diff options
author | Linus Torvalds <[email protected]> | 2022-01-12 13:45:12 -0800 |
---|---|---|
committer | Linus Torvalds <[email protected]> | 2022-01-12 13:45:12 -0800 |
commit | 8834147f9505661859ce44549bf601e2a06bba7c (patch) | |
tree | d8f1086c626c77fceb100bd2fc5ea011e1212070 /Documentation/filesystems/caching/object.rst | |
parent | 8975f8974888b3cd25aa8cf9eba24edbb9230bb2 (diff) | |
parent | d7bdba1c81f7e7bad12c7c7ce55afa3c7b0821ef (diff) |
Merge tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull fscache rewrite from David Howells:
"This is a set of patches that rewrites the fscache driver and the
cachefiles driver, significantly simplifying the code compared to
what's upstream, removing the complex operation scheduling and object
state machine in favour of something much smaller and simpler.
The series is structured such that the first few patches disable
fscache use by the network filesystems using it, remove the cachefiles
driver entirely and as much of the fscache driver as can be got away
with without causing build failures in the network filesystems.
The patches after that recreate fscache and then cachefiles,
attempting to add the pieces in a logical order. Finally, the
filesystems are reenabled and then the very last patch changes the
documentation.
[!] Note: I have dropped the cifs patch for the moment, leaving local
caching in cifs disabled. I've been having trouble getting that
working. I think I have it done, but it needs more testing (there
seem to be some test failures occurring with v5.16 also from
xfstests), so I propose deferring that patch to the end of the
merge window.
WHY REWRITE?
============
Fscache's operation scheduling API was intended to handle sequencing
of cache operations, which were all required (where possible) to run
asynchronously in parallel with the operations being done by the
network filesystem, whilst allowing the cache to be brought online and
offline and to interrupt service for invalidation.
With the advent of the tmpfile capacity in the VFS, however, an
opportunity arises to do invalidation much more simply, without having
to wait for I/O that's actually in progress: Cachefiles can simply
create a tmpfile, cut over the file pointer for the backing object
attached to a cookie and abandon the in-progress I/O, dismissing it
upon completion.
Future work here would involve using Omar Sandoval's vfs_link() with
AT_LINK_REPLACE[1] to allow an extant file to be displaced by a new
hard link from a tmpfile as currently I have to unlink the old file
first.
These patches can also simplify the object state handling as I/O
operations to the cache don't all have to be brought to a stop in
order to invalidate a file. To that end, and with an eye on to writing
a new backing cache model in the future, I've taken the opportunity to
simplify the indexing structure.
I've separated the index cookie concept from the file cookie concept
by C type now. The former is now called a "volume cookie" (struct
fscache_volume) and there is a container of file cookies. There are
then just the two levels. All the index cookie levels are collapsed
into a single volume cookie, and this has a single printable string as
a key. For instance, an AFS volume would have a key of something like
"afs,example.com,1000555", combining the filesystem name, cell name
and volume ID. This is freeform, but must not have '/' chars in it.
I've also eliminated all pointers back from fscache into the network
filesystem. This required the duplication of a little bit of data in
the cookie (cookie key, coherency data and file size), but it's not
actually that much. This gets rid of problems with making sure we keep
netfs data structures around so that the cache can access them.
These patches mean that most of the code that was in the drivers
before is simply gone and those drivers are now almost entirely new
code. That being the case, there doesn't seem any particular reason to
try and maintain bisectability across it. Further, there has to be a
point in the middle where things are cut over as there's a single
point everything has to go through (ie. /dev/cachefiles) and it can't
be in use by two drivers at once.
ISSUES YET OUTSTANDING
======================
There are some issues still outstanding, unaddressed by this patchset,
that will need fixing in future patchsets, but that don't stop this
series from being usable:
(1) The cachefiles driver needs to stop using the backing filesystem's
metadata to store information about what parts of the cache are
populated. This is not reliable with modern extent-based
filesystems.
Fixing this is deferred to a separate patchset as it involves
negotiation with the network filesystem and the VM as to how much
data to download to fulfil a read - which brings me on to (2)...
(2) NFS (and CIFS with the dropped patch) do not take account of how
the cache would like I/O to be structured to meet its granularity
requirements. Previously, the cache used page granularity, which
was fine as the network filesystems also dealt in page
granularity, and the backing filesystem (ext4, xfs or whatever)
did whatever it did out of sight. However, we now have folios to
deal with and the cache will now have to store its own metadata to
track its contents.
The change I'm looking at making for cachefiles is to store
content bitmaps in one or more xattrs and making a bit in the map
correspond to something like a 256KiB block. However, the size of
an xattr and the fact that they have to be read/updated in one go
means that I'm looking at covering 1GiB of data per 512-byte map
and storing each map in an xattr. Cachefiles has the potential to
grow into a fully fledged filesystem of its very own if I'm not
careful.
However, I'm also looking at changing things even more radically
and going to a different model of how the cache is arranged and
managed - one that's more akin to the way, say, openafs does
things - which brings me on to (3)...
(3) The way cachefilesd does culling is very inefficient for large
caches and it would be better to move it into the kernel if I can
as cachefilesd has to keep asking the kernel if it can cull a
file. Changing the way the backend works would allow this to be
addressed.
BITS THAT MAY BE CONTROVERSIAL
==============================
There are some bits I've added that may be controversial:
(1) I've provided a flag, S_KERNEL_FILE, that cachefiles uses to check
if a files is already being used by some other kernel service
(e.g. a duplicate cachefiles cache in the same directory) and
reject it if it is. This isn't entirely necessary, but it helps
prevent accidental data corruption.
I don't want to use S_SWAPFILE as that has other effects, but
quite possibly swapon() should set S_KERNEL_FILE too.
Note that it doesn't prevent userspace from interfering, though
perhaps it should. (I have made it prevent a marked directory from
being rmdir-able).
(2) Cachefiles wants to keep the backing file for a cookie open whilst
we might need to write to it from network filesystem writeback.
The problem is that the network filesystem unuses its cookie when
its file is closed, and so we have nothing pinning the cachefiles
file open and it will get closed automatically after a short time
to avoid EMFILE/ENFILE problems.
Reopening the cache file, however, is a problem if this is being
done due to writeback triggered by exit(). Some filesystems will
oops if we try to open a file in that context because they want to
access current->fs or suchlike.
To get around this, I added the following:
(A) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network
filesystem inode to indicate that we have a usage count on the
cookie caching that inode.
(B) A flag in struct writeback_control, unpinned_fscache_wb, that
is set when __writeback_single_inode() clears the last dirty
page from i_pages - at which point it clears
I_PINNING_FSCACHE_WB and sets this flag.
This has to be done here so that clearing I_PINNING_FSCACHE_WB
can be done atomically with the check of PAGECACHE_TAG_DIRTY
that clears I_DIRTY_PAGES.
(C) A function, fscache_set_page_dirty(), which if it is not set,
sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to
pin the cache resources.
(D) A function, fscache_unpin_writeback(), to be called by
->write_inode() to unuse the cookie.
(E) A function, fscache_clear_inode_writeback(), to be called when
the inode is evicted, before clear_inode() is called. This
cleans up any lingering I_PINNING_FSCACHE_WB.
The network filesystem can then use these tools to make sure that
fscache_write_to_cache() can write locally modified data to the
cache as well as to the server.
For the future, I'm working on write helpers for netfs lib that
should allow this facility to be removed by keeping track of the
dirty regions separately - but that's incomplete at the moment and
is also going to be affected by folios, one way or another, since
it deals with pages"
Link: https://lore.kernel.org/all/[email protected]/
Tested-by: Dominique Martinet <[email protected]> # 9p
Tested-by: [email protected] # afs
Tested-by: Jeff Layton <[email protected]> # ceph
Tested-by: Dave Wysochanski <[email protected]> # nfs
Tested-by: Daire Byrne <[email protected]> # nfs
* tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (67 commits)
9p, afs, ceph, nfs: Use current_is_kswapd() rather than gfpflags_allow_blocking()
fscache: Add a tracepoint for cookie use/unuse
fscache: Rewrite documentation
ceph: add fscache writeback support
ceph: conversion to new fscache API
nfs: Implement cache I/O by accessing the cache directly
nfs: Convert to new fscache volume/cookie API
9p: Copy local writes to the cache when writing to the server
9p: Use fscache indexing rewrite and reenable caching
afs: Skip truncation on the server of data we haven't written yet
afs: Copy local writes to the cache when writing to the server
afs: Convert afs to use the new fscache API
fscache, cachefiles: Display stat of culling events
fscache, cachefiles: Display stats of no-space events
cachefiles: Allow cachefiles to actually function
fscache, cachefiles: Store the volume coherency data
cachefiles: Implement the I/O routines
cachefiles: Implement cookie resize for truncate
cachefiles: Implement begin and end I/O operation
cachefiles: Implement backing file wrangling
...
Diffstat (limited to 'Documentation/filesystems/caching/object.rst')
-rw-r--r-- | Documentation/filesystems/caching/object.rst | 313 |
1 files changed, 0 insertions, 313 deletions
diff --git a/Documentation/filesystems/caching/object.rst b/Documentation/filesystems/caching/object.rst deleted file mode 100644 index ce0e043ccd33..000000000000 --- a/Documentation/filesystems/caching/object.rst +++ /dev/null @@ -1,313 +0,0 @@ -.. SPDX-License-Identifier: GPL-2.0 - -==================================================== -In-Kernel Cache Object Representation and Management -==================================================== - -By: David Howells <[email protected]> - -.. Contents: - - (*) Representation - - (*) Object management state machine. - - - Provision of cpu time. - - Locking simplification. - - (*) The set of states. - - (*) The set of events. - - -Representation -============== - -FS-Cache maintains an in-kernel representation of each object that a netfs is -currently interested in. Such objects are represented by the fscache_cookie -struct and are referred to as cookies. - -FS-Cache also maintains a separate in-kernel representation of the objects that -a cache backend is currently actively caching. Such objects are represented by -the fscache_object struct. The cache backends allocate these upon request, and -are expected to embed them in their own representations. These are referred to -as objects. - -There is a 1:N relationship between cookies and objects. A cookie may be -represented by multiple objects - an index may exist in more than one cache - -or even by no objects (it may not be cached). - -Furthermore, both cookies and objects are hierarchical. The two hierarchies -correspond, but the cookies tree is a superset of the union of the object trees -of multiple caches:: - - NETFS INDEX TREE : CACHE 1 : CACHE 2 - : : - : +-----------+ : - +----------->| IObject | : - +-----------+ | : +-----------+ : - | ICookie |-------+ : | : - +-----------+ | : | : +-----------+ - | +------------------------------>| IObject | - | : | : +-----------+ - | : V : | - | : +-----------+ : | - V +----------->| IObject | : | - +-----------+ | : +-----------+ : | - | ICookie |-------+ : | : V - +-----------+ | : | : +-----------+ - | +------------------------------>| IObject | - +-----+-----+ : | : +-----------+ - | | : | : | - V | : V : | - +-----------+ | : +-----------+ : | - | ICookie |------------------------->| IObject | : | - +-----------+ | : +-----------+ : | - | V : | : V - | +-----------+ : | : +-----------+ - | | ICookie |-------------------------------->| IObject | - | +-----------+ : | : +-----------+ - V | : V : | - +-----------+ | : +-----------+ : | - | DCookie |------------------------->| DObject | : | - +-----------+ | : +-----------+ : | - | : : | - +-------+-------+ : : | - | | : : | - V V : : V - +-----------+ +-----------+ : : +-----------+ - | DCookie | | DCookie |------------------------>| DObject | - +-----------+ +-----------+ : : +-----------+ - : : - -In the above illustration, ICookie and IObject represent indices and DCookie -and DObject represent data storage objects. Indices may have representation in -multiple caches, but currently, non-index objects may not. Objects of any type -may also be entirely unrepresented. - -As far as the netfs API goes, the netfs is only actually permitted to see -pointers to the cookies. The cookies themselves and any objects attached to -those cookies are hidden from it. - - -Object Management State Machine -=============================== - -Within FS-Cache, each active object is managed by its own individual state -machine. The state for an object is kept in the fscache_object struct, in -object->state. A cookie may point to a set of objects that are in different -states. - -Each state has an action associated with it that is invoked when the machine -wakes up in that state. There are four logical sets of states: - - (1) Preparation: states that wait for the parent objects to become ready. The - representations are hierarchical, and it is expected that an object must - be created or accessed with respect to its parent object. - - (2) Initialisation: states that perform lookups in the cache and validate - what's found and that create on disk any missing metadata. - - (3) Normal running: states that allow netfs operations on objects to proceed - and that update the state of objects. - - (4) Termination: states that detach objects from their netfs cookies, that - delete objects from disk, that handle disk and system errors and that free - up in-memory resources. - - -In most cases, transitioning between states is in response to signalled events. -When a state has finished processing, it will usually set the mask of events in -which it is interested (object->event_mask) and relinquish the worker thread. -Then when an event is raised (by calling fscache_raise_event()), if the event -is not masked, the object will be queued for processing (by calling -fscache_enqueue_object()). - - -Provision of CPU Time ---------------------- - -The work to be done by the various states was given CPU time by the threads of -the slow work facility. This was used in preference to the workqueue facility -because: - - (1) Threads may be completely occupied for very long periods of time by a - particular work item. These state actions may be doing sequences of - synchronous, journalled disk accesses (lookup, mkdir, create, setxattr, - getxattr, truncate, unlink, rmdir, rename). - - (2) Threads may do little actual work, but may rather spend a lot of time - sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded - workqueues don't necessarily have the right numbers of threads. - - -Locking Simplification ----------------------- - -Because only one worker thread may be operating on any particular object's -state machine at once, this simplifies the locking, particularly with respect -to disconnecting the netfs's representation of a cache object (fscache_cookie) -from the cache backend's representation (fscache_object) - which may be -requested from either end. - - -The Set of States -================= - -The object state machine has a set of states that it can be in. There are -preparation states in which the object sets itself up and waits for its parent -object to transit to a state that allows access to its children: - - (1) State FSCACHE_OBJECT_INIT. - - Initialise the object and wait for the parent object to become active. In - the cache, it is expected that it will not be possible to look an object - up from the parent object, until that parent object itself has been looked - up. - -There are initialisation states in which the object sets itself up and accesses -disk for the object metadata: - - (2) State FSCACHE_OBJECT_LOOKING_UP. - - Look up the object on disk, using the parent as a starting point. - FS-Cache expects the cache backend to probe the cache to see whether this - object is represented there, and if it is, to see if it's valid (coherency - management). - - The cache should call fscache_object_lookup_negative() to indicate lookup - failure for whatever reason, and should call fscache_obtained_object() to - indicate success. - - At the completion of lookup, FS-Cache will let the netfs go ahead with - read operations, no matter whether the file is yet cached. If not yet - cached, read operations will be immediately rejected with ENODATA until - the first known page is uncached - as to that point there can be no data - to be read out of the cache for that file that isn't currently also held - in the pagecache. - - (3) State FSCACHE_OBJECT_CREATING. - - Create an object on disk, using the parent as a starting point. This - happens if the lookup failed to find the object, or if the object's - coherency data indicated what's on disk is out of date. In this state, - FS-Cache expects the cache to create - - The cache should call fscache_obtained_object() if creation completes - successfully, fscache_object_lookup_negative() otherwise. - - At the completion of creation, FS-Cache will start processing write - operations the netfs has queued for an object. If creation failed, the - write ops will be transparently discarded, and nothing recorded in the - cache. - -There are some normal running states in which the object spends its time -servicing netfs requests: - - (4) State FSCACHE_OBJECT_AVAILABLE. - - A transient state in which pending operations are started, child objects - are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary - lookup data is freed. - - (5) State FSCACHE_OBJECT_ACTIVE. - - The normal running state. In this state, requests the netfs makes will be - passed on to the cache. - - (6) State FSCACHE_OBJECT_INVALIDATING. - - The object is undergoing invalidation. When the state comes here, it - discards all pending read, write and attribute change operations as it is - going to clear out the cache entirely and reinitialise it. It will then - continue to the FSCACHE_OBJECT_UPDATING state. - - (7) State FSCACHE_OBJECT_UPDATING. - - The state machine comes here to update the object in the cache from the - netfs's records. This involves updating the auxiliary data that is used - to maintain coherency. - -And there are terminal states in which an object cleans itself up, deallocates -memory and potentially deletes stuff from disk: - - (8) State FSCACHE_OBJECT_LC_DYING. - - The object comes here if it is dying because of a lookup or creation - error. This would be due to a disk error or system error of some sort. - Temporary data is cleaned up, and the parent is released. - - (9) State FSCACHE_OBJECT_DYING. - - The object comes here if it is dying due to an error, because its parent - cookie has been relinquished by the netfs or because the cache is being - withdrawn. - - Any child objects waiting on this one are given CPU time so that they too - can destroy themselves. This object waits for all its children to go away - before advancing to the next state. - -(10) State FSCACHE_OBJECT_ABORT_INIT. - - The object comes to this state if it was waiting on its parent in - FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself - so that the parent may proceed from the FSCACHE_OBJECT_DYING state. - -(11) State FSCACHE_OBJECT_RELEASING. -(12) State FSCACHE_OBJECT_RECYCLING. - - The object comes to one of these two states when dying once it is rid of - all its children, if it is dying because the netfs relinquished its - cookie. In the first state, the cached data is expected to persist, and - in the second it will be deleted. - -(13) State FSCACHE_OBJECT_WITHDRAWING. - - The object transits to this state if the cache decides it wants to - withdraw the object from service, perhaps to make space, but also due to - error or just because the whole cache is being withdrawn. - -(14) State FSCACHE_OBJECT_DEAD. - - The object transits to this state when the in-memory object record is - ready to be deleted. The object processor shouldn't ever see an object in - this state. - - -The Set of Events ------------------ - -There are a number of events that can be raised to an object state machine: - - FSCACHE_OBJECT_EV_UPDATE - The netfs requested that an object be updated. The state machine will ask - the cache backend to update the object, and the cache backend will ask the - netfs for details of the change through its cookie definition ops. - - FSCACHE_OBJECT_EV_CLEARED - This is signalled in two circumstances: - - (a) when an object's last child object is dropped and - - (b) when the last operation outstanding on an object is completed. - - This is used to proceed from the dying state. - - FSCACHE_OBJECT_EV_ERROR - This is signalled when an I/O error occurs during the processing of some - object. - - FSCACHE_OBJECT_EV_RELEASE, FSCACHE_OBJECT_EV_RETIRE - These are signalled when the netfs relinquishes a cookie it was using. - The event selected depends on whether the netfs asks for the backing - object to be retired (deleted) or retained. - - FSCACHE_OBJECT_EV_WITHDRAW - This is signalled when the cache backend wants to withdraw an object. - This means that the object will have to be detached from the netfs's - cookie. - -Because the withdrawing releasing/retiring events are all handled by the object -state machine, it doesn't matter if there's a collision with both ends trying -to sever the connection at the same time. The state machine can just pick -which one it wants to honour, and that effects the other. |