh, "get_write_access"); -			err = journal_get_write_access(handle, iloc.bh); -			if (!err) -				err = ext3_journal_dirty_metadata(handle, -								  iloc.bh); -			brelse(iloc.bh); -		} -	} -	ext3_std_error(inode->i_sb, err); -	return err; -} -#endif - -int ext3_change_inode_journal_flag(struct inode *inode, int val) -{ -	journal_t *journal; -	handle_t *handle; -	int err; - -	/* -	 * We have to be very careful here: changing a data block's -	 * journaling status dynamically is dangerous.  If we write a -	 * data block to the journal, change the status and then delete -	 * that block, we risk forgetting to revoke the old log record -	 * from the journal and so a subsequent replay can corrupt data. -	 * So, first we make sure that the journal is empty and that -	 * nobody is changing anything. -	 */ - -	journal = EXT3_JOURNAL(inode); -	if (is_journal_aborted(journal)) -		return -EROFS; - -	journal_lock_updates(journal); -	journal_flush(journal); - -	/* -	 * OK, there are no updates running now, and all cached data is -	 * synced to disk.  We are now in a completely consistent state -	 * which doesn't have anything in the journal, and we know that -	 * no filesystem updates are running, so it is safe to modify -	 * the inode's in-core data-journaling state flag now. -	 */ - -	if (val) -		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; -	else -		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; -	ext3_set_aops(inode); - -	journal_unlock_updates(journal); - -	/* Finally we can mark the inode as dirty. */ - -	handle = ext3_journal_start(inode, 1); -	if (IS_ERR(handle)) -		return PTR_ERR(handle); - -	err = ext3_mark_inode_dirty(handle, inode); -	handle->h_sync = 1; -	ext3_journal_stop(handle); -	ext3_std_error(inode->i_sb, err); - -	return err; -}  |