/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "check-integrity.h" #include "rcu-string.h" #include "math.h" #include "dev-replace.h" static int init_first_rw_device(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_device *device); static int btrfs_relocate_sys_chunks(struct btrfs_root *root); static void __btrfs_reset_dev_stats(struct btrfs_device *dev); static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); static DEFINE_MUTEX(uuid_mutex); static LIST_HEAD(fs_uuids); static void lock_chunks(struct btrfs_root *root) { mutex_lock(&root->fs_info->chunk_mutex); } static void unlock_chunks(struct btrfs_root *root) { mutex_unlock(&root->fs_info->chunk_mutex); } static struct btrfs_fs_devices *__alloc_fs_devices(void) { struct btrfs_fs_devices *fs_devs; fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); if (!fs_devs) return ERR_PTR(-ENOMEM); mutex_init(&fs_devs->device_list_mutex); INIT_LIST_HEAD(&fs_devs->devices); INIT_LIST_HEAD(&fs_devs->alloc_list); INIT_LIST_HEAD(&fs_devs->list); return fs_devs; } /** * alloc_fs_devices - allocate struct btrfs_fs_devices * @fsid: a pointer to UUID for this FS. If NULL a new UUID is * generated. * * Return: a pointer to a new &struct btrfs_fs_devices on success; * ERR_PTR() on error. Returned struct is not linked onto any lists and * can be destroyed with kfree() right away. */ static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) { struct btrfs_fs_devices *fs_devs; fs_devs = __alloc_fs_devices(); if (IS_ERR(fs_devs)) return fs_devs; if (fsid) memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); else generate_random_uuid(fs_devs->fsid); return fs_devs; } static void free_fs_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_device *device; WARN_ON(fs_devices->opened); while (!list_empty(&fs_devices->devices)) { device = list_entry(fs_devices->devices.next, struct btrfs_device, dev_list); list_del(&device->dev_list); rcu_string_free(device->name); kfree(device); } kfree(fs_devices); } static void btrfs_kobject_uevent(struct block_device *bdev, enum kobject_action action) { int ret; ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); if (ret) pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", action, kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), &disk_to_dev(bdev->bd_disk)->kobj); } void btrfs_cleanup_fs_uuids(void) { struct btrfs_fs_devices *fs_devices; while (!list_empty(&fs_uuids)) { fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices, list); list_del(&fs_devices->list); free_fs_devices(fs_devices); } } static struct btrfs_device *__alloc_device(void) { struct btrfs_device *dev; dev = kzalloc(sizeof(*dev), GFP_NOFS); if (!dev) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&dev->dev_list); INIT_LIST_HEAD(&dev->dev_alloc_list); spin_lock_init(&dev->io_lock); spin_lock_init(&dev->reada_lock); atomic_set(&dev->reada_in_flight, 0); INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); return dev; } static noinline struct btrfs_device *__find_device(struct list_head *head, u64 devid, u8 *uuid) { struct btrfs_device *dev; list_for_each_entry(dev, head, dev_list) { if (dev->devid == devid && (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { return dev; } } return NULL; } static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) { struct btrfs_fs_devices *fs_devices; list_for_each_entry(fs_devices, &fs_uuids, list) { if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) return fs_devices; } return NULL; } static int btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, int flush, struct block_device **bdev, struct buffer_head **bh) { int ret; *bdev = blkdev_get_by_path(device_path, flags, holder); if (IS_ERR(*bdev)) { ret = PTR_ERR(*bdev); printk(KERN_INFO "BTRFS: open %s failed\n", device_path); goto error; } if (flush) filemap_write_and_wait((*bdev)->bd_inode->i_mapping); ret = set_blocksize(*bdev, 4096); if (ret) { blkdev_put(*bdev, flags); goto error; } invalidate_bdev(*bdev); *bh = btrfs_read_dev_super(*bdev); if (!*bh) { ret = -EINVAL; blkdev_put(*bdev, flags); goto error; } return 0; error: *bdev = NULL; *bh = NULL; return ret; } static void requeue_list(struct btrfs_pending_bios *pending_bios, struct bio *head, struct bio *tail) { struct bio *old_head; old_head = pending_bios->head; pending_bios->head = head; if (pending_bios->tail) tail->bi_next = old_head; else pending_bios->tail = tail; } /* * we try to collect pending bios for a device so we don't get a large * number of procs sending bios down to the same device. This greatly * improves the schedulers ability to collect and merge the bios. * * But, it also turns into a long list of bios to process and that is sure * to eventually make the worker thread block. The solution here is to * make some progress and then put this work struct back at the end of * the list if the block device is congested. This way, multiple devices * can make progress from a single worker thread. */ static noinline void run_scheduled_bios(struct btrfs_device *device) { struct bio *pending; struct backing_dev_info *bdi; struct btrfs_fs_info *fs_info; struct btrfs_pending_bios *pending_bios; struct bio *tail; struct bio *cur; int again = 0; unsigned long num_run; unsigned long batch_run = 0; unsigned long limit; unsigned long last_waited = 0; int force_reg = 0; int sync_pending = 0; struct blk_plug plug; /* * this function runs all the bios we've collected for * a particular device. We don't want to wander off to * another device without first sending all of these down. * So, setup a plug here and finish it off before we return */ blk_start_plug(&plug); bdi = blk_get_backing_dev_info(device->bdev); fs_info = device->dev_root->fs_info; limit = btrfs_async_submit_limit(fs_info); limit = limit * 2 / 3; loop: spin_lock(&device->io_lock); loop_lock: num_run = 0; /* take all the bios off the list at once and process them * later on (without the lock held). But, remember the * tail and other pointers so the bios can be properly reinserted * into the list if we hit congestion */ if (!force_reg && device->pending_sync_bios.head) { pending_bios = &device->pending_sync_bios; force_reg = 1; } else { pending_bios = &device->pending_bios; force_reg = 0; } pending = pending_bios->head; tail = pending_bios->tail; WARN_ON(pending && !tail); /* * if pending was null this time around, no bios need processing * at all and we can stop. Otherwise it'll loop back up again * and do an additional check so no bios are missed. * * device->running_pending is used to synchronize with the * schedule_bio code. */ if (device->pending_sync_bios.head == NULL && device->pending_bios.head == NULL) { again = 0; device->running_pending = 0; } else { again = 1; device->running_pending = 1; } pending_bios->head = NULL; pending_bios->tail = NULL; spin_unlock(&device->io_lock); while (pending) { rmb(); /* we want to work on both lists, but do more bios on the * sync list than the regular list */ if ((num_run > 32 && pending_bios != &device->pending_sync_bios && device->pending_sync_bios.head) || (num_run > 64 && pending_bios == &device->pending_sync_bios && device->pending_bios.head)) { spin_lock(&device->io_lock); requeue_list(pending_bios, pending, tail); goto loop_lock; } cur = pending; pending = pending->bi_next; cur->bi_next = NULL; if (atomic_dec_return(&fs_info->nr_async_bios) < limit && waitqueue_active(&fs_info->async_submit_wait)) wake_up(&fs_info->async_submit_wait); BUG_ON(atomic_read(&cur->bi_cnt) == 0); /* * if we're doing the sync list, record that our * plug has some sync requests on it * * If we're doing the regular list and there are * sync requests sitting around, unplug before * we add more */ if (pending_bios == &device->pending_sync_bios) { sync_pending = 1; } else if (sync_pending) { blk_finish_plug(&plug); blk_start_plug(&plug); sync_pending = 0; } btrfsic_submit_bio(cur->bi_rw, cur); num_run++; batch_run++; if (need_resched()) cond_resched(); /* * we made progress, there is more work to do and the bdi * is now congested. Back off and let other work structs * run instead */ if (pending && bdi_write_congested(bdi) && batch_run > 8 && fs_info->fs_devices->open_devices > 1) { struct io_context *ioc; ioc = current->io_context; /* * the main goal here is that we don't want to * block if we're going to be able to submit * more requests without blocking. * * This code does two great things, it pokes into * the elevator code from a filesystem _and_ * it makes assumptions about how batching works. */ if (ioc && ioc->nr_batch_requests > 0 && time_before(jiffies, ioc->last_waited + HZ/50UL) && (last_waited == 0 || ioc->last_waited == last_waited)) { /* * we want to go through our batch of * requests and stop. So, we copy out * the ioc->last_waited time and test * against it before looping */ last_waited = ioc->last_waited; if (need_resched()) cond_resched(); continue; } spin_lock(&device->io_lock); requeue_list(pending_bios, pending, tail); device->running_pending = 1; spin_unlock(&device->io_lock); btrfs_queue_work(fs_info->submit_workers, &device->work); goto done; } /* unplug every 64 requests just for good measure */ if (batch_run % 64 == 0) { blk_finish_plug(&plug); blk_start_plug(&plug); sync_pending = 0; } } cond_resched(); if (again) goto loop; spin_lock(&device->io_lock); if (device->pending_bios.head || device->pending_sync_bios.head) goto loop_lock; spin_unlock(&device->io_lock); done: blk_finish_plug(&plug); } static void pending_bios_fn(struct btrfs_work *work) { struct btrfs_device *device; device = container_of(work, struct btrfs_device, work); run_scheduled_bios(device); } /* * Add new device to list of registered devices * * Returns: * 1 - first time device is seen * 0 - device already known * < 0 - error */ static noinline int device_list_add(const char *path, struct btrfs_super_block *disk_super, u64 devid, struct btrfs_fs_devices **fs_devices_ret) { struct btrfs_device *device; struct btrfs_fs_devices *fs_devices; struct rcu_string *name; int ret = 0; u64 found_transid = btrfs_super_generation(disk_super); fs_devices = find_fsid(disk_super->fsid); if (!fs_devices) { fs_devices = alloc_fs_devices(disk_super->fsid); if (IS_ERR(fs_devices)) return PTR_ERR(fs_devices); list_add(&fs_devices->list, &fs_uuids); fs_devices->latest_devid = devid; fs_devices->latest_trans = found_transid; device = NULL; } else { device = __find_device(&fs_devices->devices, devid, disk_super->dev_item.uuid); } if (!device) { if (fs_devices->opened) return -EBUSY; device = btrfs_alloc_device(NULL, &devid, disk_super->dev_item.uuid); if (IS_ERR(device)) { /* we can safely leave the fs_devices entry around */ return PTR_ERR(device); } name = rcu_string_strdup(path, GFP_NOFS); if (!name) { kfree(device); return -ENOMEM; } rcu_assign_pointer(device->name, name); mutex_lock(&fs_devices->device_list_mutex); list_add_rcu(&device->dev_list, &fs_devices->devices); fs_devices->num_devices++; mutex_unlock(&fs_devices->device_list_mutex); ret = 1; device->fs_devices = fs_devices; } else if (!device->name || strcmp(device->name->str, path)) { name = rcu_string_strdup(path, GFP_NOFS); if (!name) return -ENOMEM; rcu_string_free(device->name); rcu_assign_pointer(device->name, name); if (device->missing) { fs_devices->missing_devices--; device->missing = 0; } } if (found_transid > fs_devices->latest_trans) { fs_devices->latest_devid = devid; fs_devices->latest_trans = found_transid; } *fs_devices_ret = fs_devices; return ret; } static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) { struct btrfs_fs_devices *fs_devices; struct btrfs_device *device; struct btrfs_device *orig_dev; fs_devices = alloc_fs_devices(orig->fsid); if (IS_ERR(fs_devices)) return fs_devices; fs_devices->latest_devid = orig->latest_devid; fs_devices->latest_trans = orig->latest_trans; fs_devices->total_devices = orig->total_devices; /* We have held the volume lock, it is safe to get the devices. */ list_for_each_entry(orig_dev, &orig->devices, dev_list) { struct rcu_string *name; device = btrfs_alloc_device(NULL, &orig_dev->devid, orig_dev->uuid); if (IS_ERR(device)) goto error; /* * This is ok to do without rcu read locked because we hold the * uuid mutex so nothing we touch in here is going to disappear. */ name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); if (!name) { kfree(device); goto error; } rcu_assign_pointer(device->name, name); list_add(&device->dev_list, &fs_devices->devices); device->fs_devices = fs_devices; fs_devices->num_devices++; } return fs_devices; error: free_fs_devices(fs_devices); return ERR_PTR(-ENOMEM); } void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, struct btrfs_fs_devices *fs_devices, int step) { struct btrfs_device *device, *next; struct block_device *latest_bdev = NULL; u64 latest_devid = 0; u64 latest_transid = 0; mutex_lock(&uuid_mutex); again: /* This is the initialized path, it is safe to release the devices. */ list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { if (device->in_fs_metadata) { if (!device->is_tgtdev_for_dev_replace && (!latest_transid || device->generation > latest_transid)) { latest_devid = device->devid; latest_transid = device->generation; latest_bdev = device->bdev; } continue; } if (device->devid == BTRFS_DEV_REPLACE_DEVID) { /* * In the first step, keep the device which has * the correct fsid and the devid that is used * for the dev_replace procedure. * In the second step, the dev_replace state is * read from the device tree and it is known * whether the procedure is really active or * not, which means whether this device is * used or whether it should be removed. */ if (step == 0 || device->is_tgtdev_for_dev_replace) { continue; } } if (device->bdev) { blkdev_put(device->bdev, device->mode); device->bdev = NULL; fs_devices->open_devices--; } if (device->writeable) { list_del_init(&device->dev_alloc_list); device->writeable = 0; if (!device->is_tgtdev_for_dev_replace) fs_devices->rw_devices--; } list_del_init(&device->dev_list); fs_devices->num_devices--; rcu_string_free(device->name); kfree(device); } if (fs_devices->seed) { fs_devices = fs_devices->seed; goto again; } fs_devices->latest_bdev = latest_bdev; fs_devices->latest_devid = latest_devid; fs_devices->latest_trans = latest_transid; mutex_unlock(&uuid_mutex); } static void __free_device(struct work_struct *work) { struct btrfs_device *device; device = container_of(work, struct btrfs_device, rcu_work); if (device->bdev) blkdev_put(device->bdev, device->mode); rcu_string_free(device->name); kfree(device); } static void free_device(struct rcu_head *head) { struct btrfs_device *device; device = container_of(head, struct btrfs_device, rcu); INIT_WORK(&device->rcu_work, __free_device); schedule_work(&device->rcu_work); } static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_device *device; if (--fs_devices->opened > 0) return 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { struct btrfs_device *new_device; struct rcu_string *name; if (device->bdev) fs_devices->open_devices--; if (device->writeable && device->devid != BTRFS_DEV_REPLACE_DEVID) { list_del_init(&device->dev_alloc_list); fs_devices->rw_devices--; } if (device->can_discard) fs_devices->num_can_discard--; if (device->missing) fs_devices->missing_devices--; new_device = btrfs_alloc_device(NULL, &device->devid, device->uuid); BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ /* Safe because we are under uuid_mutex */ if (device->name) { name = rcu_string_strdup(device->name->str, GFP_NOFS); BUG_ON(!name); /* -ENOMEM */ rcu_assign_pointer(new_device->name, name); } list_replace_rcu(&device->dev_list, &new_device->dev_list); new_device->fs_devices = device->fs_devices; call_rcu(&device->rcu, free_device); } mutex_unlock(&fs_devices->device_list_mutex); WARN_ON(fs_devices->open_devices); WARN_ON(fs_devices->rw_devices); fs_devices->opened = 0; fs_devices->seeding = 0; return 0; } int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_fs_devices *seed_devices = NULL; int ret; mutex_lock(&uuid_mutex); ret = __btrfs_close_devices(fs_devices); if (!fs_devices->opened) { seed_devices = fs_devices->seed; fs_devices->seed = NULL; } mutex_unlock(&uuid_mutex); while (seed_devices) { fs_devices = seed_devices; seed_devices = fs_devices->seed; __btrfs_close_devices(fs_devices); free_fs_devices(fs_devices); } /* * Wait for rcu kworkers under __btrfs_close_devices * to finish all blkdev_puts so device is really * free when umount is done. */ rcu_barrier(); return ret; } static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, fmode_t flags, void *holder) { struct request_queue *q; struct block_device *bdev; struct list_head *head = &fs_devices->devices; struct btrfs_device *device; struct block_device *latest_bdev = NULL; struct buffer_head *bh; struct btrfs_super_block *disk_super; u64 latest_devid = 0; u64 latest_transid = 0; u64 devid; int seeding = 1; int ret = 0; flags |= FMODE_EXCL; list_for_each_entry(device, head, dev_list) { if (device->bdev) continue; if (!device->name) continue; /* Just open everything we can; ignore failures here */ if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, &bdev, &bh)) continue; disk_super = (struct btrfs_super_block *)bh->b_data; devid = btrfs_stack_device_id(&disk_super->dev_item); if (devid != device->devid) goto error_brelse; if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) goto error_brelse; device->generation = btrfs_super_generation(disk_super); if (!latest_transid || device->generation > latest_transid) { latest_devid = devid; latest_transid = device->generation; latest_bdev = bdev; } if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { device->writeable = 0; } else { device->writeable = !bdev_read_only(bdev); seeding = 0; } q = bdev_get_queue(bdev); if (blk_queue_discard(q)) { device->can_discard = 1; fs_devices->num_can_discard++; } device->bdev = bdev; device->in_fs_metadata = 0; device->mode = flags; if (!blk_queue_nonrot(bdev_get_queue(bdev))) fs_devices->rotating = 1; fs_devices->open_devices++; if (device->writeable && device->devid != BTRFS_DEV_REPLACE_DEVID) { fs_devices->rw_devices++; list_add(&device->dev_alloc_list, &fs_devices->alloc_list); } brelse(bh); continue; error_brelse: brelse(bh); blkdev_put(bdev, flags); continue; } if (fs_devices->open_devices == 0) { ret = -EINVAL; goto out; } fs_devices->seeding = seeding; fs_devices->opened = 1; fs_devices->latest_bdev = latest_bdev; fs_devices->latest_devid = latest_devid; fs_devices->latest_trans = latest_transid; fs_devices->total_rw_bytes = 0; out: return ret; } int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, fmode_t flags, void *holder) { int ret; mutex_lock(&uuid_mutex); if (fs_devices->opened) { fs_devices->opened++; ret = 0; } else { ret = __btrfs_open_devices(fs_devices, flags, holder); } mutex_unlock(&uuid_mutex); return ret; } /* * Look for a btrfs signature on a device. This may be called out of the mount path * and we are not allowed to call set_blocksize during the scan. The superblock * is read via pagecache */ int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, struct btrfs_fs_devices **fs_devices_ret) { struct btrfs_super_block *disk_super; struct block_device *bdev; struct page *page; void *p; int ret = -EINVAL; u64 devid; u64 transid; u64 total_devices; u64 bytenr; pgoff_t index; /* * we would like to check all the supers, but that would make * a btrfs mount succeed after a mkfs from a different FS. * So, we need to add a special mount option to scan for * later supers, using BTRFS_SUPER_MIRROR_MAX instead */ bytenr = btrfs_sb_offset(0); flags |= FMODE_EXCL; mutex_lock(&uuid_mutex); bdev = blkdev_get_by_path(path, flags, holder); if (IS_ERR(bdev)) { ret = PTR_ERR(bdev); goto error; } /* make sure our super fits in the device */ if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) goto error_bdev_put; /* make sure our super fits in the page */ if (sizeof(*disk_super) > PAGE_CACHE_SIZE) goto error_bdev_put; /* make sure our super doesn't straddle pages on disk */ index = bytenr >> PAGE_CACHE_SHIFT; if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) goto error_bdev_put; /* pull in the page with our super */ page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_NOFS); if (IS_ERR_OR_NULL(page)) goto error_bdev_put; p = kmap(page); /* align our pointer to the offset of the super block */ disk_super = p + (bytenr & ~PAGE_CACHE_MASK); if (btrfs_super_bytenr(disk_super) != bytenr || btrfs_super_magic(disk_super) != BTRFS_MAGIC) goto error_unmap; devid = btrfs_stack_device_id(&disk_super->dev_item); transid = btrfs_super_generation(disk_super); total_devices = btrfs_super_num_devices(disk_super); ret = device_list_add(path, disk_super, devid, fs_devices_ret); if (ret > 0) { if (disk_super->label[0]) { if (disk_super->label[BTRFS_LABEL_SIZE - 1]) disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); } else { printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); } printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); ret = 0; } if (!ret && fs_devices_ret) (*fs_devices_ret)->total_devices = total_devices; error_unmap: kunmap(page); page_cache_release(page); error_bdev_put: blkdev_put(bdev, flags); error: mutex_unlock(&uuid_mutex); return ret; } /* helper to account the used device space in the range */ int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, u64 end, u64 *length) { struct btrfs_key key; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *dev_extent; struct btrfs_path *path; u64 extent_end; int ret; int slot; struct extent_buffer *l; *length = 0; if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = 2; key.objectid = device->devid; key.offset = start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { ret = btrfs_previous_item(root, path, key.objectid, key.type); if (ret < 0) goto out; } while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto out; break; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid < device->devid) goto next; if (key.objectid > device->devid) break; if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) goto next; dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); extent_end = key.offset + btrfs_dev_extent_length(l, dev_extent); if (key.offset <= start && extent_end > end) { *length = end - start + 1; break; } else if (key.offset <= start && extent_end > start) *length += extent_end - start; else if (key.offset > start && extent_end <= end) *length += extent_end - key.offset; else if (key.offset > start && key.offset <= end) { *length += end - key.offset + 1; break; } else if (key.offset > end) break; next: path->slots[0]++; } ret = 0; out: btrfs_free_path(path); return ret; } static int contains_pending_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 *start, u64 len) { struct extent_map *em; int ret = 0; list_for_each_entry(em, &trans->transaction->pending_chunks, list) { struct map_lookup *map; int i; map = (struct map_lookup *)em->bdev; for (i = 0; i < map->num_stripes; i++) { if (map->stripes[i].dev != device) continue; if (map->stripes[i].physical >= *start + len || map->stripes[i].physical + em->orig_block_len <= *start) continue; *start = map->stripes[i].physical + em->orig_block_len; ret = 1; } } return ret; } /* * find_free_dev_extent - find free space in the specified device * @device: the device which we search the free space in * @num_bytes: the size of the free space that we need * @start: store the start of the free space. * @len: the size of the free space. that we find, or the size of the max * free space if we don't find suitable free space * * this uses a pretty simple search, the expectation is that it is * called very infrequently and that a given device has a small number * of extents * * @start is used to store the start of the free space if we find. But if we * don't find suitable free space, it will be used to store the start position * of the max free space. * * @len is used to store the size of the free space that we find. * But if we don't find suitable free space, it is used to store the size of * the max free space. */ int find_free_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 num_bytes, u64 *start, u64 *len) { struct btrfs_key key; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *dev_extent; struct btrfs_path *path; u64 hole_size; u64 max_hole_start; u64 max_hole_size; u64 extent_end; u64 search_start; u64 search_end = device->total_bytes; int ret; int slot; struct extent_buffer *l; /* FIXME use last free of some kind */ /* we don't want to overwrite the superblock on the drive, * so we make sure to start at an offset of at least 1MB */ search_start = max(root->fs_info->alloc_start, 1024ull * 1024); path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: max_hole_start = search_start; max_hole_size = 0; hole_size = 0; if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { ret = -ENOSPC; goto out; } path->reada = 2; path->search_commit_root = 1; path->skip_locking = 1; key.objectid = device->devid; key.offset = search_start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { ret = btrfs_previous_item(root, path, key.objectid, key.type); if (ret < 0) goto out; } while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto out; break; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid < device->devid) goto next; if (key.objectid > device->devid) break; if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) goto next; if (key.offset > search_start) { hole_size = key.offset - search_start; /* * Have to check before we set max_hole_start, otherwise * we could end up sending back this offset anyway. */ if (contains_pending_extent(trans, device, &search_start, hole_size)) hole_size = 0; if (hole_size > max_hole_size) { max_hole_start = search_start; max_hole_size = hole_size; } /* * If this free space is greater than which we need, * it must be the max free space that we have found * until now, so max_hole_start must point to the start * of this free space and the length of this free space * is stored in max_hole_size. Thus, we return * max_hole_start and max_hole_size and go back to the * caller. */ if (hole_size >= num_bytes) { ret = 0; goto out; } } dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); extent_end = key.offset + btrfs_dev_extent_length(l, dev_extent); if (extent_end > search_start) search_start = extent_end; next: path->slots[0]++; cond_resched(); } /* * At this point, search_start should be the end of * allocated dev extents, and when shrinking the device, * search_end may be smaller than search_start. */ if (search_end > search_start) hole_size = search_end - search_start; if (hole_size > max_hole_size) { max_hole_start = search_start; max_hole_size = hole_size; } if (contains_pending_extent(trans, device, &search_start, hole_size)) { btrfs_release_path(path); goto again; } /* See above. */ if (hole_size < num_bytes) ret = -ENOSPC; else ret = 0; out: btrfs_free_path(path); *start = max_hole_start; if (len) *len = max_hole_size; return ret; } static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 start) { int ret; struct btrfs_path *path; struct btrfs_root *root = device->dev_root; struct btrfs_key key; struct btrfs_key found_key; struct extent_buffer *leaf = NULL; struct btrfs_dev_extent *extent = NULL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = device->devid; key.offset = start; key.type = BTRFS_DEV_EXTENT_KEY; again: ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { ret = btrfs_previous_item(root, path, key.objectid, BTRFS_DEV_EXTENT_KEY); if (ret) goto out; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); BUG_ON(found_key.offset > start || found_key.offset + btrfs_dev_extent_length(leaf, extent) < start); key = found_key; btrfs_release_path(path); goto again; } else if (ret == 0) { leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); } else { btrfs_error(root->fs_info, ret, "Slot search failed"); goto out; } if (device->bytes_used > 0) { u64 len = btrfs_dev_extent_length(leaf, extent); device->bytes_used -= len; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space += len; spin_unlock(&root->fs_info->free_chunk_lock); } ret = btrfs_del_item(trans, root, path); if (ret) { btrfs_error(root->fs_info, ret, "Failed to remove dev extent item"); } out: btrfs_free_path(path); return ret; } static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 start, u64 num_bytes) { int ret; struct btrfs_path *path; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *extent; struct extent_buffer *leaf; struct btrfs_key key; WARN_ON(!device->in_fs_metadata); WARN_ON(device->is_tgtdev_for_dev_replace); path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = device->devid; key.offset = start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); if (ret) goto out; leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); btrfs_set_dev_extent_length(leaf, extent, num_bytes); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } static u64 find_next_chunk(struct btrfs_fs_info *fs_info) { struct extent_map_tree *em_tree; struct extent_map *em; struct rb_node *n; u64 ret = 0; em_tree = &fs_info->mapping_tree.map_tree; read_lock(&em_tree->lock); n = rb_last(&em_tree->map); if (n) { em = rb_entry(n, struct extent_map, rb_node); ret = em->start + em->len; } read_unlock(&em_tree->lock); return ret; } static noinline int find_next_devid(struct btrfs_fs_info *fs_info, u64 *devid_ret) { int ret; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); /* Corruption */ ret = btrfs_previous_item(fs_info->chunk_root, path, BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY); if (ret) { *devid_ret = 1; } else { btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); *devid_ret = found_key.offset + 1; } ret = 0; error: btrfs_free_path(path); return ret; } /* * the device information is stored in the chunk root * the btrfs_device struct should be fully filled in */ static int btrfs_add_device(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; unsigned long ptr; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*dev_item)); if (ret) goto out; leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_generation(leaf, dev_item, 0); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); btrfs_set_device_group(leaf, dev_item, 0); btrfs_set_device_seek_speed(leaf, dev_item, 0); btrfs_set_device_bandwidth(leaf, dev_item, 0); btrfs_set_device_start_offset(leaf, dev_item, 0); ptr = btrfs_device_uuid(dev_item); write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); ptr = btrfs_device_fsid(dev_item); write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } /* * Function to update ctime/mtime for a given device path. * Mainly used for ctime/mtime based probe like libblkid. */ static void update_dev_time(char *path_name) { struct file *filp; filp = filp_open(path_name, O_RDWR, 0); if (!filp) return; file_update_time(filp); filp_close(filp, NULL); return; } static int btrfs_rm_dev_item(struct btrfs_root *root, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_trans_handle *trans; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; lock_chunks(root); ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, root, path); if (ret) goto out; out: btrfs_free_path(path); unlock_chunks(root); btrfs_commit_transaction(trans, root); return ret; } int btrfs_rm_device(struct btrfs_root *root, char *device_path) { struct btrfs_device *device; struct btrfs_device *next_device; struct block_device *bdev; struct buffer_head *bh = NULL; struct btrfs_super_block *disk_super; struct btrfs_fs_devices *cur_devices; u64 all_avail; u64 devid; u64 num_devices; u8 *dev_uuid; unsigned seq; int ret = 0; bool clear_super = false; mutex_lock(&uuid_mutex); do { seq = read_seqbegin(&root->fs_info->profiles_lock); all_avail = root->fs_info->avail_data_alloc_bits | root->fs_info->avail_system_alloc_bits | root->fs_info->avail_metadata_alloc_bits; } while (read_seqretry(&root->fs_info->profiles_lock, seq)); num_devices = root->fs_info->fs_devices->num_devices; btrfs_dev_replace_lock(&root->fs_info->dev_replace); if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { WARN_ON(num_devices < 1); num_devices--; } btrfs_dev_replace_unlock(&root->fs_info->dev_replace); if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; goto out; } if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; goto out; } if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && root->fs_info->fs_devices->rw_devices <= 2) { ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; goto out; } if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && root->fs_info->fs_devices->rw_devices <= 3) { ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; goto out; } if (strcmp(device_path, "missing") == 0) { struct list_head *devices; struct btrfs_device *tmp; device = NULL; devices = &root->fs_info->fs_devices->devices; /* * It is safe to read the devices since the volume_mutex * is held. */ list_for_each_entry(tmp, devices, dev_list) { if (tmp->in_fs_metadata && !tmp->is_tgtdev_for_dev_replace && !tmp->bdev) { device = tmp; break; } } bdev = NULL; bh = NULL; disk_super = NULL; if (!device) { ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; goto out; } } else { ret = btrfs_get_bdev_and_sb(device_path, FMODE_WRITE | FMODE_EXCL, root->fs_info->bdev_holder, 0, &bdev, &bh); if (ret) goto out; disk_super = (struct btrfs_super_block *)bh->b_data; devid = btrfs_stack_device_id(&disk_super->dev_item); dev_uuid = disk_super->dev_item.uuid; device = btrfs_find_device(root->fs_info, devid, dev_uuid, disk_super->fsid); if (!device) { ret = -ENOENT; goto error_brelse; } } if (device->is_tgtdev_for_dev_replace) { ret = BTRFS_ERROR_DEV_TGT_REPLACE; goto error_brelse; } if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; goto error_brelse; } if (device->writeable) { lock_chunks(root); list_del_init(&device->dev_alloc_list); unlock_chunks(root); root->fs_info->fs_devices->rw_devices--; clear_super = true; } mutex_unlock(&uuid_mutex); ret = btrfs_shrink_device(device, 0); mutex_lock(&uuid_mutex); if (ret) goto error_undo; /* * TODO: the superblock still includes this device in its num_devices * counter although write_all_supers() is not locked out. This * could give a filesystem state which requires a degraded mount. */ ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); if (ret) goto error_undo; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space = device->total_bytes - device->bytes_used; spin_unlock(&root->fs_info->free_chunk_lock); device->in_fs_metadata = 0; btrfs_scrub_cancel_dev(root->fs_info, device); /* * the device list mutex makes sure that we don't change * the device list while someone else is writing out all * the device supers. Whoever is writing all supers, should * lock the device list mutex before getting the number of * devices in the super block (super_copy). Conversely, * whoever updates the number of devices in the super block * (super_copy) should hold the device list mutex. */ cur_devices = device->fs_devices; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); list_del_rcu(&device->dev_list); device->fs_devices->num_devices--; device->fs_devices->total_devices--; if (device->missing) root->fs_info->fs_devices->missing_devices--; next_device = list_entry(root->fs_info->fs_devices->devices.next, struct btrfs_device, dev_list); if (device->bdev == root->fs_info->sb->s_bdev) root->fs_info->sb->s_bdev = next_device->bdev; if (device->bdev == root->fs_info->fs_devices->latest_bdev) root->fs_info->fs_devices->latest_bdev = next_device->bdev; if (device->bdev) device->fs_devices->open_devices--; call_rcu(&device->rcu, free_device); num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); if (cur_devices->open_devices == 0) { struct btrfs_fs_devices *fs_devices; fs_devices = root->fs_info->fs_devices; while (fs_devices) { if (fs_devices->seed == cur_devices) break; fs_devices = fs_devices->seed; } fs_devices->seed = cur_devices->seed; cur_devices->seed = NULL; lock_chunks(root); __btrfs_close_devices(cur_devices); unlock_chunks(root); free_fs_devices(cur_devices); } root->fs_info->num_tolerated_disk_barrier_failures = btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); /* * at this point, the device is zero sized. We want to * remove it from the devices list and zero out the old super */ if (clear_super && disk_super) { u64 bytenr; int i; /* make sure this device isn't detected as part of * the FS anymore */ memset(&disk_super->magic, 0, sizeof(disk_super->magic)); set_buffer_dirty(bh); sync_dirty_buffer(bh); /* clear the mirror copies of super block on the disk * being removed, 0th copy is been taken care above and * the below would take of the rest */ for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) break; brelse(bh); bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); if (!bh) continue; disk_super = (struct btrfs_super_block *)bh->b_data; if (btrfs_super_bytenr(disk_super) != bytenr || btrfs_super_magic(disk_super) != BTRFS_MAGIC) { continue; } memset(&disk_super->magic, 0, sizeof(disk_super->magic)); set_buffer_dirty(bh); sync_dirty_buffer(bh); } } ret = 0; if (bdev) { /* Notify udev that device has changed */ btrfs_kobject_uevent(bdev, KOBJ_CHANGE); /* Update ctime/mtime for device path for libblkid */ update_dev_time(device_path); } error_brelse: brelse(bh); if (bdev) blkdev_put(bdev, FMODE_READ | FMODE_EXCL); out: mutex_unlock(&uuid_mutex); return ret; error_undo: if (device->writeable) { lock_chunks(root); list_add(&device->dev_alloc_list, &root->fs_info->fs_devices->alloc_list); unlock_chunks(root); root->fs_info->fs_devices->rw_devices++; } goto error_brelse; } void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev) { WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); list_del_rcu(&srcdev->dev_list); list_del_rcu(&srcdev->dev_alloc_list); fs_info->fs_devices->num_devices--; if (srcdev->missing) { fs_info->fs_devices->missing_devices--; fs_info->fs_devices->rw_devices++; } if (srcdev->can_discard) fs_info->fs_devices->num_can_discard--; if (srcdev->bdev) { fs_info->fs_devices->open_devices--; /* zero out the old super */ btrfs_scratch_superblock(srcdev); } call_rcu(&srcdev->rcu, free_device); } void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, struct btrfs_device *tgtdev) { struct btrfs_device *next_device; WARN_ON(!tgtdev); mutex_lock(&fs_info->fs_devices->device_list_mutex); if (tgtdev->bdev) { btrfs_scratch_superblock(tgtdev); fs_info->fs_devices->open_devices--; } fs_info->fs_devices->num_devices--; if (tgtdev->can_discard) fs_info->fs_devices->num_can_discard++; next_device = list_entry(fs_info->fs_devices->devices.next, struct btrfs_device, dev_list); if (tgtdev->bdev == fs_info->sb->s_bdev) fs_info->sb->s_bdev = next_device->bdev; if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) fs_info->fs_devices->latest_bdev = next_device->bdev; list_del_rcu(&tgtdev->dev_list); call_rcu(&tgtdev->rcu, free_device); mutex_unlock(&fs_info->fs_devices->device_list_mutex); } static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, struct btrfs_device **device) { int ret = 0; struct btrfs_super_block *disk_super; u64 devid; u8 *dev_uuid; struct block_device *bdev; struct buffer_head *bh; *device = NULL; ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, root->fs_info->bdev_holder, 0, &bdev, &bh); if (ret) return ret; disk_super = (struct btrfs_super_block *)bh->b_data; devid = btrfs_stack_device_id(&disk_super->dev_item); dev_uuid = disk_super->dev_item.uuid; *device = btrfs_find_device(root->fs_info, devid, dev_uuid, disk_super->fsid); brelse(bh); if (!*device) ret = -ENOENT; blkdev_put(bdev, FMODE_READ); return ret; } int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, char *device_path, struct btrfs_device **device) { *device = NULL; if (strcmp(device_path, "missing") == 0) { struct list_head *devices; struct btrfs_device *tmp; devices = &root->fs_info->fs_devices->devices; /* * It is safe to read the devices since the volume_mutex * is held by the caller. */ list_for_each_entry(tmp, devices, dev_list) { if (tmp->in_fs_metadata && !tmp->bdev) { *device = tmp; break; } } if (!*device) { btrfs_err(root->fs_info, "no missing device found"); return -ENOENT; } return 0; } else { return btrfs_find_device_by_path(root, device_path, device); } } /* * does all the dirty work required for changing file system's UUID. */ static int btrfs_prepare_sprout(struct btrfs_root *root) { struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; struct btrfs_fs_devices *old_devices; struct btrfs_fs_devices *seed_devices; struct btrfs_super_block *disk_super = root->fs_info->super_copy; struct btrfs_device *device; u64 super_flags; BUG_ON(!mutex_is_locked(&uuid_mutex)); if (!fs_devices->seeding) return -EINVAL; seed_devices = __alloc_fs_devices(); if (IS_ERR(seed_devices)) return PTR_ERR(seed_devices); old_devices = clone_fs_devices(fs_devices); if (IS_ERR(old_devices)) { kfree(seed_devices); return PTR_ERR(old_devices); } list_add(&old_devices->list, &fs_uuids); memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); seed_devices->opened = 1; INIT_LIST_HEAD(&seed_devices->devices); INIT_LIST_HEAD(&seed_devices->alloc_list); mutex_init(&seed_devices->device_list_mutex); mutex_lock(&root->fs_info->fs_devices->device_list_mutex); list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, synchronize_rcu); list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); list_for_each_entry(device, &seed_devices->devices, dev_list) { device->fs_devices = seed_devices; } fs_devices->seeding = 0; fs_devices->num_devices = 0; fs_devices->open_devices = 0; fs_devices->seed = seed_devices; generate_random_uuid(fs_devices->fsid); memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); super_flags = btrfs_super_flags(disk_super) & ~BTRFS_SUPER_FLAG_SEEDING; btrfs_set_super_flags(disk_super, super_flags); return 0; } /* * strore the expected generation for seed devices in device items. */ static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_dev_item *dev_item; struct btrfs_device *device; struct btrfs_key key; u8 fs_uuid[BTRFS_UUID_SIZE]; u8 dev_uuid[BTRFS_UUID_SIZE]; u64 devid; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; root = root->fs_info->chunk_root; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.offset = 0; key.type = BTRFS_DEV_ITEM_KEY; while (1) { ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto error; leaf = path->nodes[0]; next_slot: if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret > 0) break; if (ret < 0) goto error; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); btrfs_release_path(path); continue; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || key.type != BTRFS_DEV_ITEM_KEY) break; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); devid = btrfs_device_id(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); BUG_ON(!device); /* Logic error */ if (device->fs_devices->seeding) { btrfs_set_device_generation(leaf, dev_item, device->generation); btrfs_mark_buffer_dirty(leaf); } path->slots[0]++; goto next_slot; } ret = 0; error: btrfs_free_path(path); return ret; } int btrfs_init_new_device(struct btrfs_root *root, char *device_path) { struct request_queue *q; struct btrfs_trans_handle *trans; struct btrfs_device *device; struct block_device *bdev; struct list_head *devices; struct super_block *sb = root->fs_info->sb; struct rcu_string *name; u64 total_bytes; int seeding_dev = 0; int ret = 0; if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) return -EROFS; bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, root->fs_info->bdev_holder); if (IS_ERR(bdev)) return PTR_ERR(bdev); if (root->fs_info->fs_devices->seeding) { seeding_dev = 1; down_write(&sb->s_umount); mutex_lock(&uuid_mutex); } filemap_write_and_wait(bdev->bd_inode->i_mapping); devices = &root->fs_info->fs_devices->devices; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); list_for_each_entry(device, devices, dev_list) { if (device->bdev == bdev) { ret = -EEXIST; mutex_unlock( &root->fs_info->fs_devices->device_list_mutex); goto error; } } mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); device = btrfs_alloc_device(root->fs_info, NULL, NULL); if (IS_ERR(device)) { /* we can safely leave the fs_devices entry around */ ret = PTR_ERR(device); goto error; } name = rcu_string_strdup(device_path, GFP_NOFS); if (!name) { kfree(device); ret = -ENOMEM; goto error; } rcu_assign_pointer(device->name, name); trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { rcu_string_free(device->name); kfree(device); ret = PTR_ERR(trans); goto error; } lock_chunks(root); q = bdev_get_queue(bdev); if (blk_queue_discard(q)) device->can_discard = 1; device->writeable = 1; device->generation = trans->transid; device->io_width = root->sectorsize; device->io_align = root->sectorsize; device->sector_size = root->sectorsize; device->total_bytes = i_size_read(bdev->bd_inode); device->disk_total_bytes = device->total_bytes; device->dev_root = root->fs_info->dev_root; device->bdev = bdev; device->in_fs_metadata = 1; device->is_tgtdev_for_dev_replace = 0; device->mode = FMODE_EXCL; device->dev_stats_valid = 1; set_blocksize(device->bdev, 4096); if (seeding_dev) { sb->s_flags &= ~MS_RDONLY; ret = btrfs_prepare_sprout(root); BUG_ON(ret); /* -ENOMEM */ } device->fs_devices = root->fs_info->fs_devices; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); list_add(&device->dev_alloc_list, &root->fs_info->fs_devices->alloc_list); root->fs_info->fs_devices->num_devices++; root->fs_info->fs_devices->open_devices++; root->fs_info->fs_devices->rw_devices++; root->fs_info->fs_devices->total_devices++; if (device->can_discard) root->fs_info->fs_devices->num_can_discard++; root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space += device->total_bytes; spin_unlock(&root->fs_info->free_chunk_lock); if (!blk_queue_nonrot(bdev_get_queue(bdev))) root->fs_info->fs_devices->rotating = 1; total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); btrfs_set_super_total_bytes(root->fs_info->super_copy, total_bytes + device->total_bytes); total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); btrfs_set_super_num_devices(root->fs_info->super_copy, total_bytes + 1); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); if (seeding_dev) { ret = init_first_rw_device(trans, root, device); if (ret) { btrfs_abort_transaction(trans, root, ret); goto error_trans; } ret = btrfs_finish_sprout(trans, root); if (ret) { btrfs_abort_transaction(trans, root, ret); goto error_trans; } } else { ret = btrfs_add_device(trans, root, device); if (ret) { btrfs_abort_transaction(trans, root, ret); goto error_trans; } } /* * we've got more storage, clear any full flags on the space * infos */ btrfs_clear_space_info_full(root->fs_info); unlock_chunks(root); root->fs_info->num_tolerated_disk_barrier_failures = btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); ret = btrfs_commit_transaction(trans, root); if (seeding_dev) { mutex_unlock(&uuid_mutex); up_write(&sb->s_umount); if (ret) /* transaction commit */ return ret; ret = btrfs_relocate_sys_chunks(root); if (ret < 0) btrfs_error(root->fs_info, ret, "Failed to relocate sys chunks after " "device initialization. This can be fixed " "using the \"btrfs balance\" command."); trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) == -ENOENT) return 0; return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, root); } /* Update ctime/mtime for libblkid */ update_dev_time(device_path); return ret; error_trans: unlock_chunks(root); btrfs_end_transaction(trans, root); rcu_string_free(device->name); kfree(device); error: blkdev_put(bdev, FMODE_EXCL); if (seeding_dev) { mutex_unlock(&uuid_mutex); up_write(&sb->s_umount); } return ret; } int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, struct btrfs_device **device_out) { struct request_queue *q; struct btrfs_device *device; struct block_device *bdev; struct btrfs_fs_info *fs_info = root->fs_info; struct list_head *devices; struct rcu_string *name; u64 devid = BTRFS_DEV_REPLACE_DEVID; int ret = 0; *device_out = NULL; if (fs_info->fs_devices->seeding) return -EINVAL; bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, fs_info->bdev_holder); if (IS_ERR(bdev)) return PTR_ERR(bdev); filemap_write_and_wait(bdev->bd_inode->i_mapping); devices = &fs_info->fs_devices->devices; list_for_each_entry(device, devices, dev_list) { if (device->bdev == bdev) { ret = -EEXIST; goto error; } } device = btrfs_alloc_device(NULL, &devid, NULL); if (IS_ERR(device)) { ret = PTR_ERR(device); goto error; } name = rcu_string_strdup(device_path, GFP_NOFS); if (!name) { kfree(device); ret = -ENOMEM; goto error; } rcu_assign_pointer(device->name, name); q = bdev_get_queue(bdev); if (blk_queue_discard(q)) device->can_discard = 1; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); device->writeable = 1; device->generation = 0; device->io_width = root->sectorsize; device->io_align = root->sectorsize; device->sector_size = root->sectorsize; device->total_bytes = i_size_read(bdev->bd_inode); device->disk_total_bytes = device->total_bytes; device->dev_root = fs_info->dev_root; device->bdev = bdev; device->in_fs_metadata = 1; device->is_tgtdev_for_dev_replace = 1; device->mode = FMODE_EXCL; device->dev_stats_valid = 1; set_blocksize(device->bdev, 4096); device->fs_devices = fs_info->fs_devices; list_add(&device->dev_list, &fs_info->fs_devices->devices); fs_info->fs_devices->num_devices++; fs_info->fs_devices->open_devices++; if (device->can_discard) fs_info->fs_devices->num_can_discard++; mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); *device_out = device; return ret; error: blkdev_put(bdev, FMODE_EXCL); return ret; } void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, struct btrfs_device *tgtdev) { WARN_ON(fs_info->fs_devices->rw_devices == 0); tgtdev->io_width = fs_info->dev_root->sectorsize; tgtdev->io_align = fs_info->dev_root->sectorsize; tgtdev->sector_size = fs_info->dev_root->sectorsize; tgtdev->dev_root = fs_info->dev_root; tgtdev->in_fs_metadata = 1; } static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_root *root; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; root = device->dev_root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } static int __btrfs_grow_device(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 new_size) { struct btrfs_super_block *super_copy = device->dev_root->fs_info->super_copy; u64 old_total = btrfs_super_total_bytes(super_copy); u64 diff = new_size - device->total_bytes; if (!device->writeable) return -EACCES; if (new_size <= device->total_bytes || device->is_tgtdev_for_dev_replace) return -EINVAL; btrfs_set_super_total_bytes(super_copy, old_total + diff); device->fs_devices->total_rw_bytes += diff; device->total_bytes = new_size; device->disk_total_bytes = new_size; btrfs_clear_space_info_full(device->dev_root->fs_info); return btrfs_update_device(trans, device); } int btrfs_grow_device(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 new_size) { int ret; lock_chunks(device->dev_root); ret = __btrfs_grow_device(trans, device, new_size); unlock_chunks(device->dev_root); return ret; } static int btrfs_free_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset) { int ret; struct btrfs_path *path; struct btrfs_key key; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = chunk_objectid; key.offset = chunk_offset; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; else if (ret > 0) { /* Logic error or corruption */ btrfs_error(root->fs_info, -ENOENT, "Failed lookup while freeing chunk."); ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, root, path); if (ret < 0) btrfs_error(root->fs_info, ret, "Failed to delete chunk item."); out: btrfs_free_path(path); return ret; } static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 chunk_offset) { struct btrfs_super_block *super_copy = root->fs_info->super_copy; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; u8 *ptr; int ret = 0; u32 num_stripes; u32 array_size; u32 len = 0; u32 cur; struct btrfs_key key; array_size = btrfs_super_sys_array_size(super_copy); ptr = super_copy->sys_chunk_array; cur = 0; while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); len = sizeof(*disk_key); if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)(ptr + len); num_stripes = btrfs_stack_chunk_num_stripes(chunk); len += btrfs_chunk_item_size(num_stripes); } else { ret = -EIO; break; } if (key.objectid == chunk_objectid && key.offset == chunk_offset) { memmove(ptr, ptr + len, array_size - (cur + len)); array_size -= len; btrfs_set_super_sys_array_size(super_copy, array_size); } else { ptr += len; cur += len; } } return ret; } static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset) { struct extent_map_tree *em_tree; struct btrfs_root *extent_root; struct btrfs_trans_handle *trans; struct extent_map *em; struct map_lookup *map; int ret; int i; root = root->fs_info->chunk_root; extent_root = root->fs_info->extent_root; em_tree = &root->fs_info->mapping_tree.map_tree; ret = btrfs_can_relocate(extent_root, chunk_offset); if (ret) return -ENOSPC; /* step one, relocate all the extents inside this chunk */ ret = btrfs_relocate_block_group(extent_root, chunk_offset); if (ret) return ret; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); btrfs_std_error(root->fs_info, ret); return ret; } lock_chunks(root); /* * step two, delete the device extents and the * chunk tree entries */ read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, chunk_offset, 1); read_unlock(&em_tree->lock); BUG_ON(!em || em->start > chunk_offset || em->start + em->len < chunk_offset); map = (struct map_lookup *)em->bdev; for (i = 0; i < map->num_stripes; i++) { ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, map->stripes[i].physical); BUG_ON(ret); if (map->stripes[i].dev) { ret = btrfs_update_device(trans, map->stripes[i].dev); BUG_ON(ret); } } ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, chunk_offset); BUG_ON(ret); trace_btrfs_chunk_free(root, map, chunk_offset, em->len); if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); BUG_ON(ret); } ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); BUG_ON(ret); write_lock(&em_tree->lock); remove_extent_mapping(em_tree, em); write_unlock(&em_tree->lock); kfree(map); em->bdev = NULL; /* once for the tree */ free_extent_map(em); /* once for us */ free_extent_map(em); unlock_chunks(root); btrfs_end_transaction(trans, root); return 0; } static int btrfs_relocate_sys_chunks(struct btrfs_root *root) { struct btrfs_root *chunk_root = root->fs_info->chunk_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_chunk *chunk; struct btrfs_key key; struct btrfs_key found_key; u64 chunk_tree = chunk_root->root_key.objectid; u64 chunk_type; bool retried = false; int failed = 0; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = (u64)-1; key.type = BTRFS_CHUNK_ITEM_KEY; while (1) { ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); /* Corruption */ ret = btrfs_previous_item(chunk_root, path, key.objectid, key.type); if (ret < 0) goto error; if (ret > 0) break; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); chunk = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_chunk); chunk_type = btrfs_chunk_type(leaf, chunk); btrfs_release_path(path); if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { ret = btrfs_relocate_chunk(chunk_root, chunk_tree, found_key.objectid, found_key.offset); if (ret == -ENOSPC) failed++; else if (ret) BUG(); } if (found_key.offset == 0) break; key.offset = found_key.offset - 1; } ret = 0; if (failed && !retried) { failed = 0; retried = true; goto again; } else if (WARN_ON(failed && retried)) { ret = -ENOSPC; } error: btrfs_free_path(path); return ret; } static int insert_balance_item(struct btrfs_root *root, struct btrfs_balance_control *bctl) { struct btrfs_trans_handle *trans; struct btrfs_balance_item *item; struct btrfs_disk_balance_args disk_bargs; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int ret, err; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_BALANCE_ITEM_KEY; key.offset = 0; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*item)); if (ret) goto out; leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); btrfs_set_balance_data(leaf, item, &disk_bargs); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); btrfs_set_balance_meta(leaf, item, &disk_bargs); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); btrfs_set_balance_sys(leaf, item, &disk_bargs); btrfs_set_balance_flags(leaf, item, bctl->flags); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); err = btrfs_commit_transaction(trans, root); if (err && !ret) ret = err; return ret; } static int del_balance_item(struct btrfs_root *root) { struct btrfs_trans_handle *trans; struct btrfs_path *path; struct btrfs_key key; int ret, err; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_BALANCE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, root, path); out: btrfs_free_path(path); err = btrfs_commit_transaction(trans, root); if (err && !ret) ret = err; return ret; } /* * This is a heuristic used to reduce the number of chunks balanced on * resume after balance was interrupted. */ static void update_balance_args(struct btrfs_balance_control *bctl) { /* * Turn on soft mode for chunk types that were being converted. */ if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; /* * Turn on usage filter if is not already used. The idea is * that chunks that we have already balanced should be * reasonably full. Don't do it for chunks that are being * converted - that will keep us from relocating unconverted * (albeit full) chunks. */ if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->data.usage = 90; } if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->sys.usage = 90; } if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->meta.usage = 90; } } /* * Should be called with both balance and volume mutexes held to * serialize other volume operations (add_dev/rm_dev/resize) with * restriper. Same goes for unset_balance_control. */ static void set_balance_control(struct btrfs_balance_control *bctl) { struct btrfs_fs_info *fs_info = bctl->fs_info; BUG_ON(fs_info->balance_ctl); spin_lock(&fs_info->balance_lock); fs_info->balance_ctl = bctl; spin_unlock(&fs_info->balance_lock); } static void unset_balance_control(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; BUG_ON(!fs_info->balance_ctl); spin_lock(&fs_info->balance_lock); fs_info->balance_ctl = NULL; spin_unlock(&fs_info->balance_lock); kfree(bctl); } /* * Balance filters. Return 1 if chunk should be filtered out * (should not be balanced). */ static int chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) { chunk_type = chunk_to_extended(chunk_type) & BTRFS_EXTENDED_PROFILE_MASK; if (bargs->profiles & chunk_type) return 0; return 1; } static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, struct btrfs_balance_args *bargs) { struct btrfs_block_group_cache *cache; u64 chunk_used, user_thresh; int ret = 1; cache = btrfs_lookup_block_group(fs_info, chunk_offset); chunk_used = btrfs_block_group_used(&cache->item); if (bargs->usage == 0) user_thresh = 1; else if (bargs->usage > 100) user_thresh = cache->key.offset; else user_thresh = div_factor_fine(cache->key.offset, bargs->usage); if (chunk_used < user_thresh) ret = 0; btrfs_put_block_group(cache); return ret; } static int chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, struct btrfs_balance_args *bargs) { struct btrfs_stripe *stripe; int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); int i; for (i = 0; i < num_stripes; i++) { stripe = btrfs_stripe_nr(chunk, i); if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) return 0; } return 1; } /* [pstart, pend) */ static int chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 chunk_offset, struct btrfs_balance_args *bargs) { struct btrfs_stripe *stripe; int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); u64 stripe_offset; u64 stripe_length; int factor; int i; if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) return 0; if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { factor = num_stripes / 2; } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { factor = num_stripes - 1; } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { factor = num_stripes - 2; } else { factor = num_stripes; } for (i = 0; i < num_stripes; i++) { stripe = btrfs_stripe_nr(chunk, i); if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) continue; stripe_offset = btrfs_stripe_offset(leaf, stripe); stripe_length = btrfs_chunk_length(leaf, chunk); do_div(stripe_length, factor); if (stripe_offset < bargs->pend && stripe_offset + stripe_length > bargs->pstart) return 0; } return 1; } /* [vstart, vend) */ static int chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 chunk_offset, struct btrfs_balance_args *bargs) { if (chunk_offset < bargs->vend && chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) /* at least part of the chunk is inside this vrange */ return 0; return 1; } static int chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) { if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) return 0; chunk_type = chunk_to_extended(chunk_type) & BTRFS_EXTENDED_PROFILE_MASK; if (bargs->target == chunk_type) return 1; return 0; } static int should_balance_chunk(struct btrfs_root *root, struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 chunk_offset) { struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; struct btrfs_balance_args *bargs = NULL; u64 chunk_type = btrfs_chunk_type(leaf, chunk); /* type filter */ if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { return 0; } if (chunk_type & BTRFS_BLOCK_GROUP_DATA) bargs = &bctl->data; else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) bargs = &bctl->sys; else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) bargs = &bctl->meta; /* profiles filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && chunk_profiles_filter(chunk_type, bargs)) { return 0; } /* usage filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { return 0; } /* devid filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && chunk_devid_filter(leaf, chunk, bargs)) { return 0; } /* drange filter, makes sense only with devid filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { return 0; } /* vrange filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { return 0; } /* soft profile changing mode */ if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && chunk_soft_convert_filter(chunk_type, bargs)) { return 0; } /* * limited by count, must be the last filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { if (bargs->limit == 0) return 0; else bargs->limit--; } return 1; } static int __btrfs_balance(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; struct btrfs_root *chunk_root = fs_info->chunk_root; struct btrfs_root *dev_root = fs_info->dev_root; struct list_head *devices; struct btrfs_device *device; u64 old_size; u64 size_to_free; struct btrfs_chunk *chunk; struct btrfs_path *path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_trans_handle *trans; struct extent_buffer *leaf; int slot; int ret; int enospc_errors = 0; bool counting = true; u64 limit_data = bctl->data.limit; u64 limit_meta = bctl->meta.limit; u64 limit_sys = bctl->sys.limit; /* step one make some room on all the devices */ devices = &fs_info->fs_devices->devices; list_for_each_entry(device, devices, dev_list) { old_size = device->total_bytes; size_to_free = div_factor(old_size, 1); size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); if (!device->writeable || device->total_bytes - device->bytes_used > size_to_free || device->is_tgtdev_for_dev_replace) continue; ret = btrfs_shrink_device(device, old_size - size_to_free); if (ret == -ENOSPC) break; BUG_ON(ret); trans = btrfs_start_transaction(dev_root, 0); BUG_ON(IS_ERR(trans)); ret = btrfs_grow_device(trans, device, old_size); BUG_ON(ret); btrfs_end_transaction(trans, dev_root); } /* step two, relocate all the chunks */ path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto error; } /* zero out stat counters */ spin_lock(&fs_info->balance_lock); memset(&bctl->stat, 0, sizeof(bctl->stat)); spin_unlock(&fs_info->balance_lock); again: if (!counting) { bctl->data.limit = limit_data; bctl->meta.limit = limit_meta; bctl->sys.limit = limit_sys; } key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = (u64)-1; key.type = BTRFS_CHUNK_ITEM_KEY; while (1) { if ((!counting && atomic_read(&fs_info->balance_pause_req)) || atomic_read(&fs_info->balance_cancel_req)) { ret = -ECANCELED; goto error; } ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); if (ret < 0) goto error; /* * this shouldn't happen, it means the last relocate * failed */ if (ret == 0) BUG(); /* FIXME break ? */ ret = btrfs_previous_item(chunk_root, path, 0, BTRFS_CHUNK_ITEM_KEY); if (ret) { ret = 0; break; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != key.objectid) break; chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); if (!counting) { spin_lock(&fs_info->balance_lock); bctl->stat.considered++; spin_unlock(&fs_info->balance_lock); } ret = should_balance_chunk(chunk_root, leaf, chunk, found_key.offset); btrfs_release_path(path); if (!ret) goto loop; if (counting) { spin_lock(&fs_info->balance_lock); bctl->stat.expected++; spin_unlock(&fs_info->balance_lock); goto loop; } ret = btrfs_relocate_chunk(chunk_root, chunk_root->root_key.objectid, found_key.objectid, found_key.offset); if (ret && ret != -ENOSPC) goto error; if (ret == -ENOSPC) { enospc_errors++; } else { spin_lock(&fs_info->balance_lock); bctl->stat.completed++; spin_unlock(&fs_info->balance_lock); } loop: if (found_key.offset == 0) break; key.offset = found_key.offset - 1; } if (counting) { btrfs_release_path(path); counting = false; goto again; } error: btrfs_free_path(path); if (enospc_errors) { btrfs_info(fs_info, "%d enospc errors during balance", enospc_errors); if (!ret) ret = -ENOSPC; } return ret; } /** * alloc_profile_is_valid - see if a given profile is valid and reduced * @flags: profile to validate * @extended: if true @flags is treated as an extended profile */ static int alloc_profile_is_valid(u64 flags, int extended) { u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : BTRFS_BLOCK_GROUP_PROFILE_MASK); flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; /* 1) check that all other bits are zeroed */ if (flags & ~mask) return 0; /* 2) see if profile is reduced */ if (flags == 0) return !extended; /* "0" is valid for usual profiles */ /* true if exactly one bit set */ return (flags & (flags - 1)) == 0; } static inline int balance_need_close(struct btrfs_fs_info *fs_info) { /* cancel requested || normal exit path */ return atomic_read(&fs_info->balance_cancel_req) || (atomic_read(&fs_info->balance_pause_req) == 0 && atomic_read(&fs_info->balance_cancel_req) == 0); } static void __cancel_balance(struct btrfs_fs_info *fs_info) { int ret; unset_balance_control(fs_info); ret = del_balance_item(fs_info->tree_root); if (ret) btrfs_std_error(fs_info, ret); atomic_set(&fs_info->mutually_exclusive_operation_running, 0); } /* * Should be called with both balance and volume mutexes held */ int btrfs_balance(struct btrfs_balance_control *bctl, struct btrfs_ioctl_balance_args *bargs) { struct btrfs_fs_info *fs_info = bctl->fs_info; u64 allowed; int mixed = 0; int ret; u64 num_devices; unsigned seq; if (btrfs_fs_closing(fs_info) || atomic_read(&fs_info->balance_pause_req) || atomic_read(&fs_info->balance_cancel_req)) { ret = -EINVAL; goto out; } allowed = btrfs_super_incompat_flags(fs_info->super_copy); if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) mixed = 1; /* * In case of mixed groups both data and meta should be picked, * and identical options should be given for both of them. */ allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; if (mixed && (bctl->flags & allowed)) { if (!(bctl->flags & BTRFS_BALANCE_DATA) || !(bctl->flags & BTRFS_BALANCE_METADATA) || memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { btrfs_err(fs_info, "with mixed groups data and " "metadata balance options must be the same"); ret = -EINVAL; goto out; } } num_devices = fs_info->fs_devices->num_devices; btrfs_dev_replace_lock(&fs_info->dev_replace); if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { BUG_ON(num_devices < 1); num_devices--; } btrfs_dev_replace_unlock(&fs_info->dev_replace); allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; if (num_devices == 1) allowed |= BTRFS_BLOCK_GROUP_DUP; else if (num_devices > 1) allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); if (num_devices > 2) allowed |= BTRFS_BLOCK_GROUP_RAID5; if (num_devices > 3) allowed |= (BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_RAID6); if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && (!alloc_profile_is_valid(bctl->data.target, 1) || (bctl->data.target & ~allowed))) { btrfs_err(fs_info, "unable to start balance with target " "data profile %llu", bctl->data.target); ret = -EINVAL; goto out; } if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && (!alloc_profile_is_valid(bctl->meta.target, 1) || (bctl->meta.target & ~allowed))) { btrfs_err(fs_info, "unable to start balance with target metadata profile %llu", bctl->meta.target); ret = -EINVAL; goto out; } if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && (!alloc_profile_is_valid(bctl->sys.target, 1) || (bctl->sys.target & ~allowed))) { btrfs_err(fs_info, "unable to start balance with target system profile %llu", bctl->sys.target); ret = -EINVAL; goto out; } /* allow dup'ed data chunks only in mixed mode */ if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { btrfs_err(fs_info, "dup for data is not allowed"); ret = -EINVAL; goto out; } /* allow to reduce meta or sys integrity only if force set */ allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6; do { seq = read_seqbegin(&fs_info->profiles_lock); if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && (fs_info->avail_system_alloc_bits & allowed) && !(bctl->sys.target & allowed)) || ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && (fs_info->avail_metadata_alloc_bits & allowed) && !(bctl->meta.target & allowed))) { if (bctl->flags & BTRFS_BALANCE_FORCE) { btrfs_info(fs_info, "force reducing metadata integrity"); } else { btrfs_err(fs_info, "balance will reduce metadata " "integrity, use force if you want this"); ret = -EINVAL; goto out; } } } while (read_seqretry(&fs_info->profiles_lock, seq)); if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { int num_tolerated_disk_barrier_failures; u64 target = bctl->sys.target; num_tolerated_disk_barrier_failures = btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); if (num_tolerated_disk_barrier_failures > 0 && (target & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | BTRFS_AVAIL_ALLOC_BIT_SINGLE))) num_tolerated_disk_barrier_failures = 0; else if (num_tolerated_disk_barrier_failures > 1 && (target & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) num_tolerated_disk_barrier_failures = 1; fs_info->num_tolerated_disk_barrier_failures = num_tolerated_disk_barrier_failures; } ret = insert_balance_item(fs_info->tree_root, bctl); if (ret && ret != -EEXIST) goto out; if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { BUG_ON(ret == -EEXIST); set_balance_control(bctl); } else { BUG_ON(ret != -EEXIST); spin_lock(&fs_info->balance_lock); update_balance_args(bctl); spin_unlock(&fs_info->balance_lock); } atomic_inc(&fs_info->balance_running); mutex_unlock(&fs_info->balance_mutex); ret = __btrfs_balance(fs_info); mutex_lock(&fs_info->balance_mutex); atomic_dec(&fs_info->balance_running); if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { fs_info->num_tolerated_disk_barrier_failures = btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); } if (bargs) { memset(bargs, 0, sizeof(*bargs)); update_ioctl_balance_args(fs_info, 0, bargs); } if ((ret && ret != -ECANCELED && ret != -ENOSPC) || balance_need_close(fs_info)) { __cancel_balance(fs_info); } wake_up(&fs_info->balance_wait_q); return ret; out: if (bctl->flags & BTRFS_BALANCE_RESUME) __cancel_balance(fs_info); else { kfree(bctl); atomic_set(&fs_info->mutually_exclusive_operation_running, 0); } return ret; } static int balance_kthread(void *data) { struct btrfs_fs_info *fs_info = data; int ret = 0; mutex_lock(&fs_info->volume_mutex); mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl) { btrfs_info(fs_info, "continuing balance"); ret = btrfs_balance(fs_info->balance_ctl, NULL); } mutex_unlock(&fs_info->balance_mutex); mutex_unlock(&fs_info->volume_mutex); return ret; } int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) { struct task_struct *tsk; spin_lock(&fs_info->balance_lock); if (!fs_info->balance_ctl) { spin_unlock(&fs_info->balance_lock); return 0; } spin_unlock(&fs_info->balance_lock); if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { btrfs_info(fs_info, "force skipping balance"); return 0; } tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); return PTR_ERR_OR_ZERO(tsk); } int btrfs_recover_balance(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl; struct btrfs_balance_item *item; struct btrfs_disk_balance_args disk_bargs; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_BALANCE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { /* ret = -ENOENT; */ ret = 0; goto out; } bctl = kzalloc(sizeof(*bctl), GFP_NOFS); if (!bctl) { ret = -ENOMEM; goto out; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); bctl->fs_info = fs_info; bctl->flags = btrfs_balance_flags(leaf, item); bctl->flags |= BTRFS_BALANCE_RESUME; btrfs_balance_data(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); btrfs_balance_meta(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); btrfs_balance_sys(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); mutex_lock(&fs_info->volume_mutex); mutex_lock(&fs_info->balance_mutex); set_balance_control(bctl); mutex_unlock(&fs_info->balance_mutex); mutex_unlock(&fs_info->volume_mutex); out: btrfs_free_path(path); return ret; } int btrfs_pause_balance(struct btrfs_fs_info *fs_info) { int ret = 0; mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { mutex_unlock(&fs_info->balance_mutex); return -ENOTCONN; } if (atomic_read(&fs_info->balance_running)) { atomic_inc(&fs_info->balance_pause_req); mutex_unlock(&fs_info->balance_mutex); wait_event(fs_info->balance_wait_q, atomic_read(&fs_info->balance_running) == 0); mutex_lock(&fs_info->balance_mutex); /* we are good with balance_ctl ripped off from under us */ BUG_ON(atomic_read(&fs_info->balance_running)); atomic_dec(&fs_info->balance_pause_req); } else { ret = -ENOTCONN; } mutex_unlock(&fs_info->balance_mutex); return ret; } int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) { if (fs_info->sb->s_flags & MS_RDONLY) return -EROFS; mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { mutex_unlock(&fs_info->balance_mutex); return -ENOTCONN; } atomic_inc(&fs_info->balance_cancel_req); /* * if we are running just wait and return, balance item is * deleted in btrfs_balance in this case */ if (atomic_read(&fs_info->balance_running)) { mutex_unlock(&fs_info->balance_mutex); wait_event(fs_info->balance_wait_q, atomic_read(&fs_info->balance_running) == 0); mutex_lock(&fs_info->balance_mutex); } else { /* __cancel_balance needs volume_mutex */ mutex_unlock(&fs_info->balance_mutex); mutex_lock(&fs_info->volume_mutex); mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl) __cancel_balance(fs_info); mutex_unlock(&fs_info->volume_mutex); } BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); atomic_dec(&fs_info->balance_cancel_req); mutex_unlock(&fs_info->balance_mutex); return 0; } static int btrfs_uuid_scan_kthread(void *data) { struct btrfs_fs_info *fs_info = data; struct btrfs_root *root = fs_info->tree_root; struct btrfs_key key; struct btrfs_key max_key; struct btrfs_path *path = NULL; int ret = 0; struct extent_buffer *eb; int slot; struct btrfs_root_item root_item; u32 item_size; struct btrfs_trans_handle *trans = NULL; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; max_key.objectid = (u64)-1; max_key.type = BTRFS_ROOT_ITEM_KEY; max_key.offset = (u64)-1; path->keep_locks = 1; while (1) { ret = btrfs_search_forward(root, &key, path, 0); if (ret) { if (ret > 0) ret = 0; break; } if (key.type != BTRFS_ROOT_ITEM_KEY || (key.objectid < BTRFS_FIRST_FREE_OBJECTID && key.objectid != BTRFS_FS_TREE_OBJECTID) || key.objectid > BTRFS_LAST_FREE_OBJECTID) goto skip; eb = path->nodes[0]; slot = path->slots[0]; item_size = btrfs_item_size_nr(eb, slot); if (item_size < sizeof(root_item)) goto skip; read_extent_buffer(eb, &root_item, btrfs_item_ptr_offset(eb, slot), (int)sizeof(root_item)); if (btrfs_root_refs(&root_item) == 0) goto skip; if (!btrfs_is_empty_uuid(root_item.uuid) || !btrfs_is_empty_uuid(root_item.received_uuid)) { if (trans) goto update_tree; btrfs_release_path(path); /* * 1 - subvol uuid item * 1 - received_subvol uuid item */ trans = btrfs_start_transaction(fs_info->uuid_root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } continue; } else { goto skip; } update_tree: if (!btrfs_is_empty_uuid(root_item.uuid)) { ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, root_item.uuid, BTRFS_UUID_KEY_SUBVOL, key.objectid); if (ret < 0) { btrfs_warn(fs_info, "uuid_tree_add failed %d", ret); break; } } if (!btrfs_is_empty_uuid(root_item.received_uuid)) { ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, root_item.received_uuid, BTRFS_UUID_KEY_RECEIVED_SUBVOL, key.objectid); if (ret < 0) { btrfs_warn(fs_info, "uuid_tree_add failed %d", ret); break; } } skip: if (trans) { ret = btrfs_end_transaction(trans, fs_info->uuid_root); trans = NULL; if (ret) break; } btrfs_release_path(path); if (key.offset < (u64)-1) { key.offset++; } else if (key.type < BTRFS_ROOT_ITEM_KEY) { key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; } else if (key.objectid < (u64)-1) { key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; key.objectid++; } else { break; } cond_resched(); } out: btrfs_free_path(path); if (trans && !IS_ERR(trans)) btrfs_end_transaction(trans, fs_info->uuid_root); if (ret) btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); else fs_info->update_uuid_tree_gen = 1; up(&fs_info->uuid_tree_rescan_sem); return 0; } /* * Callback for btrfs_uuid_tree_iterate(). * returns: * 0 check succeeded, the entry is not outdated. * < 0 if an error occured. * > 0 if the check failed, which means the caller shall remove the entry. */ static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, u8 *uuid, u8 type, u64 subid) { struct btrfs_key key; int ret = 0; struct btrfs_root *subvol_root; if (type != BTRFS_UUID_KEY_SUBVOL && type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) goto out; key.objectid = subid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); if (IS_ERR(subvol_root)) { ret = PTR_ERR(subvol_root); if (ret == -ENOENT) ret = 1; goto out; } switch (type) { case BTRFS_UUID_KEY_SUBVOL: if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) ret = 1; break; case BTRFS_UUID_KEY_RECEIVED_SUBVOL: if (memcmp(uuid, subvol_root->root_item.received_uuid, BTRFS_UUID_SIZE)) ret = 1; break; } out: return ret; } static int btrfs_uuid_rescan_kthread(void *data) { struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; int ret; /* * 1st step is to iterate through the existing UUID tree and * to delete all entries that contain outdated data. * 2nd step is to add all missing entries to the UUID tree. */ ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); if (ret < 0) { btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); up(&fs_info->uuid_tree_rescan_sem); return ret; } return btrfs_uuid_scan_kthread(data); } int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) { struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *uuid_root; struct task_struct *task; int ret; /* * 1 - root node * 1 - root item */ trans = btrfs_start_transaction(tree_root, 2); if (IS_ERR(trans)) return PTR_ERR(trans); uuid_root = btrfs_create_tree(trans, fs_info, BTRFS_UUID_TREE_OBJECTID); if (IS_ERR(uuid_root)) { btrfs_abort_transaction(trans, tree_root, PTR_ERR(uuid_root)); return PTR_ERR(uuid_root); } fs_info->uuid_root = uuid_root; ret = btrfs_commit_transaction(trans, tree_root); if (ret) return ret; down(&fs_info->uuid_tree_rescan_sem); task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); if (IS_ERR(task)) { /* fs_info->update_uuid_tree_gen remains 0 in all error case */ btrfs_warn(fs_info, "failed to start uuid_scan task"); up(&fs_info->uuid_tree_rescan_sem); return PTR_ERR(task); } return 0; } int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) { struct task_struct *task; down(&fs_info->uuid_tree_rescan_sem); task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); if (IS_ERR(task)) { /* fs_info->update_uuid_tree_gen remains 0 in all error case */ btrfs_warn(fs_info, "failed to start uuid_rescan task"); up(&fs_info->uuid_tree_rescan_sem); return PTR_ERR(task); } return 0; } /* * shrinking a device means finding all of the device extents past * the new size, and then following the back refs to the chunks. * The chunk relocation code actually frees the device extent */ int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) { struct btrfs_trans_handle *trans; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *dev_extent = NULL; struct btrfs_path *path; u64 length; u64 chunk_tree; u64 chunk_objectid; u64 chunk_offset; int ret; int slot; int failed = 0; bool retried = false; struct extent_buffer *l; struct btrfs_key key; struct btrfs_super_block *super_copy = root->fs_info->super_copy; u64 old_total = btrfs_super_total_bytes(super_copy); u64 old_size = device->total_bytes; u64 diff = device->total_bytes - new_size; if (device->is_tgtdev_for_dev_replace) return -EINVAL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = 2; lock_chunks(root); device->total_bytes = new_size; if (device->writeable) { device->fs_devices->total_rw_bytes -= diff; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space -= diff; spin_unlock(&root->fs_info->free_chunk_lock); } unlock_chunks(root); again: key.objectid = device->devid; key.offset = (u64)-1; key.type = BTRFS_DEV_EXTENT_KEY; do { ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto done; ret = btrfs_previous_item(root, path, 0, key.type); if (ret < 0) goto done; if (ret) { ret = 0; btrfs_release_path(path); break; } l = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(l, &key, path->slots[0]); if (key.objectid != device->devid) { btrfs_release_path(path); break; } dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); length = btrfs_dev_extent_length(l, dev_extent); if (key.offset + length <= new_size) { btrfs_release_path(path); break; } chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); btrfs_release_path(path); ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, chunk_offset); if (ret && ret != -ENOSPC) goto done; if (ret == -ENOSPC) failed++; } while (key.offset-- > 0); if (failed && !retried) { failed = 0; retried = true; goto again; } else if (failed && retried) { ret = -ENOSPC; lock_chunks(root); device->total_bytes = old_size; if (device->writeable) device->fs_devices->total_rw_bytes += diff; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space += diff; spin_unlock(&root->fs_info->free_chunk_lock); unlock_chunks(root); goto done; } /* Shrinking succeeded, else we would be at "done". */ trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto done; } lock_chunks(root); device->disk_total_bytes = new_size; /* Now btrfs_update_device() will change the on-disk size. */ ret = btrfs_update_device(trans, device); if (ret) { unlock_chunks(root); btrfs_end_transaction(trans, root); goto done; } WARN_ON(diff > old_total); btrfs_set_super_total_bytes(super_copy, old_total - diff); unlock_chunks(root); btrfs_end_transaction(trans, root); done: btrfs_free_path(path); return ret; } static int btrfs_add_system_chunk(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_chunk *chunk, int item_size) { struct btrfs_super_block *super_copy = root->fs_info->super_copy; struct btrfs_disk_key disk_key; u32 array_size; u8 *ptr; array_size = btrfs_super_sys_array_size(super_copy); if (array_size + item_size + sizeof(disk_key) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) return -EFBIG; ptr = super_copy->sys_chunk_array + array_size; btrfs_cpu_key_to_disk(&disk_key, key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); memcpy(ptr, chunk, item_size); item_size += sizeof(disk_key); btrfs_set_super_sys_array_size(super_copy, array_size + item_size); return 0; } /* * sort the devices in descending order by max_avail, total_avail */ static int btrfs_cmp_device_info(const void *a, const void *b) { const struct btrfs_device_info *di_a = a; const struct btrfs_device_info *di_b = b; if (di_a->max_avail > di_b->max_avail) return -1; if (di_a->max_avail < di_b->max_avail) return 1; if (di_a->total_avail > di_b->total_avail) return -1; if (di_a->total_avail < di_b->total_avail) return 1; return 0; } static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { [BTRFS_RAID_RAID10] = { .sub_stripes = 2, .dev_stripes = 1, .devs_max = 0, /* 0 == as many as possible */ .devs_min = 4, .devs_increment = 2, .ncopies = 2, }, [BTRFS_RAID_RAID1] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 2, .devs_min = 2, .devs_increment = 2, .ncopies = 2, }, [BTRFS_RAID_DUP] = { .sub_stripes = 1, .dev_stripes = 2, .devs_max = 1, .devs_min = 1, .devs_increment = 1, .ncopies = 2, }, [BTRFS_RAID_RAID0] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 2, .devs_increment = 1, .ncopies = 1, }, [BTRFS_RAID_SINGLE] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 1, .devs_min = 1, .devs_increment = 1, .ncopies = 1, }, [BTRFS_RAID_RAID5] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 2, .devs_increment = 1, .ncopies = 2, }, [BTRFS_RAID_RAID6] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 3, .devs_increment = 1, .ncopies = 3, }, }; static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) { /* TODO allow them to set a preferred stripe size */ return 64 * 1024; } static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) { if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) return; btrfs_set_fs_incompat(info, RAID56); } #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ - sizeof(struct btrfs_item) \ - sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ - 2 * sizeof(struct btrfs_disk_key) \ - 2 * sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root, u64 start, u64 type) { struct btrfs_fs_info *info = extent_root->fs_info; struct btrfs_fs_devices *fs_devices = info->fs_devices; struct list_head *cur; struct map_lookup *map = NULL; struct extent_map_tree *em_tree; struct extent_map *em; struct btrfs_device_info *devices_info = NULL; u64 total_avail; int num_stripes; /* total number of stripes to allocate */ int data_stripes; /* number of stripes that count for block group size */ int sub_stripes; /* sub_stripes info for map */ int dev_stripes; /* stripes per dev */ int devs_max; /* max devs to use */ int devs_min; /* min devs needed */ int devs_increment; /* ndevs has to be a multiple of this */ int ncopies; /* how many copies to data has */ int ret; u64 max_stripe_size; u64 max_chunk_size; u64 stripe_size; u64 num_bytes; u64 raid_stripe_len = BTRFS_STRIPE_LEN; int ndevs; int i; int j; int index; BUG_ON(!alloc_profile_is_valid(type, 0)); if (list_empty(&fs_devices->alloc_list)) return -ENOSPC; index = __get_raid_index(type); sub_stripes = btrfs_raid_array[index].sub_stripes; dev_stripes = btrfs_raid_array[index].dev_stripes; devs_max = btrfs_raid_array[index].devs_max; devs_min = btrfs_raid_array[index].devs_min; devs_increment = btrfs_raid_array[index].devs_increment; ncopies = btrfs_raid_array[index].ncopies; if (type & BTRFS_BLOCK_GROUP_DATA) { max_stripe_size = 1024 * 1024 * 1024; max_chunk_size = 10 * max_stripe_size; if (!devs_max) devs_max = BTRFS_MAX_DEVS(info->chunk_root); } else if (type & BTRFS_BLOCK_GROUP_METADATA) { /* for larger filesystems, use larger metadata chunks */ if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) max_stripe_size = 1024 * 1024 * 1024; else max_stripe_size = 256 * 1024 * 1024; max_chunk_size = max_stripe_size; if (!devs_max) devs_max = BTRFS_MAX_DEVS(info->chunk_root); } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { max_stripe_size = 32 * 1024 * 1024; max_chunk_size = 2 * max_stripe_size; if (!devs_max) devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; } else { btrfs_err(info, "invalid chunk type 0x%llx requested", type); BUG_ON(1); } /* we don't want a chunk larger than 10% of writeable space */ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), max_chunk_size); devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, GFP_NOFS); if (!devices_info) return -ENOMEM; cur = fs_devices->alloc_list.next; /* * in the first pass through the devices list, we gather information * about the available holes on each device. */ ndevs = 0; while (cur != &fs_devices->alloc_list) { struct btrfs_device *device; u64 max_avail; u64 dev_offset; device = list_entry(cur, struct btrfs_device, dev_alloc_list); cur = cur->next; if (!device->writeable) { WARN(1, KERN_ERR "BTRFS: read-only device in alloc_list\n"); continue; } if (!device->in_fs_metadata || device->is_tgtdev_for_dev_replace) continue; if (device->total_bytes > device->bytes_used) total_avail = device->total_bytes - device->bytes_used; else total_avail = 0; /* If there is no space on this device, skip it. */ if (total_avail == 0) continue; ret = find_free_dev_extent(trans, device, max_stripe_size * dev_stripes, &dev_offset, &max_avail); if (ret && ret != -ENOSPC) goto error; if (ret == 0) max_avail = max_stripe_size * dev_stripes; if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) continue; if (ndevs == fs_devices->rw_devices) { WARN(1, "%s: found more than %llu devices\n", __func__, fs_devices->rw_devices); break; } devices_info[ndevs].dev_offset = dev_offset; devices_info[ndevs].max_avail = max_avail; devices_info[ndevs].total_avail = total_avail; devices_info[ndevs].dev = device; ++ndevs; } /* * now sort the devices by hole size / available space */ sort(devices_info, ndevs, sizeof(struct btrfs_device_info), btrfs_cmp_device_info, NULL); /* round down to number of usable stripes */ ndevs -= ndevs % devs_increment; if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { ret = -ENOSPC; goto error; } if (devs_max && ndevs > devs_max) ndevs = devs_max; /* * the primary goal is to maximize the number of stripes, so use as many * devices as possible, even if the stripes are not maximum sized. */ stripe_size = devices_info[ndevs-1].max_avail; num_stripes = ndevs * dev_stripes; /* * this will have to be fixed for RAID1 and RAID10 over * more drives */ data_stripes = num_stripes / ncopies; if (type & BTRFS_BLOCK_GROUP_RAID5) { raid_stripe_len = find_raid56_stripe_len(ndevs - 1, btrfs_super_stripesize(info->super_copy)); data_stripes = num_stripes - 1; } if (type & BTRFS_BLOCK_GROUP_RAID6) { raid_stripe_len = find_raid56_stripe_len(ndevs - 2, btrfs_super_stripesize(info->super_copy)); data_stripes = num_stripes - 2; } /* * Use the number of data stripes to figure out how big this chunk * is really going to be in terms of logical address space, * and compare that answer with the max chunk size */ if (stripe_size * data_stripes > max_chunk_size) { u64 mask = (1ULL << 24) - 1; stripe_size = max_chunk_size; do_div(stripe_size, data_stripes); /* bump the answer up to a 16MB boundary */ stripe_size = (stripe_size + mask) & ~mask; /* but don't go higher than the limits we found * while searching for free extents */ if (stripe_size > devices_info[ndevs-1].max_avail) stripe_size = devices_info[ndevs-1].max_avail; } do_div(stripe_size, dev_stripes); /* align to BTRFS_STRIPE_LEN */ do_div(stripe_size, raid_stripe_len); stripe_size *= raid_stripe_len; map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); if (!map) { ret = -ENOMEM; goto error; } map->num_stripes = num_stripes; for (i = 0; i < ndevs; ++i) { for (j = 0; j < dev_stripes; ++j) { int s = i * dev_stripes + j; map->stripes[s].dev = devices_info[i].dev; map->stripes[s].physical = devices_info[i].dev_offset + j * stripe_size; } } map->sector_size = extent_root->sectorsize; map->stripe_len = raid_stripe_len; map->io_align = raid_stripe_len; map->io_width = raid_stripe_len; map->type = type; map->sub_stripes = sub_stripes; num_bytes = stripe_size * data_stripes; trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); em = alloc_extent_map(); if (!em) { ret = -ENOMEM; goto error; } em->bdev = (struct block_device *)map; em->start = start; em->len = num_bytes; em->block_start = 0; em->block_len = em->len; em->orig_block_len = stripe_size; em_tree = &extent_root->fs_info->mapping_tree.map_tree; write_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em, 0); if (!ret) { list_add_tail(&em->list, &trans->transaction->pending_chunks); atomic_inc(&em->refs); } write_unlock(&em_tree->lock); if (ret) { free_extent_map(em); goto error; } ret = btrfs_make_block_group(trans, extent_root, 0, type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, start, num_bytes); if (ret) goto error_del_extent; free_extent_map(em); check_raid56_incompat_flag(extent_root->fs_info, type); kfree(devices_info); return 0; error_del_extent: write_lock(&em_tree->lock); remove_extent_mapping(em_tree, em); write_unlock(&em_tree->lock); /* One for our allocation */ free_extent_map(em); /* One for the tree reference */ free_extent_map(em); error: kfree(map); kfree(devices_info); return ret; } int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root, u64 chunk_offset, u64 chunk_size) { struct btrfs_key key; struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; struct btrfs_device *device; struct btrfs_chunk *chunk; struct btrfs_stripe *stripe; struct extent_map_tree *em_tree; struct extent_map *em; struct map_lookup *map; size_t item_size; u64 dev_offset; u64 stripe_size; int i = 0; int ret; em_tree = &extent_root->fs_info->mapping_tree.map_tree; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); read_unlock(&em_tree->lock); if (!em) { btrfs_crit(extent_root->fs_info, "unable to find logical " "%Lu len %Lu", chunk_offset, chunk_size); return -EINVAL; } if (em->start != chunk_offset || em->len != chunk_size) { btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" " %Lu-%Lu, found %Lu-%Lu", chunk_offset, chunk_size, em->start, em->len); free_extent_map(em); return -EINVAL; } map = (struct map_lookup *)em->bdev; item_size = btrfs_chunk_item_size(map->num_stripes); stripe_size = em->orig_block_len; chunk = kzalloc(item_size, GFP_NOFS); if (!chunk) { ret = -ENOMEM; goto out; } for (i = 0; i < map->num_stripes; i++) { device = map->stripes[i].dev; dev_offset = map->stripes[i].physical; device->bytes_used += stripe_size; ret = btrfs_update_device(trans, device); if (ret) goto out; ret = btrfs_alloc_dev_extent(trans, device, chunk_root->root_key.objectid, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_offset, dev_offset, stripe_size); if (ret) goto out; } spin_lock(&extent_root->fs_info->free_chunk_lock); extent_root->fs_info->free_chunk_space -= (stripe_size * map->num_stripes); spin_unlock(&extent_root->fs_info->free_chunk_lock); stripe = &chunk->stripe; for (i = 0; i < map->num_stripes; i++) { device = map->stripes[i].dev; dev_offset = map->stripes[i].physical; btrfs_set_stack_stripe_devid(stripe, device->devid); btrfs_set_stack_stripe_offset(stripe, dev_offset); memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); stripe++; } btrfs_set_stack_chunk_length(chunk, chunk_size); btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); btrfs_set_stack_chunk_type(chunk, map->type); btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = chunk_offset; ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { /* * TODO: Cleanup of inserted chunk root in case of * failure. */ ret = btrfs_add_system_chunk(chunk_root, &key, chunk, item_size); } out: kfree(chunk); free_extent_map(em); return ret; } /* * Chunk allocation falls into two parts. The first part does works * that make the new allocated chunk useable, but not do any operation * that modifies the chunk tree. The second part does the works that * require modifying the chunk tree. This division is important for the * bootstrap process of adding storage to a seed btrfs. */ int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root, u64 type) { u64 chunk_offset; chunk_offset = find_next_chunk(extent_root->fs_info); return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); } static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_device *device) { u64 chunk_offset; u64 sys_chunk_offset; u64 alloc_profile; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *extent_root = fs_info->extent_root; int ret; chunk_offset = find_next_chunk(fs_info); alloc_profile = btrfs_get_alloc_profile(extent_root, 0); ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, alloc_profile); if (ret) return ret; sys_chunk_offset = find_next_chunk(root->fs_info); alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, alloc_profile); if (ret) { btrfs_abort_transaction(trans, root, ret); goto out; } ret = btrfs_add_device(trans, fs_info->chunk_root, device); if (ret) btrfs_abort_transaction(trans, root, ret); out: return ret; } int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) { struct extent_map *em; struct map_lookup *map; struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; int readonly = 0; int i; read_lock(&map_tree->map_tree.lock); em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); read_unlock(&map_tree->map_tree.lock); if (!em) return 1; if (btrfs_test_opt(root, DEGRADED)) { free_extent_map(em); return 0; } map = (struct map_lookup *)em->bdev; for (i = 0; i < map->num_stripes; i++) { if (!map->stripes[i].dev->writeable) { readonly = 1; break; } } free_extent_map(em); return readonly; } void btrfs_mapping_init(struct btrfs_mapping_tree *tree) { extent_map_tree_init(&tree->map_tree); } void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) { struct extent_map *em; while (1) { write_lock(&tree->map_tree.lock); em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); if (em) remove_extent_mapping(&tree->map_tree, em); write_unlock(&tree->map_tree.lock); if (!em) break; kfree(em->bdev); /* once for us */ free_extent_map(em); /* once for the tree */ free_extent_map(em); } } int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) { struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct extent_map *em; struct map_lookup *map; struct extent_map_tree *em_tree = &map_tree->map_tree; int ret; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, len); read_unlock(&em_tree->lock); /* * We could return errors for these cases, but that could get ugly and * we'd probably do the same thing which is just not do anything else * and exit, so return 1 so the callers don't try to use other copies. */ if (!em) { btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, logical+len); return 1; } if (em->start > logical || em->start + em->len < logical) { btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " "%Lu-%Lu", logical, logical+len, em->start, em->start + em->len); free_extent_map(em); return 1; } map = (struct map_lookup *)em->bdev; if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) ret = map->num_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID10) ret = map->sub_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID5) ret = 2; else if (map->type & BTRFS_BLOCK_GROUP_RAID6) ret = 3; else ret = 1; free_extent_map(em); btrfs_dev_replace_lock(&fs_info->dev_replace); if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) ret++; btrfs_dev_replace_unlock(&fs_info->dev_replace); return ret; } unsigned long btrfs_full_stripe_len(struct btrfs_root *root, struct btrfs_mapping_tree *map_tree, u64 logical) { struct extent_map *em; struct map_lookup *map; struct extent_map_tree *em_tree = &map_tree->map_tree; unsigned long len = root->sectorsize; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, len); read_unlock(&em_tree->lock); BUG_ON(!em); BUG_ON(em->start > logical || em->start + em->len < logical); map = (struct map_lookup *)em->bdev; if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { len = map->stripe_len * nr_data_stripes(map); } free_extent_map(em); return len; } int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len, int mirror_num) { struct extent_map *em; struct map_lookup *map; struct extent_map_tree *em_tree = &map_tree->map_tree; int ret = 0; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, len); read_unlock(&em_tree->lock); BUG_ON(!em); BUG_ON(em->start > logical || em->start + em->len < logical); map = (struct map_lookup *)em->bdev; if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) ret = 1; free_extent_map(em); return ret; } static int find_live_mirror(struct btrfs_fs_info *fs_info, struct map_lookup *map, int first, int num, int optimal, int dev_replace_is_ongoing) { int i; int tolerance; struct btrfs_device *srcdev; if (dev_replace_is_ongoing && fs_info->dev_replace.cont_reading_from_srcdev_mode == BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) srcdev = fs_info->dev_replace.srcdev; else srcdev = NULL; /* * try to avoid the drive that is the source drive for a * dev-replace procedure, only choose it if no other non-missing * mirror is available */ for (tolerance = 0; tolerance < 2; tolerance++) { if (map->stripes[optimal].dev->bdev && (tolerance || map->stripes[optimal].dev != srcdev)) return optimal; for (i = first; i < first + num; i++) { if (map->stripes[i].dev->bdev && (tolerance || map->stripes[i].dev != srcdev)) return i; } } /* we couldn't find one that doesn't fail. Just return something * and the io error handling code will clean up eventually */ return optimal; } static inline int parity_smaller(u64 a, u64 b) { return a > b; } /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) { struct btrfs_bio_stripe s; int i; u64 l; int again = 1; while (again) { again = 0; for (i = 0; i < bbio->num_stripes - 1; i++) { if (parity_smaller(raid_map[i], raid_map[i+1])) { s = bbio->stripes[i]; l = raid_map[i]; bbio->stripes[i] = bbio->stripes[i+1]; raid_map[i] = raid_map[i+1]; bbio->stripes[i+1] = s; raid_map[i+1] = l; again = 1; } } } } static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num, u64 **raid_map_ret) { struct extent_map *em; struct map_lookup *map; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct extent_map_tree *em_tree = &map_tree->map_tree; u64 offset; u64 stripe_offset; u64 stripe_end_offset; u64 stripe_nr; u64 stripe_nr_orig; u64 stripe_nr_end; u64 stripe_len; u64 *raid_map = NULL; int stripe_index; int i; int ret = 0; int num_stripes; int max_errors = 0; struct btrfs_bio *bbio = NULL; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int dev_replace_is_ongoing = 0; int num_alloc_stripes; int patch_the_first_stripe_for_dev_replace = 0; u64 physical_to_patch_in_first_stripe = 0; u64 raid56_full_stripe_start = (u64)-1; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, *length); read_unlock(&em_tree->lock); if (!em) { btrfs_crit(fs_info, "unable to find logical %llu len %llu", logical, *length); return -EINVAL; } if (em->start > logical || em->start + em->len < logical) { btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " "found %Lu-%Lu", logical, em->start, em->start + em->len); free_extent_map(em); return -EINVAL; } map = (struct map_lookup *)em->bdev; offset = logical - em->start; stripe_len = map->stripe_len; stripe_nr = offset; /* * stripe_nr counts the total number of stripes we have to stride * to get to this block */ do_div(stripe_nr, stripe_len); stripe_offset = stripe_nr * stripe_len; BUG_ON(offset < stripe_offset); /* stripe_offset is the offset of this block in its stripe*/ stripe_offset = offset - stripe_offset; /* if we're here for raid56, we need to know the stripe aligned start */ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); raid56_full_stripe_start = offset; /* allow a write of a full stripe, but make sure we don't * allow straddling of stripes */ do_div(raid56_full_stripe_start, full_stripe_len); raid56_full_stripe_start *= full_stripe_len; } if (rw & REQ_DISCARD) { /* we don't discard raid56 yet */ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { ret = -EOPNOTSUPP; goto out; } *length = min_t(u64, em->len - offset, *length); } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { u64 max_len; /* For writes to RAID[56], allow a full stripeset across all disks. For other RAID types and for RAID[56] reads, just allow a single stripe (on a single disk). */ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && (rw & REQ_WRITE)) { max_len = stripe_len * nr_data_stripes(map) - (offset - raid56_full_stripe_start); } else { /* we limit the length of each bio to what fits in a stripe */ max_len = stripe_len - stripe_offset; } *length = min_t(u64, em->len - offset, max_len); } else { *length = em->len - offset; } /* This is for when we're called from btrfs_merge_bio_hook() and all it cares about is the length */ if (!bbio_ret) goto out; btrfs_dev_replace_lock(dev_replace); dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); if (!dev_replace_is_ongoing) btrfs_dev_replace_unlock(dev_replace); if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && dev_replace->tgtdev != NULL) { /* * in dev-replace case, for repair case (that's the only * case where the mirror is selected explicitly when * calling btrfs_map_block), blocks left of the left cursor * can also be read from the target drive. * For REQ_GET_READ_MIRRORS, the target drive is added as * the last one to the array of stripes. For READ, it also * needs to be supported using the same mirror number. * If the requested block is not left of the left cursor, * EIO is returned. This can happen because btrfs_num_copies() * returns one more in the dev-replace case. */ u64 tmp_length = *length; struct btrfs_bio *tmp_bbio = NULL; int tmp_num_stripes; u64 srcdev_devid = dev_replace->srcdev->devid; int index_srcdev = 0; int found = 0; u64 physical_of_found = 0; ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &tmp_length, &tmp_bbio, 0, NULL); if (ret) { WARN_ON(tmp_bbio != NULL); goto out; } tmp_num_stripes = tmp_bbio->num_stripes; if (mirror_num > tmp_num_stripes) { /* * REQ_GET_READ_MIRRORS does not contain this * mirror, that means that the requested area * is not left of the left cursor */ ret = -EIO; kfree(tmp_bbio); goto out; } /* * process the rest of the function using the mirror_num * of the source drive. Therefore look it up first. * At the end, patch the device pointer to the one of the * target drive. */ for (i = 0; i < tmp_num_stripes; i++) { if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { /* * In case of DUP, in order to keep it * simple, only add the mirror with the * lowest physical address */ if (found && physical_of_found <= tmp_bbio->stripes[i].physical) continue; index_srcdev = i; found = 1; physical_of_found = tmp_bbio->stripes[i].physical; } } if (found) { mirror_num = index_srcdev + 1; patch_the_first_stripe_for_dev_replace = 1; physical_to_patch_in_first_stripe = physical_of_found; } else { WARN_ON(1); ret = -EIO; kfree(tmp_bbio); goto out; } kfree(tmp_bbio); } else if (mirror_num > map->num_stripes) { mirror_num = 0; } num_stripes = 1; stripe_index = 0; stripe_nr_orig = stripe_nr; stripe_nr_end = ALIGN(offset + *length, map->stripe_len); do_div(stripe_nr_end, map->stripe_len); stripe_end_offset = stripe_nr_end * map->stripe_len - (offset + *length); if (map->type & BTRFS_BLOCK_GROUP_RAID0) { if (rw & REQ_DISCARD) num_stripes = min_t(u64, map->num_stripes, stripe_nr_end - stripe_nr_orig); stripe_index = do_div(stripe_nr, map->num_stripes); } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) num_stripes = map->num_stripes; else if (mirror_num) stripe_index = mirror_num - 1; else { stripe_index = find_live_mirror(fs_info, map, 0, map->num_stripes, current->pid % map->num_stripes, dev_replace_is_ongoing); mirror_num = stripe_index + 1; } } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { num_stripes = map->num_stripes; } else if (mirror_num) { stripe_index = mirror_num - 1; } else { mirror_num = 1; } } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { int factor = map->num_stripes / map->sub_stripes; stripe_index = do_div(stripe_nr, factor); stripe_index *= map->sub_stripes; if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) num_stripes = map->sub_stripes; else if (rw & REQ_DISCARD) num_stripes = min_t(u64, map->sub_stripes * (stripe_nr_end - stripe_nr_orig), map->num_stripes); else if (mirror_num) stripe_index += mirror_num - 1; else { int old_stripe_index = stripe_index; stripe_index = find_live_mirror(fs_info, map, stripe_index, map->sub_stripes, stripe_index + current->pid % map->sub_stripes, dev_replace_is_ongoing); mirror_num = stripe_index - old_stripe_index + 1; } } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { u64 tmp; if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) && raid_map_ret) { int i, rot; /* push stripe_nr back to the start of the full stripe */ stripe_nr = raid56_full_stripe_start; do_div(stripe_nr, stripe_len); stripe_index = do_div(stripe_nr, nr_data_stripes(map)); /* RAID[56] write or recovery. Return all stripes */ num_stripes = map->num_stripes; max_errors = nr_parity_stripes(map); raid_map = kmalloc_array(num_stripes, sizeof(u64), GFP_NOFS); if (!raid_map) { ret = -ENOMEM; goto out; } /* Work out the disk rotation on this stripe-set */ tmp = stripe_nr; rot = do_div(tmp, num_stripes); /* Fill in the logical address of each stripe */ tmp = stripe_nr * nr_data_stripes(map); for (i = 0; i < nr_data_stripes(map); i++) raid_map[(i+rot) % num_stripes] = em->start + (tmp + i) * map->stripe_len; raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; if (map->type & BTRFS_BLOCK_GROUP_RAID6) raid_map[(i+rot+1) % num_stripes] = RAID6_Q_STRIPE; *length = map->stripe_len; stripe_index = 0; stripe_offset = 0; } else { /* * Mirror #0 or #1 means the original data block. * Mirror #2 is RAID5 parity block. * Mirror #3 is RAID6 Q block. */ stripe_index = do_div(stripe_nr, nr_data_stripes(map)); if (mirror_num > 1) stripe_index = nr_data_stripes(map) + mirror_num - 2; /* We distribute the parity blocks across stripes */ tmp = stripe_nr + stripe_index; stripe_index = do_div(tmp, map->num_stripes); } } else { /* * after this do_div call, stripe_nr is the number of stripes * on this device we have to walk to find the data, and * stripe_index is the number of our device in the stripe array */ stripe_index = do_div(stripe_nr, map->num_stripes); mirror_num = stripe_index + 1; } BUG_ON(stripe_index >= map->num_stripes); num_alloc_stripes = num_stripes; if (dev_replace_is_ongoing) { if (rw & (REQ_WRITE | REQ_DISCARD)) num_alloc_stripes <<= 1; if (rw & REQ_GET_READ_MIRRORS) num_alloc_stripes++; } bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); if (!bbio) { kfree(raid_map); ret = -ENOMEM; goto out; } atomic_set(&bbio->error, 0); if (rw & REQ_DISCARD) { int factor = 0; int sub_stripes = 0; u64 stripes_per_dev = 0; u32 remaining_stripes = 0; u32 last_stripe = 0; if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { if (map->type & BTRFS_BLOCK_GROUP_RAID0) sub_stripes = 1; else sub_stripes = map->sub_stripes; factor = map->num_stripes / sub_stripes; stripes_per_dev = div_u64_rem(stripe_nr_end - stripe_nr_orig, factor, &remaining_stripes); div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); last_stripe *= sub_stripes; } for (i = 0; i < num_stripes; i++) { bbio->stripes[i].physical = map->stripes[stripe_index].physical + stripe_offset + stripe_nr * map->stripe_len; bbio->stripes[i].dev = map->stripes[stripe_index].dev; if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { bbio->stripes[i].length = stripes_per_dev * map->stripe_len; if (i / sub_stripes < remaining_stripes) bbio->stripes[i].length += map->stripe_len; /* * Special for the first stripe and * the last stripe: * * |-------|...|-------| * |----------| * off end_off */ if (i < sub_stripes) bbio->stripes[i].length -= stripe_offset; if (stripe_index >= last_stripe && stripe_index <= (last_stripe + sub_stripes - 1)) bbio->stripes[i].length -= stripe_end_offset; if (i == sub_stripes - 1) stripe_offset = 0; } else bbio->stripes[i].length = *length; stripe_index++; if (stripe_index == map->num_stripes) { /* This could only happen for RAID0/10 */ stripe_index = 0; stripe_nr++; } } } else { for (i = 0; i < num_stripes; i++) { bbio->stripes[i].physical = map->stripes[stripe_index].physical + stripe_offset + stripe_nr * map->stripe_len; bbio->stripes[i].dev = map->stripes[stripe_index].dev; stripe_index++; } } if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_DUP)) { max_errors = 1; } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { max_errors = 2; } } if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && dev_replace->tgtdev != NULL) { int index_where_to_add; u64 srcdev_devid = dev_replace->srcdev->devid; /* * duplicate the write operations while the dev replace * procedure is running. Since the copying of the old disk * to the new disk takes place at run time while the * filesystem is mounted writable, the regular write * operations to the old disk have to be duplicated to go * to the new disk as well. * Note that device->missing is handled by the caller, and * that the write to the old disk is already set up in the * stripes array. */ index_where_to_add = num_stripes; for (i = 0; i < num_stripes; i++) { if (bbio->stripes[i].dev->devid == srcdev_devid) { /* write to new disk, too */ struct btrfs_bio_stripe *new = bbio->stripes + index_where_to_add; struct btrfs_bio_stripe *old = bbio->stripes + i; new->physical = old->physical; new->length = old->length; new->dev = dev_replace->tgtdev; index_where_to_add++; max_errors++; } } num_stripes = index_where_to_add; } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && dev_replace->tgtdev != NULL) { u64 srcdev_devid = dev_replace->srcdev->devid; int index_srcdev = 0; int found = 0; u64 physical_of_found = 0; /* * During the dev-replace procedure, the target drive can * also be used to read data in case it is needed to repair * a corrupt block elsewhere. This is possible if the * requested area is left of the left cursor. In this area, * the target drive is a full copy of the source drive. */ for (i = 0; i < num_stripes; i++) { if (bbio->stripes[i].dev->devid == srcdev_devid) { /* * In case of DUP, in order to keep it * simple, only add the mirror with the * lowest physical address */ if (found && physical_of_found <= bbio->stripes[i].physical) continue; index_srcdev = i; found = 1; physical_of_found = bbio->stripes[i].physical; } } if (found) { u64 length = map->stripe_len; if (physical_of_found + length <= dev_replace->cursor_left) { struct btrfs_bio_stripe *tgtdev_stripe = bbio->stripes + num_stripes; tgtdev_stripe->physical = physical_of_found; tgtdev_stripe->length = bbio->stripes[index_srcdev].length; tgtdev_stripe->dev = dev_replace->tgtdev; num_stripes++; } } } *bbio_ret = bbio; bbio->num_stripes = num_stripes; bbio->max_errors = max_errors; bbio->mirror_num = mirror_num; /* * this is the case that REQ_READ && dev_replace_is_ongoing && * mirror_num == num_stripes + 1 && dev_replace target drive is * available as a mirror */ if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { WARN_ON(num_stripes > 1); bbio->stripes[0].dev = dev_replace->tgtdev; bbio->stripes[0].physical = physical_to_patch_in_first_stripe; bbio->mirror_num = map->num_stripes + 1; } if (raid_map) { sort_parity_stripes(bbio, raid_map); *raid_map_ret = raid_map; } out: if (dev_replace_is_ongoing) btrfs_dev_replace_unlock(dev_replace); free_extent_map(em); return ret; } int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num) { return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, mirror_num, NULL); } int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, u64 chunk_start, u64 physical, u64 devid, u64 **logical, int *naddrs, int *stripe_len) { struct extent_map_tree *em_tree = &map_tree->map_tree; struct extent_map *em; struct map_lookup *map; u64 *buf; u64 bytenr; u64 length; u64 stripe_nr; u64 rmap_len; int i, j, nr = 0; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, chunk_start, 1); read_unlock(&em_tree->lock); if (!em) { printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", chunk_start); return -EIO; } if (em->start != chunk_start) { printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", em->start, chunk_start); free_extent_map(em); return -EIO; } map = (struct map_lookup *)em->bdev; length = em->len; rmap_len = map->stripe_len; if (map->type & BTRFS_BLOCK_GROUP_RAID10) do_div(length, map->num_stripes / map->sub_stripes); else if (map->type & BTRFS_BLOCK_GROUP_RAID0) do_div(length, map->num_stripes); else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { do_div(length, nr_data_stripes(map)); rmap_len = map->stripe_len * nr_data_stripes(map); } buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); BUG_ON(!buf); /* -ENOMEM */ for (i = 0; i < map->num_stripes; i++) { if (devid && map->stripes[i].dev->devid != devid) continue; if (map->stripes[i].physical > physical || map->stripes[i].physical + length <= physical) continue; stripe_nr = physical - map->stripes[i].physical; do_div(stripe_nr, map->stripe_len); if (map->type & BTRFS_BLOCK_GROUP_RAID10) { stripe_nr = stripe_nr * map->num_stripes + i; do_div(stripe_nr, map->sub_stripes); } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { stripe_nr = stripe_nr * map->num_stripes + i; } /* else if RAID[56], multiply by nr_data_stripes(). * Alternatively, just use rmap_len below instead of * map->stripe_len */ bytenr = chunk_start + stripe_nr * rmap_len; WARN_ON(nr >= map->num_stripes); for (j = 0; j < nr; j++) { if (buf[j] == bytenr) break; } if (j == nr) { WARN_ON(nr >= map->num_stripes); buf[nr++] = bytenr; } } *logical = buf; *naddrs = nr; *stripe_len = rmap_len; free_extent_map(em); return 0; } static void btrfs_end_bio(struct bio *bio, int err) { struct btrfs_bio *bbio = bio->bi_private; struct btrfs_device *dev = bbio->stripes[0].dev; int is_orig_bio = 0; if (err) { atomic_inc(&bbio->error); if (err == -EIO || err == -EREMOTEIO) { unsigned int stripe_index = btrfs_io_bio(bio)->stripe_index; BUG_ON(stripe_index >= bbio->num_stripes); dev = bbio->stripes[stripe_index].dev; if (dev->bdev) { if (bio->bi_rw & WRITE) btrfs_dev_stat_inc(dev, BTRFS_DEV_STAT_WRITE_ERRS); else btrfs_dev_stat_inc(dev, BTRFS_DEV_STAT_READ_ERRS); if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) btrfs_dev_stat_inc(dev, BTRFS_DEV_STAT_FLUSH_ERRS); btrfs_dev_stat_print_on_error(dev); } } } if (bio == bbio->orig_bio) is_orig_bio = 1; btrfs_bio_counter_dec(bbio->fs_info); if (atomic_dec_and_test(&bbio->stripes_pending)) { if (!is_orig_bio) { bio_put(bio); bio = bbio->orig_bio; } /* * We have original bio now. So increment bi_remaining to * account for it in endio */ atomic_inc(&bio->bi_remaining); bio->bi_private = bbio->private; bio->bi_end_io = bbio->end_io; btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; /* only send an error to the higher layers if it is * beyond the tolerance of the btrfs bio */ if (atomic_read(&bbio->error) > bbio->max_errors) { err = -EIO; } else { /* * this bio is actually up to date, we didn't * go over the max number of errors */ set_bit(BIO_UPTODATE, &bio->bi_flags); err = 0; } kfree(bbio); bio_endio(bio, err); } else if (!is_orig_bio) { bio_put(bio); } } /* * see run_scheduled_bios for a description of why bios are collected for * async submit. * * This will add one bio to the pending list for a device and make sure * the work struct is scheduled. */ static noinline void btrfs_schedule_bio(struct btrfs_root *root, struct btrfs_device *device, int rw, struct bio *bio) { int should_queue = 1; struct btrfs_pending_bios *pending_bios; if (device->missing || !device->bdev) { bio_endio(bio, -EIO); return; } /* don't bother with additional async steps for reads, right now */ if (!(rw & REQ_WRITE)) { bio_get(bio); btrfsic_submit_bio(rw, bio); bio_put(bio); return; } /* * nr_async_bios allows us to reliably return congestion to the * higher layers. Otherwise, the async bio makes it appear we have * made progress against dirty pages when we've really just put it * on a queue for later */ atomic_inc(&root->fs_info->nr_async_bios); WARN_ON(bio->bi_next); bio->bi_next = NULL; bio->bi_rw |= rw; spin_lock(&device->io_lock); if (bio->bi_rw & REQ_SYNC) pending_bios = &device->pending_sync_bios; else pending_bios = &device->pending_bios; if (pending_bios->tail) pending_bios->tail->bi_next = bio; pending_bios->tail = bio; if (!pending_bios->head) pending_bios->head = bio; if (device->running_pending) should_queue = 0; spin_unlock(&device->io_lock); if (should_queue) btrfs_queue_work(root->fs_info->submit_workers, &device->work); } static int bio_size_ok(struct block_device *bdev, struct bio *bio, sector_t sector) { struct bio_vec *prev; struct request_queue *q = bdev_get_queue(bdev); unsigned int max_sectors = queue_max_sectors(q); struct bvec_merge_data bvm = { .bi_bdev = bdev, .bi_sector = sector, .bi_rw = bio->bi_rw, }; if (WARN_ON(bio->bi_vcnt == 0)) return 1; prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; if (bio_sectors(bio) > max_sectors) return 0; if (!q->merge_bvec_fn) return 1; bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) return 0; return 1; } static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, struct bio *bio, u64 physical, int dev_nr, int rw, int async) { struct btrfs_device *dev = bbio->stripes[dev_nr].dev; bio->bi_private = bbio; btrfs_io_bio(bio)->stripe_index = dev_nr; bio->bi_end_io = btrfs_end_bio; bio->bi_iter.bi_sector = physical >> 9; #ifdef DEBUG { struct rcu_string *name; rcu_read_lock(); name = rcu_dereference(dev->name); pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " "(%s id %llu), size=%u\n", rw, (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, name->str, dev->devid, bio->bi_size); rcu_read_unlock(); } #endif bio->bi_bdev = dev->bdev; btrfs_bio_counter_inc_noblocked(root->fs_info); if (async) btrfs_schedule_bio(root, dev, rw, bio); else btrfsic_submit_bio(rw, bio); } static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, struct bio *first_bio, struct btrfs_device *dev, int dev_nr, int rw, int async) { struct bio_vec *bvec = first_bio->bi_io_vec; struct bio *bio; int nr_vecs = bio_get_nr_vecs(dev->bdev); u64 physical = bbio->stripes[dev_nr].physical; again: bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); if (!bio) return -ENOMEM; while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset) < bvec->bv_len) { u64 len = bio->bi_iter.bi_size; atomic_inc(&bbio->stripes_pending); submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); physical += len; goto again; } bvec++; } submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); return 0; } static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) { atomic_inc(&bbio->error); if (atomic_dec_and_test(&bbio->stripes_pending)) { bio->bi_private = bbio->private; bio->bi_end_io = bbio->end_io; btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; bio->bi_iter.bi_sector = logical >> 9; kfree(bbio); bio_endio(bio, -EIO); } } int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, int mirror_num, int async_submit) { struct btrfs_device *dev; struct bio *first_bio = bio; u64 logical = (u64)bio->bi_iter.bi_sector << 9; u64 length = 0; u64 map_length; u64 *raid_map = NULL; int ret; int dev_nr = 0; int total_devs = 1; struct btrfs_bio *bbio = NULL; length = bio->bi_iter.bi_size; map_length = length; btrfs_bio_counter_inc_blocked(root->fs_info); ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, mirror_num, &raid_map); if (ret) { btrfs_bio_counter_dec(root->fs_info); return ret; } total_devs = bbio->num_stripes; bbio->orig_bio = first_bio; bbio->private = first_bio->bi_private; bbio->end_io = first_bio->bi_end_io; bbio->fs_info = root->fs_info; atomic_set(&bbio->stripes_pending, bbio->num_stripes); if (raid_map) { /* In this case, map_length has been set to the length of a single stripe; not the whole write */ if (rw & WRITE) { ret = raid56_parity_write(root, bio, bbio, raid_map, map_length); } else { ret = raid56_parity_recover(root, bio, bbio, raid_map, map_length, mirror_num); } /* * FIXME, replace dosen't support raid56 yet, please fix * it in the future. */ btrfs_bio_counter_dec(root->fs_info); return ret; } if (map_length < length) { btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", logical, length, map_length); BUG(); } while (dev_nr < total_devs) { dev = bbio->stripes[dev_nr].dev; if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { bbio_error(bbio, first_bio, logical); dev_nr++; continue; } /* * Check and see if we're ok with this bio based on it's size * and offset with the given device. */ if (!bio_size_ok(dev->bdev, first_bio, bbio->stripes[dev_nr].physical >> 9)) { ret = breakup_stripe_bio(root, bbio, first_bio, dev, dev_nr, rw, async_submit); BUG_ON(ret); dev_nr++; continue; } if (dev_nr < total_devs - 1) { bio = btrfs_bio_clone(first_bio, GFP_NOFS); BUG_ON(!bio); /* -ENOMEM */ } else { bio = first_bio; } submit_stripe_bio(root, bbio, bio, bbio->stripes[dev_nr].physical, dev_nr, rw, async_submit); dev_nr++; } btrfs_bio_counter_dec(root->fs_info); return 0; } struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, u8 *uuid, u8 *fsid) { struct btrfs_device *device; struct btrfs_fs_devices *cur_devices; cur_devices = fs_info->fs_devices; while (cur_devices) { if (!fsid || !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { device = __find_device(&cur_devices->devices, devid, uuid); if (device) return device; } cur_devices = cur_devices->seed; } return NULL; } static struct btrfs_device *add_missing_dev(struct btrfs_root *root, u64 devid, u8 *dev_uuid) { struct btrfs_device *device; struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; device = btrfs_alloc_device(NULL, &devid, dev_uuid); if (IS_ERR(device)) return NULL; list_add(&device->dev_list, &fs_devices->devices); device->fs_devices = fs_devices; fs_devices->num_devices++; device->missing = 1; fs_devices->missing_devices++; return device; } /** * btrfs_alloc_device - allocate struct btrfs_device * @fs_info: used only for generating a new devid, can be NULL if * devid is provided (i.e. @devid != NULL). * @devid: a pointer to devid for this device. If NULL a new devid * is generated. * @uuid: a pointer to UUID for this device. If NULL a new UUID * is generated. * * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() * on error. Returned struct is not linked onto any lists and can be * destroyed with kfree() right away. */ struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, const u64 *devid, const u8 *uuid) { struct btrfs_device *dev; u64 tmp; if (WARN_ON(!devid && !fs_info)) return ERR_PTR(-EINVAL); dev = __alloc_device(); if (IS_ERR(dev)) return dev; if (devid) tmp = *devid; else { int ret; ret = find_next_devid(fs_info, &tmp); if (ret) { kfree(dev); return ERR_PTR(ret); } } dev->devid = tmp; if (uuid) memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); else generate_random_uuid(dev->uuid); btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL); return dev; } static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, struct extent_buffer *leaf, struct btrfs_chunk *chunk) { struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; struct map_lookup *map; struct extent_map *em; u64 logical; u64 length; u64 devid; u8 uuid[BTRFS_UUID_SIZE]; int num_stripes; int ret; int i; logical = key->offset; length = btrfs_chunk_length(leaf, chunk); read_lock(&map_tree->map_tree.lock); em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); read_unlock(&map_tree->map_tree.lock); /* already mapped? */ if (em && em->start <= logical && em->start + em->len > logical) { free_extent_map(em); return 0; } else if (em) { free_extent_map(em); } em = alloc_extent_map(); if (!em) return -ENOMEM; num_stripes = btrfs_chunk_num_stripes(leaf, chunk); map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); if (!map) { free_extent_map(em); return -ENOMEM; } em->bdev = (struct block_device *)map; em->start = logical; em->len = length; em->orig_start = 0; em->block_start = 0; em->block_len = em->len; map->num_stripes = num_stripes; map->io_width = btrfs_chunk_io_width(leaf, chunk); map->io_align = btrfs_chunk_io_align(leaf, chunk); map->sector_size = btrfs_chunk_sector_size(leaf, chunk); map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); map->type = btrfs_chunk_type(leaf, chunk); map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); for (i = 0; i < num_stripes; i++) { map->stripes[i].physical = btrfs_stripe_offset_nr(leaf, chunk, i); devid = btrfs_stripe_devid_nr(leaf, chunk, i); read_extent_buffer(leaf, uuid, (unsigned long) btrfs_stripe_dev_uuid_nr(chunk, i), BTRFS_UUID_SIZE); map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, uuid, NULL); if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { kfree(map); free_extent_map(em); return -EIO; } if (!map->stripes[i].dev) { map->stripes[i].dev = add_missing_dev(root, devid, uuid); if (!map->stripes[i].dev) { kfree(map); free_extent_map(em); return -EIO; } } map->stripes[i].dev->in_fs_metadata = 1; } write_lock(&map_tree->map_tree.lock); ret = add_extent_mapping(&map_tree->map_tree, em, 0); write_unlock(&map_tree->map_tree.lock); BUG_ON(ret); /* Tree corruption */ free_extent_map(em); return 0; } static void fill_device_from_item(struct extent_buffer *leaf, struct btrfs_dev_item *dev_item, struct btrfs_device *device) { unsigned long ptr; device->devid = btrfs_device_id(leaf, dev_item); device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); device->total_bytes = device->disk_total_bytes; device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); device->type = btrfs_device_type(leaf, dev_item); device->io_align = btrfs_device_io_align(leaf, dev_item); device->io_width = btrfs_device_io_width(leaf, dev_item); device->sector_size = btrfs_device_sector_size(leaf, dev_item); WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); device->is_tgtdev_for_dev_replace = 0; ptr = btrfs_device_uuid(dev_item); read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); } static int open_seed_devices(struct btrfs_root *root, u8 *fsid) { struct btrfs_fs_devices *fs_devices; int ret; BUG_ON(!mutex_is_locked(&uuid_mutex)); fs_devices = root->fs_info->fs_devices->seed; while (fs_devices) { if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { ret = 0; goto out; } fs_devices = fs_devices->seed; } fs_devices = find_fsid(fsid); if (!fs_devices) { ret = -ENOENT; goto out; } fs_devices = clone_fs_devices(fs_devices); if (IS_ERR(fs_devices)) { ret = PTR_ERR(fs_devices); goto out; } ret = __btrfs_open_devices(fs_devices, FMODE_READ, root->fs_info->bdev_holder); if (ret) { free_fs_devices(fs_devices); goto out; } if (!fs_devices->seeding) { __btrfs_close_devices(fs_devices); free_fs_devices(fs_devices); ret = -EINVAL; goto out; } fs_devices->seed = root->fs_info->fs_devices->seed; root->fs_info->fs_devices->seed = fs_devices; out: return ret; } static int read_one_dev(struct btrfs_root *root, struct extent_buffer *leaf, struct btrfs_dev_item *dev_item) { struct btrfs_device *device; u64 devid; int ret; u8 fs_uuid[BTRFS_UUID_SIZE]; u8 dev_uuid[BTRFS_UUID_SIZE]; devid = btrfs_device_id(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { ret = open_seed_devices(root, fs_uuid); if (ret && !btrfs_test_opt(root, DEGRADED)) return ret; } device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); if (!device || !device->bdev) { if (!btrfs_test_opt(root, DEGRADED)) return -EIO; if (!device) { btrfs_warn(root->fs_info, "devid %llu missing", devid); device = add_missing_dev(root, devid, dev_uuid); if (!device) return -ENOMEM; } else if (!device->missing) { /* * this happens when a device that was properly setup * in the device info lists suddenly goes bad. * device->bdev is NULL, and so we have to set * device->missing to one here */ root->fs_info->fs_devices->missing_devices++; device->missing = 1; } } if (device->fs_devices != root->fs_info->fs_devices) { BUG_ON(device->writeable); if (device->generation != btrfs_device_generation(leaf, dev_item)) return -EINVAL; } fill_device_from_item(leaf, dev_item, device); device->in_fs_metadata = 1; if (device->writeable && !device->is_tgtdev_for_dev_replace) { device->fs_devices->total_rw_bytes += device->total_bytes; spin_lock(&root->fs_info->free_chunk_lock); root->fs_info->free_chunk_space += device->total_bytes - device->bytes_used; spin_unlock(&root->fs_info->free_chunk_lock); } ret = 0; return ret; } int btrfs_read_sys_array(struct btrfs_root *root) { struct btrfs_super_block *super_copy = root->fs_info->super_copy; struct extent_buffer *sb; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; u8 *ptr; unsigned long sb_ptr; int ret = 0; u32 num_stripes; u32 array_size; u32 len = 0; u32 cur; struct btrfs_key key; sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE); if (!sb) return -ENOMEM; btrfs_set_buffer_uptodate(sb); btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); /* * The sb extent buffer is artifical and just used to read the system array. * btrfs_set_buffer_uptodate() call does not properly mark all it's * pages up-to-date when the page is larger: extent does not cover the * whole page and consequently check_page_uptodate does not find all * the page's extents up-to-date (the hole beyond sb), * write_extent_buffer then triggers a WARN_ON. * * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, * but sb spans only this function. Add an explicit SetPageUptodate call * to silence the warning eg. on PowerPC 64. */ if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) SetPageUptodate(sb->pages[0]); write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); array_size = btrfs_super_sys_array_size(super_copy); ptr = super_copy->sys_chunk_array; sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); cur = 0; while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); len = sizeof(*disk_key); ptr += len; sb_ptr += len; cur += len; if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)sb_ptr; ret = read_one_chunk(root, &key, sb, chunk); if (ret) break; num_stripes = btrfs_chunk_num_stripes(sb, chunk); len = btrfs_chunk_item_size(num_stripes); } else { ret = -EIO; break; } ptr += len; sb_ptr += len; cur += len; } free_extent_buffer(sb); return ret; } int btrfs_read_chunk_tree(struct btrfs_root *root) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; int ret; int slot; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; mutex_lock(&uuid_mutex); lock_chunks(root); /* * Read all device items, and then all the chunk items. All * device items are found before any chunk item (their object id * is smaller than the lowest possible object id for a chunk * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). */ key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.offset = 0; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto error; while (1) { leaf = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; break; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_DEV_ITEM_KEY) { struct btrfs_dev_item *dev_item; dev_item = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); ret = read_one_dev(root, leaf, dev_item); if (ret) goto error; } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { struct btrfs_chunk *chunk; chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); ret = read_one_chunk(root, &found_key, leaf, chunk); if (ret) goto error; } path->slots[0]++; } ret = 0; error: unlock_chunks(root); mutex_unlock(&uuid_mutex); btrfs_free_path(path); return ret; } void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; while (fs_devices) { mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) device->dev_root = fs_info->dev_root; mutex_unlock(&fs_devices->device_list_mutex); fs_devices = fs_devices->seed; } } static void __btrfs_reset_dev_stats(struct btrfs_device *dev) { int i; for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) btrfs_dev_stat_reset(dev, i); } int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct extent_buffer *eb; int slot; int ret = 0; struct btrfs_device *device; struct btrfs_path *path = NULL; int i; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { int item_size; struct btrfs_dev_stats_item *ptr; key.objectid = 0; key.type = BTRFS_DEV_STATS_KEY; key.offset = device->devid; ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); if (ret) { __btrfs_reset_dev_stats(device); device->dev_stats_valid = 1; btrfs_release_path(path); continue; } slot = path->slots[0]; eb = path->nodes[0]; btrfs_item_key_to_cpu(eb, &found_key, slot); item_size = btrfs_item_size_nr(eb, slot); ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { if (item_size >= (1 + i) * sizeof(__le64)) btrfs_dev_stat_set(device, i, btrfs_dev_stats_value(eb, ptr, i)); else btrfs_dev_stat_reset(device, i); } device->dev_stats_valid = 1; btrfs_dev_stat_print_on_load(device); btrfs_release_path(path); } mutex_unlock(&fs_devices->device_list_mutex); out: btrfs_free_path(path); return ret < 0 ? ret : 0; } static int update_dev_stat_item(struct btrfs_trans_handle *trans, struct btrfs_root *dev_root, struct btrfs_device *device) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *eb; struct btrfs_dev_stats_item *ptr; int ret; int i; key.objectid = 0; key.type = BTRFS_DEV_STATS_KEY; key.offset = device->devid; path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); if (ret < 0) { printk_in_rcu(KERN_WARNING "BTRFS: " "error %d while searching for dev_stats item for device %s!\n", ret, rcu_str_deref(device->name)); goto out; } if (ret == 0 && btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { /* need to delete old one and insert a new one */ ret = btrfs_del_item(trans, dev_root, path); if (ret != 0) { printk_in_rcu(KERN_WARNING "BTRFS: " "delete too small dev_stats item for device %s failed %d!\n", rcu_str_deref(device->name), ret); goto out; } ret = 1; } if (ret == 1) { /* need to insert a new item */ btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, dev_root, path, &key, sizeof(*ptr)); if (ret < 0) { printk_in_rcu(KERN_WARNING "BTRFS: " "insert dev_stats item for device %s failed %d!\n", rcu_str_deref(device->name), ret); goto out; } } eb = path->nodes[0]; ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) btrfs_set_dev_stats_value(eb, ptr, i, btrfs_dev_stat_read(device, i)); btrfs_mark_buffer_dirty(eb); out: btrfs_free_path(path); return ret; } /* * called from commit_transaction. Writes all changed device stats to disk. */ int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; int ret = 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (!device->dev_stats_valid || !device->dev_stats_dirty) continue; ret = update_dev_stat_item(trans, dev_root, device); if (!ret) device->dev_stats_dirty = 0; } mutex_unlock(&fs_devices->device_list_mutex); return ret; } void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) { btrfs_dev_stat_inc(dev, index); btrfs_dev_stat_print_on_error(dev); } static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) { if (!dev->dev_stats_valid) return; printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", rcu_str_deref(dev->name), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); } static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) { int i; for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) if (btrfs_dev_stat_read(dev, i) != 0) break; if (i == BTRFS_DEV_STAT_VALUES_MAX) return; /* all values == 0, suppress message */ printk_in_rcu(KERN_INFO "BTRFS: " "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", rcu_str_deref(dev->name), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); } int btrfs_get_dev_stats(struct btrfs_root *root, struct btrfs_ioctl_get_dev_stats *stats) { struct btrfs_device *dev; struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; int i; mutex_lock(&fs_devices->device_list_mutex); dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); mutex_unlock(&fs_devices->device_list_mutex); if (!dev) { btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); return -ENODEV; } else if (!dev->dev_stats_valid) { btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); return -ENODEV; } else if (stats->flags & BTRFS_DEV_STATS_RESET) { for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { if (stats->nr_items > i) stats->values[i] = btrfs_dev_stat_read_and_reset(dev, i); else btrfs_dev_stat_reset(dev, i); } } else { for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) if (stats->nr_items > i) stats->values[i] = btrfs_dev_stat_read(dev, i); } if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; return 0; } int btrfs_scratch_superblock(struct btrfs_device *device) { struct buffer_head *bh; struct btrfs_super_block *disk_super; bh = btrfs_read_dev_super(device->bdev); if (!bh) return -EINVAL; disk_super = (struct btrfs_super_block *)bh->b_data; memset(&disk_super->magic, 0, sizeof(disk_super->magic)); set_buffer_dirty(bh); sync_dirty_buffer(bh); brelse(bh); return 0; }