diff options
author | Gerd Hoffmann <kraxel@redhat.com> | 2024-03-13 13:58:43 +0100 |
---|---|---|
committer | Sean Christopherson <seanjc@google.com> | 2024-04-09 12:18:37 -0700 |
commit | b628cb523c65420031b310050a3733aa7fbe2e88 (patch) | |
tree | f3ff370c78f90b693008de0ba7f5f6c3bd058fd1 /arch/x86/kvm/mmu.h | |
parent | 6f5c9600621b4efb5c61b482d767432eb1ad3a9c (diff) |
KVM: x86: Advertise max mappable GPA in CPUID.0x80000008.GuestPhysBits
Use the GuestPhysBits field in CPUID.0x80000008 to communicate the max
mappable GPA to userspace, i.e. the max GPA that is addressable by the
CPU itself. Typically this is identical to the max effective GPA, except
in the case where the CPU supports MAXPHYADDR > 48 but does not support
5-level TDP (the CPU consults bits 51:48 of the GPA only when walking the
fifth level TDP page table entry).
Enumerating the max mappable GPA via CPUID will allow guest firmware to
map resources like PCI bars in the highest possible address space, while
ensuring that the GPA is addressable by the CPU. Without precise
knowledge about the max mappable GPA, the guest must assume that 5-level
paging is unsupported and thus restrict its mappings to the lower 48 bits.
Advertise the max mappable GPA via KVM_GET_SUPPORTED_CPUID as userspace
doesn't have easy access to whether or not 5-level paging is supported,
and to play nice with userspace VMMs that reflect the supported CPUID
directly into the guest.
AMD's APM (3.35) defines GuestPhysBits (EAX[23:16]) as:
Maximum guest physical address size in bits. This number applies
only to guests using nested paging. When this field is zero, refer
to the PhysAddrSize field for the maximum guest physical address size.
Tom Lendacky confirmed that the purpose of GuestPhysBits is software use
and KVM can use it as described above. Real hardware always returns zero.
Leave GuestPhysBits as '0' when TDP is disabled in order to comply with
the APM's statement that GuestPhysBits "applies only to guest using nested
paging". As above, guest firmware will likely create suboptimal mappings,
but that is a very minor issue and not a functional concern.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240313125844.912415-3-kraxel@redhat.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Diffstat (limited to 'arch/x86/kvm/mmu.h')
-rw-r--r-- | arch/x86/kvm/mmu.h | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h index 60f21bb4c27b..b410a227c601 100644 --- a/arch/x86/kvm/mmu.h +++ b/arch/x86/kvm/mmu.h @@ -100,6 +100,8 @@ static inline u8 kvm_get_shadow_phys_bits(void) return boot_cpu_data.x86_phys_bits; } +u8 kvm_mmu_get_max_tdp_level(void); + void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask); void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask); void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only); |