/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __BPF_MISC_H__ #define __BPF_MISC_H__ /* This set of attributes controls behavior of the * test_loader.c:test_loader__run_subtests(). * * The test_loader sequentially loads each program in a skeleton. * Programs could be loaded in privileged and unprivileged modes. * - __success, __failure, __msg imply privileged mode; * - __success_unpriv, __failure_unpriv, __msg_unpriv imply * unprivileged mode. * If combination of privileged and unprivileged attributes is present * both modes are used. If none are present privileged mode is implied. * * See test_loader.c:drop_capabilities() for exact set of capabilities * that differ between privileged and unprivileged modes. * * For test filtering purposes the name of the program loaded in * unprivileged mode is derived from the usual program name by adding * `@unpriv' suffix. * * __msg Message expected to be found in the verifier log. * Multiple __msg attributes could be specified. * __msg_unpriv Same as __msg but for unprivileged mode. * * __success Expect program load success in privileged mode. * __success_unpriv Expect program load success in unprivileged mode. * * __failure Expect program load failure in privileged mode. * __failure_unpriv Expect program load failure in unprivileged mode. * * __retval Execute the program using BPF_PROG_TEST_RUN command, * expect return value to match passed parameter: * - a decimal number * - a hexadecimal number, when starts from 0x * - literal INT_MIN * - literal POINTER_VALUE (see definition below) * - literal TEST_DATA_LEN (see definition below) * __retval_unpriv Same, but load program in unprivileged mode. * * __description Text to be used instead of a program name for display * and filtering purposes. * * __log_level Log level to use for the program, numeric value expected. * * __flag Adds one flag use for the program, the following values are valid: * - BPF_F_STRICT_ALIGNMENT; * - BPF_F_TEST_RND_HI32; * - BPF_F_TEST_STATE_FREQ; * - BPF_F_SLEEPABLE; * - BPF_F_XDP_HAS_FRAGS; * - A numeric value. * Multiple __flag attributes could be specified, the final flags * value is derived by applying binary "or" to all specified values. */ #define __msg(msg) __attribute__((btf_decl_tag("comment:test_expect_msg=" msg))) #define __failure __attribute__((btf_decl_tag("comment:test_expect_failure"))) #define __success __attribute__((btf_decl_tag("comment:test_expect_success"))) #define __description(desc) __attribute__((btf_decl_tag("comment:test_description=" desc))) #define __msg_unpriv(msg) __attribute__((btf_decl_tag("comment:test_expect_msg_unpriv=" msg))) #define __failure_unpriv __attribute__((btf_decl_tag("comment:test_expect_failure_unpriv"))) #define __success_unpriv __attribute__((btf_decl_tag("comment:test_expect_success_unpriv"))) #define __log_level(lvl) __attribute__((btf_decl_tag("comment:test_log_level="#lvl))) #define __flag(flag) __attribute__((btf_decl_tag("comment:test_prog_flags="#flag))) #define __retval(val) __attribute__((btf_decl_tag("comment:test_retval="#val))) #define __retval_unpriv(val) __attribute__((btf_decl_tag("comment:test_retval_unpriv="#val))) /* Convenience macro for use with 'asm volatile' blocks */ #define __naked __attribute__((naked)) #define __clobber_all "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "memory" #define __clobber_common "r0", "r1", "r2", "r3", "r4", "r5", "memory" #define __imm(name) [name]"i"(name) #define __imm_const(name, expr) [name]"i"(expr) #define __imm_addr(name) [name]"i"(&name) #define __imm_ptr(name) [name]"p"(&name) #define __imm_insn(name, expr) [name]"i"(*(long *)&(expr)) /* Magic constants used with __retval() */ #define POINTER_VALUE 0xcafe4all #define TEST_DATA_LEN 64 #if defined(__TARGET_ARCH_x86) #define SYSCALL_WRAPPER 1 #define SYS_PREFIX "__x64_" #elif defined(__TARGET_ARCH_s390) #define SYSCALL_WRAPPER 1 #define SYS_PREFIX "__s390x_" #elif defined(__TARGET_ARCH_arm64) #define SYSCALL_WRAPPER 1 #define SYS_PREFIX "__arm64_" #else #define SYSCALL_WRAPPER 0 #define SYS_PREFIX "__se_" #endif /* How many arguments are passed to function in register */ #if defined(__TARGET_ARCH_x86) || defined(__x86_64__) #define FUNC_REG_ARG_CNT 6 #elif defined(__i386__) #define FUNC_REG_ARG_CNT 3 #elif defined(__TARGET_ARCH_s390) || defined(__s390x__) #define FUNC_REG_ARG_CNT 5 #elif defined(__TARGET_ARCH_arm) || defined(__arm__) #define FUNC_REG_ARG_CNT 4 #elif defined(__TARGET_ARCH_arm64) || defined(__aarch64__) #define FUNC_REG_ARG_CNT 8 #elif defined(__TARGET_ARCH_mips) || defined(__mips__) #define FUNC_REG_ARG_CNT 8 #elif defined(__TARGET_ARCH_powerpc) || defined(__powerpc__) || defined(__powerpc64__) #define FUNC_REG_ARG_CNT 8 #elif defined(__TARGET_ARCH_sparc) || defined(__sparc__) #define FUNC_REG_ARG_CNT 6 #elif defined(__TARGET_ARCH_riscv) || defined(__riscv__) #define FUNC_REG_ARG_CNT 8 #else /* default to 5 for others */ #define FUNC_REG_ARG_CNT 5 #endif /* make it look to compiler like value is read and written */ #define __sink(expr) asm volatile("" : "+g"(expr)) struct bpf_iter_num; extern int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) __ksym; extern int *bpf_iter_num_next(struct bpf_iter_num *it) __ksym; extern void bpf_iter_num_destroy(struct bpf_iter_num *it) __ksym; #ifndef bpf_for_each /* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for * using BPF open-coded iterators without having to write mundane explicit * low-level loop logic. Instead, it provides for()-like generic construct * that can be used pretty naturally. E.g., for some hypothetical cgroup * iterator, you'd write: * * struct cgroup *cg, *parent_cg = <...>; * * bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) { * bpf_printk("Child cgroup id = %d", cg->cgroup_id); * if (cg->cgroup_id == 123) * break; * } * * I.e., it looks almost like high-level for each loop in other languages, * supports continue/break, and is verifiable by BPF verifier. * * For iterating integers, the difference betwen bpf_for_each(num, i, N, M) * and bpf_for(i, N, M) is in that bpf_for() provides additional proof to * verifier that i is in [N, M) range, and in bpf_for_each() case i is `int * *`, not just `int`. So for integers bpf_for() is more convenient. * * Note: this macro relies on C99 feature of allowing to declare variables * inside for() loop, bound to for() loop lifetime. It also utilizes GCC * extension: __attribute__((cleanup())), supported by both GCC and * Clang. */ #define bpf_for_each(type, cur, args...) for ( \ /* initialize and define destructor */ \ struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */, \ cleanup(bpf_iter_##type##_destroy))), \ /* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */ \ *___p __attribute__((unused)) = ( \ bpf_iter_##type##_new(&___it, ##args), \ /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \ /* for bpf_iter_##type##_destroy() when used from cleanup() attribute */ \ (void)bpf_iter_##type##_destroy, (void *)0); \ /* iteration and termination check */ \ (((cur) = bpf_iter_##type##_next(&___it))); \ ) #endif /* bpf_for_each */ #ifndef bpf_for /* bpf_for(i, start, end) implements a for()-like looping construct that sets * provided integer variable *i* to values starting from *start* through, * but not including, *end*. It also proves to BPF verifier that *i* belongs * to range [start, end), so this can be used for accessing arrays without * extra checks. * * Note: *start* and *end* are assumed to be expressions with no side effects * and whose values do not change throughout bpf_for() loop execution. They do * not have to be statically known or constant, though. * * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for() * loop bound variables and cleanup attribute, supported by GCC and Clang. */ #define bpf_for(i, start, end) for ( \ /* initialize and define destructor */ \ struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \ cleanup(bpf_iter_num_destroy))), \ /* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \ *___p __attribute__((unused)) = ( \ bpf_iter_num_new(&___it, (start), (end)), \ /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \ /* for bpf_iter_num_destroy() when used from cleanup() attribute */ \ (void)bpf_iter_num_destroy, (void *)0); \ ({ \ /* iteration step */ \ int *___t = bpf_iter_num_next(&___it); \ /* termination and bounds check */ \ (___t && ((i) = *___t, (i) >= (start) && (i) < (end))); \ }); \ ) #endif /* bpf_for */ #ifndef bpf_repeat /* bpf_repeat(N) performs N iterations without exposing iteration number * * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for() * loop bound variables and cleanup attribute, supported by GCC and Clang. */ #define bpf_repeat(N) for ( \ /* initialize and define destructor */ \ struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \ cleanup(bpf_iter_num_destroy))), \ /* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \ *___p __attribute__((unused)) = ( \ bpf_iter_num_new(&___it, 0, (N)), \ /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \ /* for bpf_iter_num_destroy() when used from cleanup() attribute */ \ (void)bpf_iter_num_destroy, (void *)0); \ bpf_iter_num_next(&___it); \ /* nothing here */ \ ) #endif /* bpf_repeat */ #endif