aboutsummaryrefslogtreecommitdiff
path: root/mm/sparse.c
AgeCommit message (Collapse)AuthorFilesLines
2018-06-07mm/sparse.c: pass the __highest_present_section_nr + 1 to alloc_func()Wei Yang1-1/+1
In commit c4e1be9ec113 ("mm, sparsemem: break out of loops early") __highest_present_section_nr is introduced to reduce the loop counts for present section. This is also helpful for usemap and memmap allocation. This patch uses __highest_present_section_nr + 1 to optimize the loop. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: David Rientjes <[email protected]> Cc: Dave Hansen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-06-07mm/sparse.c: check __highest_present_section_nr only for a present sectionWei Yang1-3/+1
When searching a present section, there are two boundaries: * __highest_present_section_nr * NR_MEM_SECTIONS And it is known, __highest_present_section_nr is a more strict boundary than NR_MEM_SECTIONS. This means it would be necessary to check __highest_present_section_nr only. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Acked-by: David Rientjes <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Dave Hansen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-05-11mm: sections are not offlined during memory hotremovePavel Tatashin1-1/+1
Memory hotplug and hotremove operate with per-block granularity. If the machine has a large amount of memory (more than 64G), the size of a memory block can span multiple sections. By mistake, during hotremove we set only the first section to offline state. The bug was discovered because kernel selftest started to fail: https://lkml.kernel.org/r/20180423011247.GK5563@yexl-desktop After commit, "mm/memory_hotplug: optimize probe routine". But, the bug is older than this commit. In this optimization we also added a check for sections to be in a proper state during hotplug operation. Link: http://lkml.kernel.org/r/[email protected] Fixes: 2d070eab2e82 ("mm: consider zone which is not fully populated to have holes") Signed-off-by: Pavel Tatashin <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Steven Sistare <[email protected]> Cc: Daniel Jordan <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-04-05mm/memory_hotplug: optimize memory hotplugPavel Tatashin1-1/+7
During memory hotplugging we traverse struct pages three times: 1. memset(0) in sparse_add_one_section() 2. loop in __add_section() to set do: set_page_node(page, nid); and SetPageReserved(page); 3. loop in memmap_init_zone() to call __init_single_pfn() This patch removes the first two loops, and leaves only loop 3. All struct pages are initialized in one place, the same as it is done during boot. The benefits: - We improve memory hotplug performance because we are not evicting the cache several times and also reduce loop branching overhead. - Remove condition from hotpath in __init_single_pfn(), that was added in order to fix the problem that was reported by Bharata in the above email thread, thus also improve performance during normal boot. - Make memory hotplug more similar to the boot memory initialization path because we zero and initialize struct pages only in one function. - Simplifies memory hotplug struct page initialization code, and thus enables future improvements, such as multi-threading the initialization of struct pages in order to improve hotplug performance even further on larger machines. [[email protected]: v5] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Pavel Tatashin <[email protected]> Reviewed-by: Ingo Molnar <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Baoquan He <[email protected]> Cc: Bharata B Rao <[email protected]> Cc: Daniel Jordan <[email protected]> Cc: Dan Williams <[email protected]> Cc: Greg Kroah-Hartman <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Kirill A. Shutemov <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Steven Sistare <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Vlastimil Babka <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-04-02Merge tag 'arch-removal' of ↵Linus Torvalds1-15/+0
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pul removal of obsolete architecture ports from Arnd Bergmann: "This removes the entire architecture code for blackfin, cris, frv, m32r, metag, mn10300, score, and tile, including the associated device drivers. I have been working with the (former) maintainers for each one to ensure that my interpretation was right and the code is definitely unused in mainline kernels. Many had fond memories of working on the respective ports to start with and getting them included in upstream, but also saw no point in keeping the port alive without any users. In the end, it seems that while the eight architectures are extremely different, they all suffered the same fate: There was one company in charge of an SoC line, a CPU microarchitecture and a software ecosystem, which was more costly than licensing newer off-the-shelf CPU cores from a third party (typically ARM, MIPS, or RISC-V). It seems that all the SoC product lines are still around, but have not used the custom CPU architectures for several years at this point. In contrast, CPU instruction sets that remain popular and have actively maintained kernel ports tend to all be used across multiple licensees. [ See the new nds32 port merged in the previous commit for the next generation of "one company in charge of an SoC line, a CPU microarchitecture and a software ecosystem" - Linus ] The removal came out of a discussion that is now documented at https://lwn.net/Articles/748074/. Unlike the original plans, I'm not marking any ports as deprecated but remove them all at once after I made sure that they are all unused. Some architectures (notably tile, mn10300, and blackfin) are still being shipped in products with old kernels, but those products will never be updated to newer kernel releases. After this series, we still have a few architectures without mainline gcc support: - unicore32 and hexagon both have very outdated gcc releases, but the maintainers promised to work on providing something newer. At least in case of hexagon, this will only be llvm, not gcc. - openrisc, risc-v and nds32 are still in the process of finishing their support or getting it added to mainline gcc in the first place. They all have patched gcc-7.3 ports that work to some degree, but complete upstream support won't happen before gcc-8.1. Csky posted their first kernel patch set last week, their situation will be similar [ Palmer Dabbelt points out that RISC-V support is in mainline gcc since gcc-7, although gcc-7.3.0 is the recommended minimum - Linus ]" This really says it all: 2498 files changed, 95 insertions(+), 467668 deletions(-) * tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits) MAINTAINERS: UNICORE32: Change email account staging: iio: remove iio-trig-bfin-timer driver tty: hvc: remove tile driver tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers serial: remove tile uart driver serial: remove m32r_sio driver serial: remove blackfin drivers serial: remove cris/etrax uart drivers usb: Remove Blackfin references in USB support usb: isp1362: remove blackfin arch glue usb: musb: remove blackfin port usb: host: remove tilegx platform glue pwm: remove pwm-bfin driver i2c: remove bfin-twi driver spi: remove blackfin related host drivers watchdog: remove bfin_wdt driver can: remove bfin_can driver mmc: remove bfin_sdh driver input: misc: remove blackfin rotary driver input: keyboard: remove bf54x driver ...
2018-03-27x86/mm/32: Remove unused node_memmap_size_bytes() & ↵David Rientjes1-22/+0
CONFIG_NEED_NODE_MEMMAP_SIZE logic node_memmap_size_bytes() has been unused since the v3.9 kernel, so remove it. Signed-off-by: David Rientjes <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Laura Abbott <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Fixes: f03574f2d5b2 ("x86-32, mm: Rip out x86_32 NUMA remapping code") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2018-03-16mm: remove obsolete alloc_remap()Arnd Bergmann1-15/+0
Tile was the only remaining architecture to implement alloc_remap(), and since that is being removed, there is no point in keeping this function. Removing all callers simplifies the mem_map handling. Reviewed-by: Pavel Tatashin <[email protected]> Signed-off-by: Arnd Bergmann <[email protected]>
2018-02-06Merge tag 'libnvdimm-for-4.16' of ↵Linus Torvalds1-18/+25
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Ross Zwisler: - Require struct page by default for filesystem DAX to remove a number of surprising failure cases. This includes failures with direct I/O, gdb and fork(2). - Add support for the new Platform Capabilities Structure added to the NFIT in ACPI 6.2a. This new table tells us whether the platform supports flushing of CPU and memory controller caches on unexpected power loss events. - Revamp vmem_altmap and dev_pagemap handling to clean up code and better support future future PCI P2P uses. - Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}. - Enhance nfit_test so we can test some of the new things added in version 1.6 of the DSM specification. This includes testing firmware download and simulating the Last Shutdown State (LSS) status. * tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits) libnvdimm, namespace: remove redundant initialization of 'nd_mapping' acpi, nfit: fix register dimm error handling libnvdimm, namespace: make min namespace size 4K tools/testing/nvdimm: force nfit_test to depend on instrumented modules libnvdimm/nfit_test: adding support for unit testing enable LSS status libnvdimm/nfit_test: add firmware download emulation nfit-test: Add platform cap support from ACPI 6.2a to test libnvdimm: expose platform persistence attribute for nd_region acpi: nfit: add persistent memory control flag for nd_region acpi: nfit: Add support for detect platform CPU cache flush on power loss device-dax: Fix trailing semicolon libnvdimm, btt: fix uninitialized err_lock dax: require 'struct page' by default for filesystem dax ext2: auto disable dax instead of failing mount ext4: auto disable dax instead of failing mount mm, dax: introduce pfn_t_special() mm: Fix devm_memremap_pages() collision handling mm: Fix memory size alignment in devm_memremap_pages_release() memremap: merge find_dev_pagemap into get_dev_pagemap memremap: change devm_memremap_pages interface to use struct dev_pagemap ...
2018-02-03Merge branch 'for-4.16/nfit' into libnvdimm-for-nextRoss Zwisler1-1/+1
2018-01-31include/linux/mmzone.h: fix explanation of lower bits in the SPARSEMEM ↵Petr Tesarik1-1/+5
mem_map pointer The comment is confusing. On the one hand, it refers to 32-bit alignment (struct page alignment on 32-bit platforms), but this would only guarantee that the 2 lowest bits must be zero. On the other hand, it claims that at least 3 bits are available, and 3 bits are actually used. This is not broken, because there is a stronger alignment guarantee, just less obvious. Let's fix the comment to make it clear how many bits are available and why. Although memmap arrays are allocated in various places, the resulting pointer is encoded eventually, so I am adding a BUG_ON() here to enforce at runtime that all expected bits are indeed available. I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is sufficient, because this part of the calculation can be easily checked at build time. [[email protected]: v2] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Petr Tesarik <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Kemi Wang <[email protected]> Cc: YASUAKI ISHIMATSU <[email protected]> Cc: Andrey Ryabinin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-01-08mm: pass the vmem_altmap to vmemmap_freeChristoph Hellwig1-10/+13
We can just pass this on instead of having to do a radix tree lookup without proper locking a few levels into the callchain. Signed-off-by: Christoph Hellwig <[email protected]> Signed-off-by: Dan Williams <[email protected]>
2018-01-08mm: pass the vmem_altmap to vmemmap_populateChristoph Hellwig1-8/+12
We can just pass this on instead of having to do a radix tree lookup without proper locking a few levels into the callchain. Signed-off-by: Christoph Hellwig <[email protected]> Signed-off-by: Dan Williams <[email protected]>
2018-01-04mm/sparse.c: wrong allocation for mem_sectionBaoquan He1-1/+1
In commit 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y") mem_section is allocated at runtime to save memory. It allocates the first dimension of array with sizeof(struct mem_section). It costs extra memory, should be sizeof(struct mem_section *). Fix it. Link: http://lkml.kernel.org/r/[email protected] Fixes: 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y") Signed-off-by: Baoquan He <[email protected]> Tested-by: Dave Young <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Kirill A. Shutemov <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Atsushi Kumagai <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-11-15mm: stop zeroing memory during allocation in vmemmapPavel Tatashin1-3/+3
vmemmap_alloc_block() will no longer zero the block, so zero memory at its call sites for everything except struct pages. Struct page memory is zero'd by struct page initialization. Replace allocators in sparse-vmemmap to use the non-zeroing version. So, we will get the performance improvement by zeroing the memory in parallel when struct pages are zeroed. Add struct page zeroing as a part of initialization of other fields in __init_single_page(). This single thread performance collected on: Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T of memory (268400646 pages in 8 nodes): BASE FIX sparse_init 11.244671836s 0.007199623s zone_sizes_init 4.879775891s 8.355182299s -------------------------- Total 16.124447727s 8.362381922s sparse_init is where memory for struct pages is zeroed, and the zeroing part is moved later in this patch into __init_single_page(), which is called from zone_sizes_init(). [[email protected]: make vmemmap_alloc_block_zero() private to sparse-vmemmap.c] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Pavel Tatashin <[email protected]> Reviewed-by: Steven Sistare <[email protected]> Reviewed-by: Daniel Jordan <[email protected]> Reviewed-by: Bob Picco <[email protected]> Tested-by: Bob Picco <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Alexander Potapenko <[email protected]> Cc: Andrey Ryabinin <[email protected]> Cc: Ard Biesheuvel <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Christian Borntraeger <[email protected]> Cc: David S. Miller <[email protected]> Cc: Dmitry Vyukov <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Sam Ravnborg <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-11-10Merge branch 'x86/mm' into x86/asm, to merge branchesIngo Molnar1-0/+10
Most of x86/mm is already in x86/asm, so merge the rest too. Signed-off-by: Ingo Molnar <[email protected]>
2017-11-07mm/sparsemem: Fix ARM64 boot crash when CONFIG_SPARSEMEM_EXTREME=yKirill A. Shutemov1-0/+10
Since commit: 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y") we allocate the mem_section array dynamically in sparse_memory_present_with_active_regions(), but some architectures, like arm64, don't call the routine to initialize sparsemem. Let's move the initialization into memory_present() it should cover all architectures. Reported-and-tested-by: Sudeep Holla <[email protected]> Tested-by: Bjorn Andersson <[email protected]> Signed-off-by: Kirill A. Shutemov <[email protected]> Acked-by: Will Deacon <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Fixes: 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2017-11-07Merge branch 'linus' into x86/asm, to pick up fixes and resolve conflictsIngo Molnar1-0/+1
Conflicts: arch/x86/kernel/cpu/Makefile Signed-off-by: Ingo Molnar <[email protected]>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <[email protected]> Reviewed-by: Philippe Ombredanne <[email protected]> Reviewed-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
2017-10-20mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=yKirill A. Shutemov1-6/+11
Size of the mem_section[] array depends on the size of the physical address space. In preparation for boot-time switching between paging modes on x86-64 we need to make the allocation of mem_section[] dynamic, because otherwise we waste a lot of RAM: with CONFIG_NODE_SHIFT=10, mem_section[] size is 32kB for 4-level paging and 2MB for 5-level paging mode. The patch allocates the array on the first call to sparse_memory_present_with_active_regions(). Signed-off-by: Kirill A. Shutemov <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Borislav Petkov <[email protected]> Cc: Cyrill Gorcunov <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2017-09-08mm/sparse.c: fix typo in online_mem_sectionsMichal Hocko1-1/+1
online_mem_sections() accidentally marks online only the first section in the given range. This is a typo which hasn't been noticed because I haven't tested large 2GB blocks previously. All users of pfn_to_online_page would get confused on the the rest of the pfn range in the block. All we need to fix this is to use iterator (pfn) rather than start_pfn. Link: http://lkml.kernel.org/r/[email protected] Fixes: 2d070eab2e82 ("mm: consider zone which is not fully populated to have holes") Signed-off-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Anshuman Khandual <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-09-06mm, sparse, page_ext: drop ugly N_HIGH_MEMORY branches for allocationsMichal Hocko1-7/+3
Commit f52407ce2dea ("memory hotplug: alloc page from other node in memory online") has introduced N_HIGH_MEMORY checks to only use NUMA aware allocations when there is some memory present because the respective node might not have any memory yet at the time and so it could fail or even OOM. Things have changed since then though. Zonelists are now always initialized before we do any allocations even for hotplug (see 959ecc48fc75 ("mm/memory_hotplug.c: fix building of node hotplug zonelist")). Therefore these checks are not really needed. In fact caller of the allocator should never care about whether the node is populated because that might change at any time. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Shaohua Li <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Toshi Kani <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-07-06mm, memory_hotplug: do not associate hotadded memory to zones until onlineMichal Hocko1-2/+1
The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [[email protected]: simplify zone_intersects()] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: remove unused local `i'] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Signed-off-by: Wei Yang <[email protected]> Tested-by: Dan Williams <[email protected]> Tested-by: Reza Arbab <[email protected]> Acked-by: Heiko Carstens <[email protected]> # For s390 bits Acked-by: Vlastimil Babka <[email protected]> Cc: Martin Schwidefsky <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Balbir Singh <[email protected]> Cc: Daniel Kiper <[email protected]> Cc: David Rientjes <[email protected]> Cc: Igor Mammedov <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Tobias Regnery <[email protected]> Cc: Toshi Kani <[email protected]> Cc: Vitaly Kuznetsov <[email protected]> Cc: Xishi Qiu <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-07-06mm: consider zone which is not fully populated to have holesMichal Hocko1-1/+44
__pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [[email protected]: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Balbir Singh <[email protected]> Cc: Dan Williams <[email protected]> Cc: Daniel Kiper <[email protected]> Cc: David Rientjes <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Igor Mammedov <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Martin Schwidefsky <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Reza Arbab <[email protected]> Cc: Tobias Regnery <[email protected]> Cc: Toshi Kani <[email protected]> Cc: Vitaly Kuznetsov <[email protected]> Cc: Xishi Qiu <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-07-06mm, sparsemem: break out of loops earlyDave Hansen1-14/+46
There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Dave Hansen <[email protected]> Tested-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-05-03mm/sparse: refine usemap_size() a littleWei Yang1-4/+1
The current implementation calculates usemap_size in two steps: * calculate number of bytes to cover these bits * calculate number of "unsigned long" to cover these bytes It would be more clear by: * calculate number of "unsigned long" to cover these bits * multiple it with sizeof(unsigned long) This patch refine usemap_size() a little to make it more easy to understand. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Cc: Tejun Heo <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-02-22mm/memory_hotplug: set magic number to page->freelist instead of page->lru.nextYasuaki Ishimatsu1-1/+1
To identify that pages of page table are allocated from bootmem allocator, magic number sets to page->lru.next. But page->lru list is initialized in reserve_bootmem_region(). So when calling free_pagetable(), the function cannot find the magic number of pages. And free_pagetable() frees the pages by free_reserved_page() not put_page_bootmem(). But if the pages are allocated from bootmem allocator and used as page table, the pages have private flag. So before freeing the pages, we should clear the private flag by put_page_bootmem(). Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple page fields with a single branch"), we could find the following visible issue: BUG: Bad page state in process kworker/u1024:1 page:ffffea103cfd8040 count:0 mapcount:0 mappi flags: 0x6fffff80000800(private) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x800(private) <snip> Call Trace: [...] dump_stack+0x63/0x87 [...] bad_page+0x114/0x130 [...] free_pages_prepare+0x299/0x2d0 [...] free_hot_cold_page+0x31/0x150 [...] __free_pages+0x25/0x30 [...] free_pagetable+0x6f/0xb4 [...] remove_pagetable+0x379/0x7ff [...] vmemmap_free+0x10/0x20 [...] sparse_remove_one_section+0x149/0x180 [...] __remove_pages+0x2e9/0x4f0 [...] arch_remove_memory+0x63/0xc0 [...] remove_memory+0x8c/0xc0 [...] acpi_memory_device_remove+0x79/0xa5 [...] acpi_bus_trim+0x5a/0x8d [...] acpi_bus_trim+0x38/0x8d [...] acpi_device_hotplug+0x1b7/0x418 [...] acpi_hotplug_work_fn+0x1e/0x29 [...] process_one_work+0x152/0x400 [...] worker_thread+0x125/0x4b0 [...] kthread+0xd8/0xf0 [...] ret_from_fork+0x22/0x40 And the issue still silently occurs. Until freeing the pages of page table allocated from bootmem allocator, the page->freelist is never used. So the patch sets magic number to page->freelist instead of page->lru.next. [[email protected]: fix merge issue] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yasuaki Ishimatsu <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: H. Peter Anvin <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Xishi Qiu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2017-02-22mm/sparse: use page_private() to get page->private valueYasuaki Ishimatsu1-1/+1
free_map_bootmem() uses page->private directly to set removing_section_nr argument. But to get page->private value, page_private() has been prepared. So free_map_bootmem() should use page_private() instead of page->private. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yasuaki Ishimatsu <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: H. Peter Anvin <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Xishi Qiu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-08-02treewide: replace obsolete _refok by __refFabian Frederick1-1/+1
There was only one use of __initdata_refok and __exit_refok __init_refok was used 46 times against 82 for __ref. Those definitions are obsolete since commit 312b1485fb50 ("Introduce new section reference annotations tags: __ref, __refdata, __refconst") This patch removes the following compatibility definitions and replaces them treewide. /* compatibility defines */ #define __init_refok __ref #define __initdata_refok __refdata #define __exit_refok __ref I can also provide separate patches if necessary. (One patch per tree and check in 1 month or 2 to remove old definitions) [[email protected]: coding-style fixes] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Fabian Frederick <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Sam Ravnborg <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-28make __section_nr() more efficientZhou Chengming1-5/+7
When CONFIG_SPARSEMEM_EXTREME is disabled, __section_nr can get the section number with a subtraction directly. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Zhou Chengming <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Hanjun Guo <[email protected]> Cc: Li Bin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-03-17mm: convert printk(KERN_<LEVEL> to pr_<level>Joe Perches1-10/+7
Most of the mm subsystem uses pr_<level> so make it consistent. Miscellanea: - Realign arguments - Add missing newline to format - kmemleak-test.c has a "kmemleak: " prefix added to the "Kmemleak testing" logging message via pr_fmt Signed-off-by: Joe Perches <[email protected]> Acked-by: Tejun Heo <[email protected]> [percpu] Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-03-17mm: coalesce split stringsJoe Perches1-4/+4
Kernel style prefers a single string over split strings when the string is 'user-visible'. Miscellanea: - Add a missing newline - Realign arguments Signed-off-by: Joe Perches <[email protected]> Acked-by: Tejun Heo <[email protected]> [percpu] Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-01-15x86, mm: introduce vmem_altmap to augment vmemmap_populate()Dan Williams1-3/+5
In support of providing struct page for large persistent memory capacities, use struct vmem_altmap to change the default policy for allocating memory for the memmap array. The default vmemmap_populate() allocates page table storage area from the page allocator. Given persistent memory capacities relative to DRAM it may not be feasible to store the memmap in 'System Memory'. Instead vmem_altmap represents pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf() requests. Signed-off-by: Dan Williams <[email protected]> Reported-by: kbuild test robot <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Dave Hansen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2014-04-07mm: use macros from compiler.h instead of __attribute__((...))Gideon Israel Dsouza1-1/+3
To increase compiler portability there is <linux/compiler.h> which provides convenience macros for various gcc constructs. Eg: __weak for __attribute__((weak)). I've replaced all instances of gcc attributes with the right macro in the memory management (/mm) subsystem. [[email protected]: while-we're-there consistency tweaks] Signed-off-by: Gideon Israel Dsouza <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2014-04-02sparse: fix commentLi Zhong1-1/+1
retmain -> remain Signed-off-by: Li Zhong <[email protected]> Signed-off-by: Jiri Kosina <[email protected]>
2014-01-21mm/sparse: use memblock apis for early memory allocationsSantosh Shilimkar1-12/+15
Switch to memblock interfaces for early memory allocator instead of bootmem allocator. No functional change in beahvior than what it is in current code from bootmem users points of view. Archs already converted to NO_BOOTMEM now directly use memblock interfaces instead of bootmem wrappers build on top of memblock. And the archs which still uses bootmem, these new apis just fallback to exiting bootmem APIs. Signed-off-by: Santosh Shilimkar <[email protected]> Cc: "Rafael J. Wysocki" <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Greg Kroah-Hartman <[email protected]> Cc: Grygorii Strashko <[email protected]> Cc: H. Peter Anvin <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: KAMEZAWA Hiroyuki <[email protected]> Cc: Konrad Rzeszutek Wilk <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Pavel Machek <[email protected]> Cc: Russell King <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Tony Lindgren <[email protected]> Cc: Yinghai Lu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-11-13mm/sparsemem: fix a bug in free_map_bootmem when CONFIG_SPARSEMEM_VMEMMAPZhang Yanfei1-11/+9
We pass the number of pages which hold page structs of a memory section to free_map_bootmem(). This is right when !CONFIG_SPARSEMEM_VMEMMAP but wrong when CONFIG_SPARSEMEM_VMEMMAP. When CONFIG_SPARSEMEM_VMEMMAP, we should pass the number of pages of a memory section to free_map_bootmem. So the fix is removing the nr_pages parameter. When CONFIG_SPARSEMEM_VMEMMAP, we directly use the prefined marco PAGES_PER_SECTION in free_map_bootmem. When !CONFIG_SPARSEMEM_VMEMMAP, we calculate page numbers needed to hold the page structs for a memory section and use the value in free_map_bootmem(). This was found by reading the code. And I have no machine that support memory hot-remove to test the bug now. Signed-off-by: Zhang Yanfei <[email protected]> Reviewed-by: Wanpeng Li <[email protected]> Cc: Wen Congyang <[email protected]> Cc: Tang Chen <[email protected]> Cc: Toshi Kani <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Cc: Yinghai Lu <[email protected]> Cc: Yasunori Goto <[email protected]> Cc: Andy Whitcroft <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-11-13mm/sparsemem: use PAGES_PER_SECTION to remove redundant nr_pages parameterZhang Yanfei1-18/+15
For below functions, - sparse_add_one_section() - kmalloc_section_memmap() - __kmalloc_section_memmap() - __kfree_section_memmap() they are always invoked to operate on one memory section, so it is redundant to always pass a nr_pages parameter, which is the page numbers in one section. So we can directly use predefined macro PAGES_PER_SECTION instead of passing the parameter. Signed-off-by: Zhang Yanfei <[email protected]> Cc: Wen Congyang <[email protected]> Cc: Tang Chen <[email protected]> Cc: Toshi Kani <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Cc: Yinghai Lu <[email protected]> Cc: Yasunori Goto <[email protected]> Cc: Andy Whitcroft <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-09-11mm/sparse: introduce alloc_usemap_and_memmapWanpeng Li1-76/+57
After commit 9bdac9142407 ("sparsemem: Put mem map for one node together."), vmemmap for one node will be allocated together, its logic is similar as memory allocation for pageblock flags. This patch introduces alloc_usemap_and_memmap to extract the same logic of memory alloction for pageblock flags and vmemmap. Signed-off-by: Wanpeng Li <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Rik van Riel <[email protected]> Cc: Fengguang Wu <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Cc: David Rientjes <[email protected]> Cc: KOSAKI Motohiro <[email protected]> Cc: Jiri Kosina <[email protected]> Cc: Yinghai Lu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-07-09mm/sparse.c: put clear_hwpoisoned_pages within CONFIG_MEMORY_HOTREMOVEZhang Yanfei1-1/+1
With CONFIG_MEMORY_HOTREMOVE unset, there is a compile warning: mm/sparse.c:755: warning: `clear_hwpoisoned_pages' defined but not used And Bisecting it ended up pointing to 4edd7ceff ("mm, hotplug: avoid compiling memory hotremove functions when disabled"). This is because the commit above put sparse_remove_one_section() within the protection of CONFIG_MEMORY_HOTREMOVE but the only user of clear_hwpoisoned_pages() is sparse_remove_one_section(), and it is not within the protection of CONFIG_MEMORY_HOTREMOVE. So put clear_hwpoisoned_pages within CONFIG_MEMORY_HOTREMOVE should fix the warning. Signed-off-by: Zhang Yanfei <[email protected]> Cc: David Rientjes <[email protected]> Acked-by: Toshi Kani <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-07-04Merge branch 'for-linus' of ↵Linus Torvalds1-2/+1
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial tree updates from Jiri Kosina: "The usual stuff from trivial tree" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits) treewide: relase -> release Documentation/cgroups/memory.txt: fix stat file documentation sysctl/net.txt: delete reference to obsolete 2.4.x kernel spinlock_api_smp.h: fix preprocessor comments treewide: Fix typo in printk doc: device tree: clarify stuff in usage-model.txt. open firmware: "/aliasas" -> "/aliases" md: bcache: Fixed a typo with the word 'arithmetic' irq/generic-chip: fix a few kernel-doc entries frv: Convert use of typedef ctl_table to struct ctl_table sgi: xpc: Convert use of typedef ctl_table to struct ctl_table doc: clk: Fix incorrect wording Documentation/arm/IXP4xx fix a typo Documentation/networking/ieee802154 fix a typo Documentation/DocBook/media/v4l fix a typo Documentation/video4linux/si476x.txt fix a typo Documentation/virtual/kvm/api.txt fix a typo Documentation/early-userspace/README fix a typo Documentation/video4linux/soc-camera.txt fix a typo lguest: fix CONFIG_PAE -> CONFIG_x86_PAE in comment ...
2013-07-03sparsemem: add BUILD_BUG_ON when sizeof mem_section is non-power-of-2Cody P Schafer1-0/+3
Instead of leaving a hidden trap for the next person who comes along and wants to add something to mem_section, add a big fat warning about it needing to be a power-of-2, and insert a BUILD_BUG_ON() in sparse_init() to catch mistakes. Right now non-power-of-2 mem_sections cause a number of WARNs at boot (which don't clearly point to the size of mem_section as an issue), but the system limps on (temporarily, at least). This is based upon Dave Hansen's earlier RFC where he ran into the same issue: "sparsemem: fix boot when SECTIONS_PER_ROOT is not power-of-2" http://lkml.indiana.edu/hypermail/linux/kernel/1205.2/03077.html Signed-off-by: Cody P Schafer <[email protected]> Acked-by: Dave Hansen <[email protected]> Cc: Jiang Liu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-05-28mm/sparse: Remove unused ret in sparse_index_initZhang Yanfei1-2/+1
The ret variable is not used in the function, so remove it and directly return 0 at the end of the function. Signed-off-by: Zhang Yanfei <[email protected]> Signed-off-by: Jiri Kosina <[email protected]>
2013-04-29mm, hotplug: avoid compiling memory hotremove functions when disabledDavid Rientjes1-33/+39
__remove_pages() is only necessary for CONFIG_MEMORY_HOTREMOVE. PowerPC pseries will return -EOPNOTSUPP if unsupported. Adding an #ifdef causes several other functions it depends on to also become unnecessary, which saves in .text when disabled (it's disabled in most defconfigs besides powerpc, including x86). remove_memory_block() becomes static since it is not referenced outside of drivers/base/memory.c. Build tested on x86 and powerpc with CONFIG_MEMORY_HOTREMOVE both enabled and disabled. Signed-off-by: David Rientjes <[email protected]> Acked-by: Toshi Kani <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Greg Kroah-Hartman <[email protected]> Cc: Wen Congyang <[email protected]> Cc: Tang Chen <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-04-29sparse-vmemmap: specify vmemmap population range in bytesJohannes Weiner1-2/+8
The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <[email protected]> Cc: Ben Hutchings <[email protected]> Cc: Bernhard Schmidt <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Russell King <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: "Luck, Tony" <[email protected]> Cc: Heiko Carstens <[email protected]> Acked-by: David S. Miller <[email protected]> Tested-by: David S. Miller <[email protected]> Cc: Wu Fengguang <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-02-23memory-failure: use num_poisoned_pages instead of mce_bad_pagesXishi Qiu1-1/+1
Since MCE is an x86 concept, and this code is in mm/, it would be better to use the name num_poisoned_pages instead of mce_bad_pages. [[email protected]: fix mm/sparse.c] Signed-off-by: Xishi Qiu <[email protected]> Signed-off-by: Jiang Liu <[email protected]> Suggested-by: Borislav Petkov <[email protected]> Reviewed-by: Wanpeng Li <[email protected]> Cc: Andi Kleen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-02-23memory-hotplug: consider compound pages when free memmapWen Congyang1-1/+1
usemap could also be allocated as compound pages. Should also consider compound pages when freeing memmap. If we don't fix it, there could be problems when we free vmemmap pagetables which are stored in compound pages. The old pagetables will not be freed properly, and when we add the memory again, no new pagetable will be created. And the old pagetable entry is used, than the kernel will panic. The call trace is like the following: BUG: unable to handle kernel paging request at ffffea0040000000 IP: [<ffffffff816a483f>] sparse_add_one_section+0xef/0x166 PGD 7ff7d4067 PUD 78e035067 PMD 78e11d067 PTE 0 Oops: 0002 [#1] SMP Modules linked in: ip6table_filter ip6_tables ebtable_nat ebtables nf_conntrack_ipv4 nf_defrag_ipv4 xt_state nf_conntrack ipt_REJECT xt_CHECKSUM iptable_mangle iptable_filter ip_tables bridge stp llc sunrpc binfmt_misc dm_mirror dm_region_hash dm_log dm_mod vhost_net macvtap macvlan tun uinput iTCO_wdt iTCO_vendor_support coretemp kvm_intel kvm crc32c_intel microcode pcspkr sg lpc_ich mfd_core i2c_i801 i2c_core i7core_edac edac_core ioatdma e1000e igb dca ptp pps_core sd_mod crc_t10dif megaraid_sas mptsas mptscsih mptbase scsi_transport_sas scsi_mod CPU 0 Pid: 4, comm: kworker/0:0 Tainted: G W 3.8.0-rc3-phy-hot-remove+ #3 FUJITSU-SV PRIMEQUEST 1800E/SB RIP: 0010:[<ffffffff816a483f>] [<ffffffff816a483f>] sparse_add_one_section+0xef/0x166 RSP: 0018:ffff8807bdcb35d8 EFLAGS: 00010006 RAX: 0000000000000000 RBX: 0000000000000200 RCX: 0000000000200000 RDX: ffff88078df01148 RSI: 0000000000000282 RDI: ffffea0040000000 RBP: ffff8807bdcb3618 R08: 4cf05005b019467a R09: 0cd98fa09631467a R10: 0000000000000000 R11: 0000000000030e20 R12: 0000000000008000 R13: ffffea0040000000 R14: ffff88078df66248 R15: ffff88078ea13b10 FS: 0000000000000000(0000) GS:ffff8807c1a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: ffffea0040000000 CR3: 0000000001c0c000 CR4: 00000000000007f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/0:0 (pid: 4, threadinfo ffff8807bdcb2000, task ffff8807bde18000) Call Trace: __add_pages+0x85/0x120 arch_add_memory+0x71/0xf0 add_memory+0xd6/0x1f0 acpi_memory_device_add+0x170/0x20c acpi_device_probe+0x50/0x18a really_probe+0x6c/0x320 driver_probe_device+0x47/0xa0 __device_attach+0x53/0x60 bus_for_each_drv+0x6c/0xa0 device_attach+0xa8/0xc0 bus_probe_device+0xb0/0xe0 device_add+0x301/0x570 device_register+0x1e/0x30 acpi_device_register+0x1d8/0x27c acpi_add_single_object+0x1df/0x2b9 acpi_bus_check_add+0x112/0x18f acpi_ns_walk_namespace+0x105/0x255 acpi_walk_namespace+0xcf/0x118 acpi_bus_scan+0x5b/0x7c acpi_bus_add+0x2a/0x2c container_notify_cb+0x112/0x1a9 acpi_ev_notify_dispatch+0x46/0x61 acpi_os_execute_deferred+0x27/0x34 process_one_work+0x20e/0x5c0 worker_thread+0x12e/0x370 kthread+0xee/0x100 ret_from_fork+0x7c/0xb0 Code: 00 00 48 89 df 48 89 45 c8 e8 3e 71 b1 ff 48 89 c2 48 8b 75 c8 b8 ef ff ff ff f6 02 01 75 4b 49 63 cc 31 c0 4c 89 ef 48 c1 e1 06 <f3> aa 48 8b 02 48 83 c8 01 48 85 d2 48 89 02 74 29 a8 01 74 25 RIP [<ffffffff816a483f>] sparse_add_one_section+0xef/0x166 RSP <ffff8807bdcb35d8> CR2: ffffea0040000000 ---[ end trace e7f94e3a34c442d4 ]--- Kernel panic - not syncing: Fatal exception Signed-off-by: Wen Congyang <[email protected]> Signed-off-by: Tang Chen <[email protected]> Cc: Jiang Liu <[email protected]> Cc: Jianguo Wu <[email protected]> Cc: Kamezawa Hiroyuki <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-02-23memory-hotplug: remove memmap of sparse-vmemmapTang Chen1-1/+2
Introduce a new API vmemmap_free() to free and remove vmemmap pagetables. Since pagetable implements are different, each architecture has to provide its own version of vmemmap_free(), just like vmemmap_populate(). Note: vmemmap_free() is not implemented for ia64, ppc, s390, and sparc. [[email protected]: fix implicit declaration of remove_pagetable] Signed-off-by: Yasuaki Ishimatsu <[email protected]> Signed-off-by: Jianguo Wu <[email protected]> Signed-off-by: Wen Congyang <[email protected]> Signed-off-by: Tang Chen <[email protected]> Cc: KOSAKI Motohiro <[email protected]> Cc: Jiang Liu <[email protected]> Cc: Kamezawa Hiroyuki <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Wu Jianguo <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Signed-off-by: Michal Hocko <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2013-02-23memory-hotplug: move pgdat_resize_lock into sparse_remove_one_section()Tang Chen1-1/+4
In __remove_section(), we locked pgdat_resize_lock when calling sparse_remove_one_section(). This lock will disable irq. But we don't need to lock the whole function. If we do some work to free pagetables in free_section_usemap(), we need to call flush_tlb_all(), which need irq enabled. Otherwise the WARN_ON_ONCE() in smp_call_function_many() will be triggered. If we lock the whole sparse_remove_one_section(), then we come to this call trace: ------------[ cut here ]------------ WARNING: at kernel/smp.c:461 smp_call_function_many+0xbd/0x260() Hardware name: PRIMEQUEST 1800E ...... Call Trace: smp_call_function_many+0xbd/0x260 smp_call_function+0x3b/0x50 on_each_cpu+0x3b/0xc0 flush_tlb_all+0x1c/0x20 remove_pagetable+0x14e/0x1d0 vmemmap_free+0x18/0x20 sparse_remove_one_section+0xf7/0x100 __remove_section+0xa2/0xb0 __remove_pages+0xa0/0xd0 arch_remove_memory+0x6b/0xc0 remove_memory+0xb8/0xf0 acpi_memory_device_remove+0x53/0x96 acpi_device_remove+0x90/0xb2 __device_release_driver+0x7c/0xf0 device_release_driver+0x2f/0x50 acpi_bus_remove+0x32/0x6d acpi_bus_trim+0x91/0x102 acpi_bus_hot_remove_device+0x88/0x16b acpi_os_execute_deferred+0x27/0x34 process_one_work+0x20e/0x5c0 worker_thread+0x12e/0x370 kthread+0xee/0x100 ret_from_fork+0x7c/0xb0 ---[ end trace 25e85300f542aa01 ]--- Signed-off-by: Tang Chen <[email protected]> Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Wen Congyang <[email protected]> Acked-by: KAMEZAWA Hiroyuki <[email protected]> Cc: KOSAKI Motohiro <[email protected]> Cc: Jiang Liu <[email protected]> Cc: Jianguo Wu <[email protected]> Cc: Wu Jianguo <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2012-12-11memory-hotplug, mm/sparse.c: clear the memory to store struct pageWen Congyang1-1/+2
If sparse memory vmemmap is enabled, we can't free the memory to store struct page when a memory device is hotremoved, because we may store struct page in the memory to manage the memory which doesn't belong to this memory device. When we hotadded this memory device again, we will reuse this memory to store struct page, and struct page may contain some obsolete information, and we will get bad-page state: init_memory_mapping: [mem 0x80000000-0x9fffffff] Built 2 zonelists in Node order, mobility grouping on. Total pages: 547617 Policy zone: Normal BUG: Bad page state in process bash pfn:9b6dc page:ffffea0002200020 count:0 mapcount:0 mapping: (null) index:0xfdfdfdfdfdfdfdfd page flags: 0x2fdfdfdfd5df9fd(locked|referenced|uptodate|dirty|lru|active|slab|owner_priv_1|private|private_2|writeback|head|tail|swapcache|reclaim|swapbacked|unevictable|uncached|compound_lock) Modules linked in: netconsole acpiphp pci_hotplug acpi_memhotplug loop kvm_amd kvm microcode tpm_tis tpm tpm_bios evdev psmouse serio_raw i2c_piix4 i2c_core parport_pc parport processor button thermal_sys ext3 jbd mbcache sg sr_mod cdrom ata_generic virtio_net ata_piix virtio_blk libata virtio_pci virtio_ring virtio scsi_mod Pid: 988, comm: bash Not tainted 3.6.0-rc7-guest #12 Call Trace: [<ffffffff810e9b30>] ? bad_page+0xb0/0x100 [<ffffffff810ea4c3>] ? free_pages_prepare+0xb3/0x100 [<ffffffff810ea668>] ? free_hot_cold_page+0x48/0x1a0 [<ffffffff8112cc08>] ? online_pages_range+0x68/0xa0 [<ffffffff8112cba0>] ? __online_page_increment_counters+0x10/0x10 [<ffffffff81045561>] ? walk_system_ram_range+0x101/0x110 [<ffffffff814c4f95>] ? online_pages+0x1a5/0x2b0 [<ffffffff8135663d>] ? __memory_block_change_state+0x20d/0x270 [<ffffffff81356756>] ? store_mem_state+0xb6/0xf0 [<ffffffff8119e482>] ? sysfs_write_file+0xd2/0x160 [<ffffffff8113769a>] ? vfs_write+0xaa/0x160 [<ffffffff81137977>] ? sys_write+0x47/0x90 [<ffffffff814e2f25>] ? async_page_fault+0x25/0x30 [<ffffffff814ea239>] ? system_call_fastpath+0x16/0x1b Disabling lock debugging due to kernel taint This patch clears the memory to store struct page to avoid unexpected error. Signed-off-by: Wen Congyang <[email protected]> Cc: David Rientjes <[email protected]> Cc: Jiang Liu <[email protected]> Cc: Minchan Kim <[email protected]> Acked-by: KOSAKI Motohiro <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Reported-by: Vasilis Liaskovitis <[email protected]> Cc: Dave Hansen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2012-12-11memory-hotplug: update mce_bad_pages when removing the memoryWen Congyang1-0/+22
When we hotremove a memory device, we will free the memory to store struct page. If the page is hwpoisoned page, we should decrease mce_bad_pages. [[email protected]: cleanup ifdefs] Signed-off-by: Wen Congyang <[email protected]> Cc: David Rientjes <[email protected]> Cc: Jiang Liu <[email protected]> Cc: Len Brown <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Minchan Kim <[email protected]> Cc: KOSAKI Motohiro <[email protected]> Cc: Yasuaki Ishimatsu <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Mel Gorman <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>