Age | Commit message (Collapse) | Author | Files | Lines |
|
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[[email protected]: add comment, per David]
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Vlastimil Babka <[email protected]>
Suggested-by: David Hildenbrand <[email protected]>
Suggested-by: Michal Hocko <[email protected]>
Reviewed-by: Oscar Salvador <[email protected]>
Reviewed-by: David Hildenbrand <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Code outside mm/ should not be calling free_unref_page(). Also move
free_unref_page_list().
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Reviewed-by: David Hildenbrand <[email protected]>
Reviewed-by: Mike Rapoport <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The current page_order() can only be called on pages in the buddy
allocator. For compound pages, you have to use compound_order(). This is
confusing and led to a bug, so rename page_order() to buddy_order().
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The file_ra_state being passed into page_cache_sync_readahead() was being
ignored in favour of using the one embedded in the struct file. The only
caller for which this makes a difference is the fsverity code if the file
has been marked as POSIX_FADV_RANDOM, but it's confusing and worth fixing.
Signed-off-by: David Howells <[email protected]>
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Eric Biggers <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Fold ra_submit() into its last remaining user and pass the
readahead_control struct to both do_page_cache_ra() and
page_cache_sync_ra().
Signed-off-by: David Howells <[email protected]>
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Eric Biggers <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Reimplement force_page_cache_readahead() as a wrapper around
force_page_cache_ra(). Pass the existing readahead_control from
page_cache_sync_readahead().
Signed-off-by: David Howells <[email protected]>
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Eric Biggers <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Rename __do_page_cache_readahead() to do_page_cache_ra() and call it
directly from ondemand_readahead() instead of indirecting via ra_submit().
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: David Howells <[email protected]>
Cc: Eric Biggers <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
i915 does not want to see value entries. Switch it to use
find_lock_page() instead, and remove the export of find_lock_entry().
Move find_lock_entry() and find_get_entry() to mm/internal.h to discourage
any future use.
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Cc: Alexey Dobriyan <[email protected]>
Cc: Chris Wilson <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Jani Nikula <[email protected]>
Cc: Matthew Auld <[email protected]>
Cc: William Kucharski <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[[email protected]: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: William Kucharski <[email protected]>
Reviewed-by: Zi Yan <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This function returns the number of bytes in a THP. It is like
page_size(), but compiles to just PAGE_SIZE if CONFIG_TRANSPARENT_HUGEPAGE
is disabled.
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: William Kucharski <[email protected]>
Reviewed-by: Zi Yan <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There is a well-defined migration target allocation callback. Use it.
Signed-off-by: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Naoya Horiguchi <[email protected]>
Cc: Roman Gushchin <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There are some similar functions for migration target allocation. Since
there is no fundamental difference, it's better to keep just one rather
than keeping all variants. This patch implements base migration target
allocation function. In the following patches, variants will be converted
to use this function.
Changes should be mechanical, but, unfortunately, there are some
differences. First, some callers' nodemask is assgined to NULL since NULL
nodemask will be considered as all available nodes, that is,
&node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is
redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if
user provided gfp_mask has it. This is because future caller of this
function requires to set this node constaint. Lastly, if provided nodeid
is NUMA_NO_NODE, nodeid is set up to the node where migration source
lives. It helps to remove simple wrappers for setting up the nodeid.
Note that PageHighmem() call in previous function is changed to open-code
"is_highmem_idx()" since it provides more readability.
[[email protected]: tweak patch title, per Vlastimil]
[[email protected]: fix typo in comment]
Signed-off-by: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Naoya Horiguchi <[email protected]>
Cc: Roman Gushchin <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
For some applications, we need to allocate almost all memory as hugepages.
However, on a running system, higher-order allocations can fail if the
memory is fragmented. Linux kernel currently does on-demand compaction as
we request more hugepages, but this style of compaction incurs very high
latency. Experiments with one-time full memory compaction (followed by
hugepage allocations) show that kernel is able to restore a highly
fragmented memory state to a fairly compacted memory state within <1 sec
for a 32G system. Such data suggests that a more proactive compaction can
help us allocate a large fraction of memory as hugepages keeping
allocation latencies low.
For a more proactive compaction, the approach taken here is to define a
new sysctl called 'vm.compaction_proactiveness' which dictates bounds for
external fragmentation which kcompactd tries to maintain.
The tunable takes a value in range [0, 100], with a default of 20.
Note that a previous version of this patch [1] was found to introduce too
many tunables (per-order extfrag{low, high}), but this one reduces them to
just one sysctl. Also, the new tunable is an opaque value instead of
asking for specific bounds of "external fragmentation", which would have
been difficult to estimate. The internal interpretation of this opaque
value allows for future fine-tuning.
Currently, we use a simple translation from this tunable to [low, high]
"fragmentation score" thresholds (low=100-proactiveness, high=low+10%).
The score for a node is defined as weighted mean of per-zone external
fragmentation. A zone's present_pages determines its weight.
To periodically check per-node score, we reuse per-node kcompactd threads,
which are woken up every 500 milliseconds to check the same. If a node's
score exceeds its high threshold (as derived from user-provided
proactiveness value), proactive compaction is started until its score
reaches its low threshold value. By default, proactiveness is set to 20,
which implies threshold values of low=80 and high=90.
This patch is largely based on ideas from Michal Hocko [2]. See also the
LWN article [3].
Performance data
================
System: x64_64, 1T RAM, 80 CPU threads.
Kernel: 5.6.0-rc3 + this patch
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag
Before starting the driver, the system was fragmented from a userspace
program that allocates all memory and then for each 2M aligned section,
frees 3/4 of base pages using munmap. The workload is mainly anonymous
userspace pages, which are easy to move around. I intentionally avoided
unmovable pages in this test to see how much latency we incur when
hugepage allocations hit direct compaction.
1. Kernel hugepage allocation latencies
With the system in such a fragmented state, a kernel driver then allocates
as many hugepages as possible and measures allocation latency:
(all latency values are in microseconds)
- With vanilla 5.6.0-rc3
percentile latency
–––––––––– –––––––
5 7894
10 9496
25 12561
30 15295
40 18244
50 21229
60 27556
75 30147
80 31047
90 32859
95 33799
Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)
- With 5.6.0-rc3 + this patch, with proactiveness=20
sysctl -w vm.compaction_proactiveness=20
percentile latency
–––––––––– –––––––
5 2
10 2
25 3
30 3
40 3
50 4
60 4
75 4
80 4
90 5
95 429
Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)
2. JAVA heap allocation
In this test, we first fragment memory using the same method as for (1).
Then, we start a Java process with a heap size set to 700G and request the
heap to be allocated with THP hugepages. We also set THP to madvise to
allow hugepage backing of this heap.
/usr/bin/time
java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch
The above command allocates 700G of Java heap using hugepages.
- With vanilla 5.6.0-rc3
17.39user 1666.48system 27:37.89elapsed
- With 5.6.0-rc3 + this patch, with proactiveness=20
8.35user 194.58system 3:19.62elapsed
Elapsed time remains around 3:15, as proactiveness is further increased.
Note that proactive compaction happens throughout the runtime of these
workloads. The situation of one-time compaction, sufficient to supply
hugepages for following allocation stream, can probably happen for more
extreme proactiveness values, like 80 or 90.
In the above Java workload, proactiveness is set to 20. The test starts
with a node's score of 80 or higher, depending on the delay between the
fragmentation step and starting the benchmark, which gives more-or-less
time for the initial round of compaction. As t he benchmark consumes
hugepages, node's score quickly rises above the high threshold (90) and
proactive compaction starts again, which brings down the score to the low
threshold level (80). Repeat.
bpftrace also confirms proactive compaction running 20+ times during the
runtime of this Java benchmark. kcompactd threads consume 100% of one of
the CPUs while it tries to bring a node's score within thresholds.
Backoff behavior
================
Above workloads produce a memory state which is easy to compact. However,
if memory is filled with unmovable pages, proactive compaction should
essentially back off. To test this aspect:
- Created a kernel driver that allocates almost all memory as hugepages
followed by freeing first 3/4 of each hugepage.
- Set proactiveness=40
- Note that proactive_compact_node() is deferred maximum number of times
with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check
(=> ~30 seconds between retries).
[1] https://patchwork.kernel.org/patch/11098289/
[2] https://lore.kernel.org/linux-mm/[email protected]/
[3] https://lwn.net/Articles/817905/
Signed-off-by: Nitin Gupta <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Tested-by: Oleksandr Natalenko <[email protected]>
Reviewed-by: Vlastimil Babka <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Reviewed-by: Oleksandr Natalenko <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Khalid Aziz <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Nitin Gupta <[email protected]>
Cc: Oleksandr Natalenko <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Convert comments that reference mmap_sem to reference mmap_lock instead.
[[email protected]: fix up linux-next leftovers]
[[email protected]: s/lockaphore/lock/, per Vlastimil]
[[email protected]: more linux-next fixups, per Michel]
Signed-off-by: Michel Lespinasse <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Vlastimil Babka <[email protected]>
Reviewed-by: Daniel Jordan <[email protected]>
Cc: Davidlohr Bueso <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Jerome Glisse <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Laurent Dufour <[email protected]>
Cc: Liam Howlett <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Ying Han <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.
The change is generated using coccinelle with the following rule:
// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .
@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)
Signed-off-by: Michel Lespinasse <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Daniel Jordan <[email protected]>
Reviewed-by: Laurent Dufour <[email protected]>
Reviewed-by: Vlastimil Babka <[email protected]>
Cc: Davidlohr Bueso <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Jerome Glisse <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Liam Howlett <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Ying Han <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There is a typo in comment, fix it.
Signed-off-by: Ethon Paul <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Ralph Campbell <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
commit 3c710c1ad11b ("mm, vmscan extract shrink_page_list reclaim counters
into a struct") changed data type for the function, so changing return
type for funciton and its caller.
Signed-off-by: Vaneet Narang <[email protected]>
Signed-off-by: Maninder Singh <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Amit Sahrawat <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
classzone_idx is just different name for high_zoneidx now. So, integrate
them and add some comment to struct alloc_context in order to reduce
future confusion about the meaning of this variable.
The accessor, ac_classzone_idx() is also removed since it isn't needed
after integration.
In addition to integration, this patch also renames high_zoneidx to
highest_zoneidx since it represents more precise meaning.
Signed-off-by: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Baoquan He <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Acked-by: David Rientjes <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Ye Xiaolong <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "integrate classzone_idx and high_zoneidx", v5.
This patchset is followup of the problem reported and discussed two years
ago [1, 2]. The problem this patchset solves is related to the
classzone_idx on the NUMA system. It causes a problem when the lowmem
reserve protection exists for some zones on a node that do not exist on
other nodes.
This problem was reported two years ago, and, at that time, the solution
got general agreements [2]. But it was not upstreamed.
[1]: http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop
[2]: http://lkml.kernel.org/r/[email protected]
This patch (of 2):
Currently, we use classzone_idx to calculate lowmem reserve proetection
for an allocation request. This classzone_idx causes a problem on NUMA
systems when the lowmem reserve protection exists for some zones on a node
that do not exist on other nodes.
Before further explanation, I should first clarify how to compute the
classzone_idx and the high_zoneidx.
- ac->high_zoneidx is computed via the arcane gfp_zone(gfp_mask) and
represents the index of the highest zone the allocation can use
- classzone_idx was supposed to be the index of the highest zone on the
local node that the allocation can use, that is actually available in
the system
Think about following example. Node 0 has 4 populated zone,
DMA/DMA32/NORMAL/MOVABLE. Node 1 has 1 populated zone, NORMAL. Some
zones, such as MOVABLE, doesn't exist on node 1 and this makes following
difference.
Assume that there is an allocation request whose gfp_zone(gfp_mask) is the
zone, MOVABLE. Then, it's high_zoneidx is 3. If this allocation is
initiated on node 0, it's classzone_idx is 3 since actually
available/usable zone on local (node 0) is MOVABLE. If this allocation is
initiated on node 1, it's classzone_idx is 2 since actually
available/usable zone on local (node 1) is NORMAL.
You can see that classzone_idx of the allocation request are different
according to their starting node, even if their high_zoneidx is the same.
Think more about these two allocation requests. If they are processed on
local, there is no problem. However, if allocation is initiated on node 1
are processed on remote, in this example, at the NORMAL zone on node 0,
due to memory shortage, problem occurs. Their different classzone_idx
leads to different lowmem reserve and then different min watermark. See
the following example.
root@ubuntu:/sys/devices/system/memory# cat /proc/zoneinfo
Node 0, zone DMA
per-node stats
...
pages free 3965
min 5
low 8
high 11
spanned 4095
present 3998
managed 3977
protection: (0, 2961, 4928, 5440)
...
Node 0, zone DMA32
pages free 757955
min 1129
low 1887
high 2645
spanned 1044480
present 782303
managed 758116
protection: (0, 0, 1967, 2479)
...
Node 0, zone Normal
pages free 459806
min 750
low 1253
high 1756
spanned 524288
present 524288
managed 503620
protection: (0, 0, 0, 4096)
...
Node 0, zone Movable
pages free 130759
min 195
low 326
high 457
spanned 1966079
present 131072
managed 131072
protection: (0, 0, 0, 0)
...
Node 1, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1006, 1006)
Node 1, zone DMA32
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1006, 1006)
Node 1, zone Normal
per-node stats
...
pages free 233277
min 383
low 640
high 897
spanned 262144
present 262144
managed 257744
protection: (0, 0, 0, 0)
...
Node 1, zone Movable
pages free 0
min 0
low 0
high 0
spanned 262144
present 0
managed 0
protection: (0, 0, 0, 0)
- static min watermark for the NORMAL zone on node 0 is 750.
- lowmem reserve for the request with classzone idx 3 at the NORMAL on
node 0 is 4096.
- lowmem reserve for the request with classzone idx 2 at the NORMAL on
node 0 is 0.
So, overall min watermark is:
allocation initiated on node 0 (classzone_idx 3): 750 + 4096 = 4846
allocation initiated on node 1 (classzone_idx 2): 750 + 0 = 750
Allocation initiated on node 1 will have some precedence than allocation
initiated on node 0 because min watermark of the former allocation is
lower than the other. So, allocation initiated on node 1 could succeed on
node 0 when allocation initiated on node 0 could not, and, this could
cause too many numa_miss allocation. Then, performance could be
downgraded.
Recently, there was a regression report about this problem on CMA patches
since CMA memory are placed in ZONE_MOVABLE by those patches. I checked
that problem is disappeared with this fix that uses high_zoneidx for
classzone_idx.
http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop
Using high_zoneidx for classzone_idx is more consistent way than previous
approach because system's memory layout doesn't affect anything to it.
With this patch, both classzone_idx on above example will be 3 so will
have the same min watermark.
allocation initiated on node 0: 750 + 4096 = 4846
allocation initiated on node 1: 750 + 4096 = 4846
One could wonder if there is a side effect that allocation initiated on
node 1 will use higher bar when allocation is handled on local since
classzone_idx could be higher than before. It will not happen because the
zone without managed page doesn't contributes lowmem_reserve at all.
Reported-by: Ye Xiaolong <[email protected]>
Signed-off-by: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Tested-by: Ye Xiaolong <[email protected]>
Reviewed-by: Baoquan He <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Acked-by: David Rientjes <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Mel Gorman <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
ondemand_readahead has two callers, neither of which use the return
value. That means that both ra_submit and __do_page_cache_readahead()
can return void, and we don't need to worry that a present page in the
readahead window causes us to return a smaller nr_pages than we ought to
have.
Similarly, no caller uses the return value from
force_page_cache_readahead().
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Dave Chinner <[email protected]>
Reviewed-by: John Hubbard <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Reviewed-by: William Kucharski <[email protected]>
Cc: Chao Yu <[email protected]>
Cc: Cong Wang <[email protected]>
Cc: Darrick J. Wong <[email protected]>
Cc: Eric Biggers <[email protected]>
Cc: Gao Xiang <[email protected]>
Cc: Jaegeuk Kim <[email protected]>
Cc: Joseph Qi <[email protected]>
Cc: Junxiao Bi <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Zi Yan <[email protected]>
Cc: Johannes Thumshirn <[email protected]>
Cc: Miklos Szeredi <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "Change readahead API", v11.
This series adds a readahead address_space operation to replace the
readpages operation. The key difference is that pages are added to the
page cache as they are allocated (and then looked up by the filesystem)
instead of passing them on a list to the readpages operation and having
the filesystem add them to the page cache. It's a net reduction in code
for each implementation, more efficient than walking a list, and solves
the direct-write vs buffered-read problem reported by yu kuai at
http://lkml.kernel.org/r/[email protected]
The only unconverted filesystems are those which use fscache. Their
conversion is pending Dave Howells' rewrite which will make the
conversion substantially easier. This should be completed by the end of
the year.
I want to thank the reviewers/testers; Dave Chinner, John Hubbard, Eric
Biggers, Johannes Thumshirn, Dave Sterba, Zi Yan, Christoph Hellwig and
Miklos Szeredi have done a marvellous job of providing constructive
criticism.
These patches pass an xfstests run on ext4, xfs & btrfs with no
regressions that I can tell (some of the tests seem a little flaky
before and remain flaky afterwards).
This patch (of 25):
The readahead code is part of the page cache so should be found in the
pagemap.h file. force_page_cache_readahead is only used within mm, so
move it to mm/internal.h instead. Remove the parameter names where they
add no value, and rename the ones which were actively misleading.
Signed-off-by: Matthew Wilcox (Oracle) <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: John Hubbard <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Reviewed-by: William Kucharski <[email protected]>
Reviewed-by: Johannes Thumshirn <[email protected]>
Cc: Chao Yu <[email protected]>
Cc: Cong Wang <[email protected]>
Cc: Darrick J. Wong <[email protected]>
Cc: Dave Chinner <[email protected]>
Cc: Eric Biggers <[email protected]>
Cc: Gao Xiang <[email protected]>
Cc: Jaegeuk Kim <[email protected]>
Cc: Joseph Qi <[email protected]>
Cc: Junxiao Bi <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Zi Yan <[email protected]>
Cc: Miklos Szeredi <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There are cases where we would benefit from avoiding having to go through
the allocation and free cycle to return an isolated page.
Examples for this might include page poisoning in which we isolate a page
and then put it back in the free list without ever having actually
allocated it.
This will enable us to also avoid notifiers for the future free page
reporting which will need to avoid retriggering page reporting when
returning pages that have been reported on.
Signed-off-by: Alexander Duyck <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: David Hildenbrand <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Williams <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Konrad Rzeszutek Wilk <[email protected]>
Cc: Luiz Capitulino <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Michael S. Tsirkin <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nitesh Narayan Lal <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Pankaj Gupta <[email protected]>
Cc: Paolo Bonzini <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Wei Wang <[email protected]>
Cc: Yang Zhang <[email protected]>
Cc: wei qi <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "fix THP migration for CMA allocations", v2.
Transparent huge pages are allocated with __GFP_MOVABLE, and can end up in
CMA memory blocks. Transparent huge pages also have most of the
infrastructure in place to allow migration.
However, a few pieces were missing, causing THP migration to fail when
attempting to use CMA to allocate 1GB hugepages.
With these patches in place, THP migration from CMA blocks seems to work,
both for anonymous THPs and for tmpfs/shmem THPs.
This patch (of 2):
Add information to struct compact_control to indicate that the allocator
would really like to clear out this specific part of memory, used by for
example CMA.
Signed-off-by: Rik van Riel <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Reviewed-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Zi Yan <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This patch makes ALLOC_KSWAPD equal to __GFP_KSWAPD_RECLAIM (cast to int).
Thanks to that code like:
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
alloc_flags |= ALLOC_KSWAPD;
can be changed to:
alloc_flags |= (__force int) (gfp_mask &__GFP_KSWAPD_RECLAIM);
Thanks to this one branch less is generated in the assembly.
In case of ALLOC_KSWAPD flag two branches are saved, first one in code
that always executes in the beginning of page allocation and the second
one in loop in page allocator slowpath.
Signed-off-by: Mateusz Nosek <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The idea comes from a discussion between Linus and Andrea [1].
Before this patch we only allow a page fault to retry once. We achieved
this by clearing the FAULT_FLAG_ALLOW_RETRY flag when doing
handle_mm_fault() the second time. This was majorly used to avoid
unexpected starvation of the system by looping over forever to handle the
page fault on a single page. However that should hardly happen, and after
all for each code path to return a VM_FAULT_RETRY we'll first wait for a
condition (during which time we should possibly yield the cpu) to happen
before VM_FAULT_RETRY is really returned.
This patch removes the restriction by keeping the FAULT_FLAG_ALLOW_RETRY
flag when we receive VM_FAULT_RETRY. It means that the page fault handler
now can retry the page fault for multiple times if necessary without the
need to generate another page fault event. Meanwhile we still keep the
FAULT_FLAG_TRIED flag so page fault handler can still identify whether a
page fault is the first attempt or not.
Then we'll have these combinations of fault flags (only considering
ALLOW_RETRY flag and TRIED flag):
- ALLOW_RETRY and !TRIED: this means the page fault allows to
retry, and this is the first try
- ALLOW_RETRY and TRIED: this means the page fault allows to
retry, and this is not the first try
- !ALLOW_RETRY and !TRIED: this means the page fault does not allow
to retry at all
- !ALLOW_RETRY and TRIED: this is forbidden and should never be used
In existing code we have multiple places that has taken special care of
the first condition above by checking against (fault_flags &
FAULT_FLAG_ALLOW_RETRY). This patch introduces a simple helper to detect
the first retry of a page fault by checking against both (fault_flags &
FAULT_FLAG_ALLOW_RETRY) and !(fault_flag & FAULT_FLAG_TRIED) because now
even the 2nd try will have the ALLOW_RETRY set, then use that helper in
all existing special paths. One example is in __lock_page_or_retry(), now
we'll drop the mmap_sem only in the first attempt of page fault and we'll
keep it in follow up retries, so old locking behavior will be retained.
This will be a nice enhancement for current code [2] at the same time a
supporting material for the future userfaultfd-writeprotect work, since in
that work there will always be an explicit userfault writeprotect retry
for protected pages, and if that cannot resolve the page fault (e.g., when
userfaultfd-writeprotect is used in conjunction with swapped pages) then
we'll possibly need a 3rd retry of the page fault. It might also benefit
other potential users who will have similar requirement like userfault
write-protection.
GUP code is not touched yet and will be covered in follow up patch.
Please read the thread below for more information.
[1] https://lore.kernel.org/lkml/[email protected]/
[2] https://lore.kernel.org/lkml/[email protected]/
Suggested-by: Linus Torvalds <[email protected]>
Suggested-by: Andrea Arcangeli <[email protected]>
Signed-off-by: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Tested-by: Brian Geffon <[email protected]>
Cc: Bobby Powers <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: Denis Plotnikov <[email protected]>
Cc: "Dr . David Alan Gilbert" <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Jerome Glisse <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: "Kirill A . Shutemov" <[email protected]>
Cc: Martin Cracauer <[email protected]>
Cc: Marty McFadden <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Maya Gokhale <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When backporting commit 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping
pagevecs") to our 4.9 kernel, our test bench noticed around 10% down with
a couple of vm-scalability's test cases (lru-file-readonce,
lru-file-readtwice and lru-file-mmap-read). I didn't see that much down
on my VM (32c-64g-2nodes). It might be caused by the test configuration,
which is 32c-256g with NUMA disabled and the tests were run in root memcg,
so the tests actually stress only one inactive and active lru. It sounds
not very usual in mordern production environment.
That commit did two major changes:
1. Call page_evictable()
2. Use smp_mb to force the PG_lru set visible
It looks they contribute the most overhead. The page_evictable() is a
function which does function prologue and epilogue, and that was used by
page reclaim path only. However, lru add is a very hot path, so it sounds
better to make it inline. However, it calls page_mapping() which is not
inlined either, but the disassemble shows it doesn't do push and pop
operations and it sounds not very straightforward to inline it.
Other than this, it sounds smp_mb() is not necessary for x86 since
SetPageLRU is atomic which enforces memory barrier already, replace it
with smp_mb__after_atomic() in the following patch.
With the two fixes applied, the tests can get back around 5% on that test
bench and get back normal on my VM. Since the test bench configuration is
not that usual and I also saw around 6% up on the latest upstream, so it
sounds good enough IMHO.
The below is test data (lru-file-readtwice throughput) against the v5.6-rc4:
mainline w/ inline fix
150MB 154MB
With this patch the throughput gets 2.67% up. The data with using
smp_mb__after_atomic() is showed in the following patch.
Shakeel Butt did the below test:
On a real machine with limiting the 'dd' on a single node and reading 100
GiB sparse file (less than a single node). Just ran a single instance to
not cause the lru lock contention. The cmdline used is "dd if=file-100GiB
of=/dev/null bs=4k". Ran the cmd 10 times with drop_caches in between and
measured the time it took.
Without patch: 56.64143 +- 0.672 sec
With patches: 56.10 +- 0.21 sec
[[email protected]: move page_evictable() to internal.h]
Fixes: 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs")
Signed-off-by: Yang Shi <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Tested-by: Shakeel Butt <[email protected]>
Reviewed-by: Shakeel Butt <[email protected]>
Reviewed-by: Matthew Wilcox (Oracle) <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Memory hotplug needs to be able to reset and reinit the pcpu allocator
batch and high limits but this action is internal to the VM. Move the
declaration to internal.h
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Matt Fleming <[email protected]>
Cc: Qian Cai <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Now we use rb_parent to get next, while this is not necessary.
When prev is NULL, this means vma should be the first element in the list.
Then next should be current first one (mm->mmap), no matter whether we
have parent or not.
After removing it, the code shows the beauty of symmetry.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Andrew Morton <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Just make the code a little easier to read.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Wei Yang <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
One of our services is observing hanging ps/top/etc under heavy write
IO, and the task states show this is an mmap_sem priority inversion:
A write fault is holding the mmap_sem in read-mode and waiting for
(heavily cgroup-limited) IO in balance_dirty_pages():
balance_dirty_pages+0x724/0x905
balance_dirty_pages_ratelimited+0x254/0x390
fault_dirty_shared_page.isra.96+0x4a/0x90
do_wp_page+0x33e/0x400
__handle_mm_fault+0x6f0/0xfa0
handle_mm_fault+0xe4/0x200
__do_page_fault+0x22b/0x4a0
page_fault+0x45/0x50
Somebody tries to change the address space, contending for the mmap_sem in
write-mode:
call_rwsem_down_write_failed_killable+0x13/0x20
do_mprotect_pkey+0xa8/0x330
SyS_mprotect+0xf/0x20
do_syscall_64+0x5b/0x100
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
The waiting writer locks out all subsequent readers to avoid lock
starvation, and several threads can be seen hanging like this:
call_rwsem_down_read_failed+0x14/0x30
proc_pid_cmdline_read+0xa0/0x480
__vfs_read+0x23/0x140
vfs_read+0x87/0x130
SyS_read+0x42/0x90
do_syscall_64+0x5b/0x100
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
To fix this, do what we do for cache read faults already: drop the
mmap_sem before calling into anything IO bound, in this case the
balance_dirty_pages() function, and return VM_FAULT_RETRY.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Johannes Weiner <[email protected]>
Reviewed-by: Matthew Wilcox (Oracle) <[email protected]>
Acked-by: Kirill A. Shutemov <[email protected]>
Cc: Josef Bacik <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7.
- Background
The Android terminology used for forking a new process and starting an app
from scratch is a cold start, while resuming an existing app is a hot
start. While we continually try to improve the performance of cold
starts, hot starts will always be significantly less power hungry as well
as faster so we are trying to make hot start more likely than cold start.
To increase hot start, Android userspace manages the order that apps
should be killed in a process called ActivityManagerService.
ActivityManagerService tracks every Android app or service that the user
could be interacting with at any time and translates that into a ranked
list for lmkd(low memory killer daemon). They are likely to be killed by
lmkd if the system has to reclaim memory. In that sense they are similar
to entries in any other cache. Those apps are kept alive for
opportunistic performance improvements but those performance improvements
will vary based on the memory requirements of individual workloads.
- Problem
Naturally, cached apps were dominant consumers of memory on the system.
However, they were not significant consumers of swap even though they are
good candidate for swap. Under investigation, swapping out only begins
once the low zone watermark is hit and kswapd wakes up, but the overall
allocation rate in the system might trip lmkd thresholds and cause a
cached process to be killed(we measured performance swapping out vs.
zapping the memory by killing a process. Unsurprisingly, zapping is 10x
times faster even though we use zram which is much faster than real
storage) so kill from lmkd will often satisfy the high zone watermark,
resulting in very few pages actually being moved to swap.
- Approach
The approach we chose was to use a new interface to allow userspace to
proactively reclaim entire processes by leveraging platform information.
This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages
that are known to be cold from userspace and to avoid races with lmkd by
reclaiming apps as soon as they entered the cached state. Additionally,
it could provide many chances for platform to use much information to
optimize memory efficiency.
To achieve the goal, the patchset introduce two new options for madvise.
One is MADV_COLD which will deactivate activated pages and the other is
MADV_PAGEOUT which will reclaim private pages instantly. These new
options complement MADV_DONTNEED and MADV_FREE by adding non-destructive
ways to gain some free memory space. MADV_PAGEOUT is similar to
MADV_DONTNEED in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed immediately; MADV_COLD is similar
to MADV_FREE in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed when memory pressure rises.
This patch (of 5):
When a process expects no accesses to a certain memory range, it could
give a hint to kernel that the pages can be reclaimed when memory pressure
happens but data should be preserved for future use. This could reduce
workingset eviction so it ends up increasing performance.
This patch introduces the new MADV_COLD hint to madvise(2) syscall.
MADV_COLD can be used by a process to mark a memory range as not expected
to be used in the near future. The hint can help kernel in deciding which
pages to evict early during memory pressure.
It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves
active file page -> inactive file LRU
active anon page -> inacdtive anon LRU
Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file
LRU's head because MADV_COLD is a little bit different symantic.
MADV_FREE means it's okay to discard when the memory pressure because the
content of the page is *garbage* so freeing such pages is almost zero
overhead since we don't need to swap out and access afterward causes just
minor fault. Thus, it would make sense to put those freeable pages in
inactive file LRU to compete other used-once pages. It makes sense for
implmentaion point of view, too because it's not swapbacked memory any
longer until it would be re-dirtied. Even, it could give a bonus to make
them be reclaimed on swapless system. However, MADV_COLD doesn't mean
garbage so reclaiming them requires swap-out/in in the end so it's bigger
cost. Since we have designed VM LRU aging based on cost-model, anonymous
cold pages would be better to position inactive anon's LRU list, not file
LRU. Furthermore, it would help to avoid unnecessary scanning if system
doesn't have a swap device. Let's start simpler way without adding
complexity at this moment. However, keep in mind, too that it's a caveat
that workloads with a lot of pages cache are likely to ignore MADV_COLD on
anonymous memory because we rarely age anonymous LRU lists.
* man-page material
MADV_COLD (since Linux x.x)
Pages in the specified regions will be treated as less-recently-accessed
compared to pages in the system with similar access frequencies. In
contrast to MADV_FREE, the contents of the region are preserved regardless
of subsequent writes to pages.
MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP
pages.
[[email protected]: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Minchan Kim <[email protected]>
Reported-by: kbuild test robot <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Cc: James E.J. Bottomley <[email protected]>
Cc: Richard Henderson <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Daniel Colascione <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Joel Fernandes (Google) <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Oleksandr Natalenko <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: Sonny Rao <[email protected]>
Cc: Suren Baghdasaryan <[email protected]>
Cc: Tim Murray <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Allison Randal <[email protected]>
Cc: [email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
|
|
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task. This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator. The
intent is to avoid redundant scanning.
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%)
Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%)
Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%)
Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%)
Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%)
Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%*
Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%)
Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%)
Latency is only moderately affected but the devil is in the details. A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%)
Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%)
Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%)
Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%)
Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%)
Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%)
Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%)
Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%)
And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.
Compaction migrate scanned 20815362 19573286
Compaction free scanned 16352612 11510663
[[email protected]: remove redundant check]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
target
As compaction proceeds and creates high-order blocks, the free list
search gets less efficient as the larger blocks are used as compaction
targets. Eventually, the larger blocks will be behind the migration
scanner for partially migrated pageblocks and the search fails. This
patch round-robins what orders are searched so that larger blocks can be
ignored and find smaller blocks that can be used as migration targets.
The overall impact was small on 1-socket but it avoids corner cases
where the migration/free scanners meet prematurely or situations where
many of the pageblocks encountered by the free scanner are almost full
instead of being properly packed. Previous testing had indicated that
without this patch there were occasional large spikes in the free
scanner without this patch.
[[email protected]: fix static checker warning]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Pageblocks are marked for skip when no pages are isolated after a scan.
However, it's possible to hit corner cases where the migration scanner
gets stuck near the boundary between the source and target scanner. Due
to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are
migrated can be reallocated before the pageblock is complete. The
pageblock is not necessarily skipped so it can be rescanned multiple
times. Similarly, a pageblock with some dirty/writeback pages may fail
to migrate and be rescanned until writeback completes which is wasteful.
This patch tracks if a pageblock is being rescanned. If so, then the
entire pageblock will be migrated as one operation. This narrows the
race window during which pages can be reallocated during migration.
Secondly, if there are pages that cannot be isolated then the pageblock
will still be fully scanned and marked for skipping. On the second
rescan, the pageblock skip is set and the migration scanner makes
progress.
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%)
Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%)
Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%)
Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%)
Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%)
Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%)
Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%)
Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%*
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%)
Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%)
Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%)
Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%)
Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%)
Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%)
Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%)
Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%)
Negligible difference but this was likely a case when the specific
corner case was not hit. A previous run of the same patch based on an
earlier iteration of the series showed large differences where migration
rates could be halved when the corner case was hit.
The specific corner case where migration scan rates go through the roof
was due to a dirty/writeback pageblock located at the boundary of the
migration/free scanner did not happen in this case. When it does
happen, the scan rates multipled by massive margins.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The migration scanner is a linear scan of a zone with a potentiall large
search space. Furthermore, many pageblocks are unusable such as those
filled with reserved pages or partially filled with pages that cannot
migrate. These still get scanned in the common case of allocating a THP
and the cost accumulates.
The patch uses a partial search of the free lists to locate a migration
source candidate that is marked as MOVABLE when allocating a THP. It
prefers picking a block with a larger number of free pages already on
the basis that there are fewer pages to migrate to free the entire
block. The lowest PFN found during searches is tracked as the basis of
the start for the linear search after the first search of the free list
fails. After the search, the free list is shuffled so that the next
search will not encounter the same page. If the search fails then the
subsequent searches will be shorter and the linear scanner is used.
If this search fails, or if the request is for a small or
unmovable/reclaimable allocation then the linear scanner is still used.
It is somewhat pointless to use the list search in those cases. Small
free pages must be used for the search and there is no guarantee that
movable pages are located within that block that are contiguous.
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%)
Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%)
Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%)
Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%)
Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%)
Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%*
Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%*
Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%*
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%)
Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%)
Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%)
Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%)
Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%)
Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%)
Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%)
Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%)
This shows an improvement in allocation latencies with similar
allocation success rates. While not presented, there was a 31%
reduction in migration scanning and a 8% reduction on system CPU usage.
A 2-socket machine showed similar benefits.
[[email protected]: several fixes]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: migrate block that was found-fast, some optimisations]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When compaction is finishing, it uses a flag to ensure the pageblock is
complete but it makes sense to always complete migration of a pageblock.
Minimally, skip information is based on a pageblock and partially
scanned pageblocks may incur more scanning in the future. The pageblock
skip handling also becomes more strict later in the series and the hint
is more useful if a complete pageblock was always scanned.
The potentially impacts latency as more scanning is done but it's not a
consistent win or loss as the scanning is not always a high percentage
of the pageblock and sometimes it is offset by future reductions in
scanning. Hence, the results are not presented this time due to a
misleading mix of gains/losses without any clear pattern. However, full
scanning of the pageblock is important for later patches.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The last_migrated_pfn field is a bit dubious as to whether it really
helps but either way, the information from it can be inferred without
increasing the size of compact_control so remove the field.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
compact_control spans two cache lines with write-intensive lines on
both. Rearrange so the most write-intensive fields are in the same
cache line. This has a negligible impact on the overall performance of
compaction and is more a tidying exercise than anything.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "Increase success rates and reduce latency of compaction", v3.
This series reduces scan rates and success rates of compaction,
primarily by using the free lists to shorten scans, better controlling
of skip information and whether multiple scanners can target the same
block and capturing pageblocks before being stolen by parallel requests.
The series is based on mmotm from January 9th, 2019 with the previous
compaction series reverted.
I'm mostly using thpscale to measure the impact of the series. The
benchmark creates a large file, maps it, faults it, punches holes in the
mapping so that the virtual address space is fragmented and then tries
to allocate THP. It re-executes for different numbers of threads. From
a fragmentation perspective, the workload is relatively benign but it
does stress compaction.
The overall impact on latencies for a 1-socket machine is
baseline patches
Amean fault-both-3 3832.09 ( 0.00%) 2748.56 * 28.28%*
Amean fault-both-5 4933.06 ( 0.00%) 4255.52 ( 13.73%)
Amean fault-both-7 7017.75 ( 0.00%) 6586.93 ( 6.14%)
Amean fault-both-12 11610.51 ( 0.00%) 9162.34 * 21.09%*
Amean fault-both-18 17055.85 ( 0.00%) 11530.06 * 32.40%*
Amean fault-both-24 19306.27 ( 0.00%) 17956.13 ( 6.99%)
Amean fault-both-30 22516.49 ( 0.00%) 15686.47 * 30.33%*
Amean fault-both-32 23442.93 ( 0.00%) 16564.83 * 29.34%*
The allocation success rates are much improved
baseline patches
Percentage huge-3 85.99 ( 0.00%) 97.96 ( 13.92%)
Percentage huge-5 88.27 ( 0.00%) 96.87 ( 9.74%)
Percentage huge-7 85.87 ( 0.00%) 94.53 ( 10.09%)
Percentage huge-12 82.38 ( 0.00%) 98.44 ( 19.49%)
Percentage huge-18 83.29 ( 0.00%) 99.14 ( 19.04%)
Percentage huge-24 81.41 ( 0.00%) 97.35 ( 19.57%)
Percentage huge-30 80.98 ( 0.00%) 98.05 ( 21.08%)
Percentage huge-32 80.53 ( 0.00%) 97.06 ( 20.53%)
That's a nearly perfect allocation success rate.
The biggest impact is on the scan rates
Compaction migrate scanned 55893379 19341254
Compaction free scanned 474739990 11903963
The number of pages scanned for migration was reduced by 65% and the
free scanner was reduced by 97.5%. So much less work in exchange for
lower latency and better success rates.
The series was also evaluated using a workload that heavily fragments
memory but the benefits there are also significant, albeit not
presented.
It was commented that we should be rethinking scanning entirely and to a
large extent I agree. However, to achieve that you need a lot of this
series in place first so it's best to make the linear scanners as best
as possible before ripping them out.
This patch (of 22):
The isolate and migrate scanners should never isolate more than a
pageblock of pages so unsigned int is sufficient saving 8 bytes on a
64-bit build.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Dan Carpenter <[email protected]>
Cc: YueHaibing <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When freeing pages are done with higher order, time spent on coalescing
pages by buddy allocator can be reduced. With section size of 256MB,
hot add latency of a single section shows improvement from 50-60 ms to
less than 1 ms, hence improving the hot add latency by 60 times. Modify
external providers of online callback to align with the change.
[[email protected]: v11]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: remove unused local, per Arun]
[[email protected]: avoid return of void-returning __free_pages_core(), per Oscar]
[[email protected]: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch]
[[email protected]: v8]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: v9]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Arun KS <[email protected]>
Reviewed-by: Andrew Morton <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Reviewed-by: Oscar Salvador <[email protected]>
Reviewed-by: Alexander Duyck <[email protected]>
Cc: K. Y. Srinivasan <[email protected]>
Cc: Haiyang Zhang <[email protected]>
Cc: Stephen Hemminger <[email protected]>
Cc: Boris Ostrovsky <[email protected]>
Cc: Juergen Gross <[email protected]>
Cc: Dan Williams <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Mathieu Malaterre <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Souptick Joarder <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Srivatsa Vaddagiri <[email protected]>
Cc: Vinayak Menon <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This is a preparation patch that copies the GFP flag __GFP_KSWAPD_RECLAIM
into alloc_flags. This is a preparation patch only that avoids having to
pass gfp_mask through a long callchain in a future patch.
Note that the setting in the fast path happens in alloc_flags_nofragment()
and it may be claimed that this has nothing to do with ALLOC_NO_FRAGMENT.
That's true in this patch but is not true later so it's done now for
easier review to show where the flag needs to be recorded.
No functional change.
[[email protected]: ALLOC_KSWAPD flag needs to be applied in the !CONFIG_ZONE_DMA32 case]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Reviewed-by: Andrew Morton <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Zi Yan <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mel Gorman <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Zi Yan <[email protected]>
Cc: Michal Hocko <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Commit fa5e084e43eb ("vmscan: do not unconditionally treat zones that
fail zone_reclaim() as full") changed the return value of
node_reclaim(). The original return value 0 means NODE_RECLAIM_SOME
after this commit.
While the return value of node_reclaim() when CONFIG_NUMA is n is not
changed. This will leads to call zone_watermark_ok() again.
This patch fixes the return value by adjusting to NODE_RECLAIM_NOSCAN.
Since node_reclaim() is only called in page_alloc.c, move it to
mm/internal.h.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Reviewed-by: Matthew Wilcox <[email protected]>
Cc: Mel Gorman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The conversion is done using
sed -i 's@__free_pages_bootmem@memblock_free_pages@' \
$(git grep -l __free_pages_bootmem)
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Rapoport <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Greentime Hu <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Guan Xuetao <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: "James E.J. Bottomley" <[email protected]>
Cc: Jonas Bonn <[email protected]>
Cc: Jonathan Corbet <[email protected]>
Cc: Ley Foon Tan <[email protected]>
Cc: Mark Salter <[email protected]>
Cc: Martin Schwidefsky <[email protected]>
Cc: Matt Turner <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Michal Simek <[email protected]>
Cc: Palmer Dabbelt <[email protected]>
Cc: Paul Burton <[email protected]>
Cc: Richard Kuo <[email protected]>
Cc: Richard Weinberger <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: Russell King <[email protected]>
Cc: Serge Semin <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tony Luck <[email protected]>
Cc: Vineet Gupta <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t")
The aim is to change the return type of finish_fault() and
handle_mm_fault() to vm_fault_t type. As part of that clean up return
type of all other recursively called functions have been changed to
vm_fault_t type.
The places from where handle_mm_fault() is getting invoked will be
change to vm_fault_t type but in a separate patch.
vmf_error() is the newly introduce inline function in 4.17-rc6.
[[email protected]: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()]
Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <[email protected]>
Reviewed-by: Matthew Wilcox <[email protected]>
Reviewed-by: Andrew Morton <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
__paginginit is the same thing as __meminit except for platforms without
sparsemem, there it is defined as __init.
Remove __paginginit and use __meminit. Use __ref in one single function
that merges __meminit and __init sections: setup_usemap().
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Pavel Tatashin <[email protected]>
Signed-off-by: Oscar Salvador <[email protected]>
Reviewed-by: Oscar Salvador <[email protected]>
Cc: Pasha Tatashin <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Pull xfs updates from Darrick Wong:
"New features this cycle include the ability to relabel mounted
filesystems, support for fallocated swapfiles, and using FUA for pure
data O_DSYNC directio writes. With this cycle we begin to integrate
online filesystem repair and refactor the growfs code in preparation
for eventual subvolume support, though the road ahead for both
features is quite long.
There are also numerous refactorings of the iomap code to remove
unnecessary log overhead, to disentangle some of the quota code, and
to prepare for buffer head removal in a future upstream kernel.
Metadata validation continues to improve, both in the hot path
veifiers and the online filesystem check code. I anticipate sending a
second pull request in a few days with more metadata validation
improvements.
This series has been run through a full xfstests run over the weekend
and through a quick xfstests run against this morning's master, with
no major failures reported.
Summary:
- Strengthen inode number and structure validation when allocating
inodes.
- Reduce pointless buffer allocations during cache miss
- Use FUA for pure data O_DSYNC directio writes
- Various iomap refactorings
- Strengthen quota metadata verification to avoid unfixable broken
quota
- Make AGFL block freeing a deferred operation to avoid blowing out
transaction reservations when running complex operations
- Get rid of the log item descriptors to reduce log overhead
- Fix various reflink bugs where inodes were double-joined to
transactions
- Don't issue discards when trimming unwritten extents
- Refactor incore dquot initialization and retrieval interfaces
- Fix some locking problmes in the quota scrub code
- Strengthen btree structure checks in scrub code
- Rewrite swapfile activation to use iomap and support unwritten
extents
- Make scrub exit to userspace sooner when corruptions or
cross-referencing problems are found
- Make scrub invoke the data fork scrubber directly on metadata
inodes
- Don't do background reclamation of post-eof and cow blocks when the
fs is suspended
- Fix secondary superblock buffer lifespan hinting
- Refactor growfs to use table-dispatched functions instead of long
stringy functions
- Move growfs code to libxfs
- Implement online fs label getting and setting
- Introduce online filesystem repair (in a very limited capacity)
- Fix unit conversion problems in the realtime freemap iteration
functions
- Various refactorings and cleanups in preparation to remove buffer
heads in a future release
- Reimplement the old bmap call with iomap
- Remove direct buffer head accesses from seek hole/data
- Various bug fixes"
* tag 'xfs-4.18-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (121 commits)
fs: use ->is_partially_uptodate in page_cache_seek_hole_data
fs: remove the buffer_unwritten check in page_seek_hole_data
fs: move page_cache_seek_hole_data to iomap.c
xfs: use iomap_bmap
iomap: add an iomap-based bmap implementation
iomap: add a iomap_sector helper
iomap: use __bio_add_page in iomap_dio_zero
iomap: move IOMAP_F_BOUNDARY to gfs2
iomap: fix the comment describing IOMAP_NOWAIT
iomap: inline data should be an iomap type, not a flag
mm: split ->readpages calls to avoid non-contiguous pages lists
mm: return an unsigned int from __do_page_cache_readahead
mm: give the 'ret' variable a better name __do_page_cache_readahead
block: add a lower-level bio_add_page interface
xfs: fix error handling in xfs_refcount_insert()
xfs: fix xfs_rtalloc_rec units
xfs: strengthen rtalloc query range checks
xfs: xfs_rtbuf_get should check the bmapi_read results
xfs: xfs_rtword_t should be unsigned, not signed
dax: change bdev_dax_supported() to support boolean returns
...
|
|
We never return an error, so switch to returning an unsigned int. Most
callers already did implicit casts to an unsigned type, and the one that
didn't can be simplified now.
Suggested-by: Matthew Wilcox <[email protected]>
Signed-off-by: Christoph Hellwig <[email protected]>
Reviewed-by: Dave Chinner <[email protected]>
Reviewed-by: Darrick J. Wong <[email protected]>
Signed-off-by: Darrick J. Wong <[email protected]>
|
|
This reverts the following commits that change CMA design in MM.
3d2054ad8c2d ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")
1d47a3ec09b5 ("mm/cma: remove ALLOC_CMA")
bad8c6c0b114 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")
Ville reported a following error on i386.
Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
microcode: microcode updated early to revision 0x4, date = 2013-06-28
Initializing CPU#0
Initializing HighMem for node 0 (000377fe:00118000)
Initializing Movable for node 0 (00000001:00118000)
BUG: Bad page state in process swapper pfn:377fe
page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
flags: 0x80000000()
raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
page dumped because: nonzero mapcount
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
Call Trace:
dump_stack+0x60/0x96
bad_page+0x9a/0x100
free_pages_check_bad+0x3f/0x60
free_pcppages_bulk+0x29d/0x5b0
free_unref_page_commit+0x84/0xb0
free_unref_page+0x3e/0x70
__free_pages+0x1d/0x20
free_highmem_page+0x19/0x40
add_highpages_with_active_regions+0xab/0xeb
set_highmem_pages_init+0x66/0x73
mem_init+0x1b/0x1d7
start_kernel+0x17a/0x363
i386_start_kernel+0x95/0x99
startup_32_smp+0x164/0x168
The reason for this error is that the span of MOVABLE_ZONE is extended
to whole node span for future CMA initialization, and, normal memory is
wrongly freed here. I submitted the fix and it seems to work, but,
another problem happened.
It's so late time to fix the later problem so I decide to reverting the
series.
Reported-by: Ville Syrjälä <[email protected]>
Acked-by: Laura Abbott <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Andrew Morton <[email protected]>
Signed-off-by: Joonsoo Kim <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|