aboutsummaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
AgeCommit message (Collapse)AuthorFilesLines
2020-08-12mm/hugetlb: unify migration callbacksJoonsoo Kim1-33/+2
There is no difference between two migration callback functions, alloc_huge_page_node() and alloc_huge_page_nodemask(), except __GFP_THISNODE handling. It's redundant to have two almost similar functions in order to handle this flag. So, this patch tries to remove one by introducing a new argument, gfp_mask, to alloc_huge_page_nodemask(). After introducing gfp_mask argument, it's caller's job to provide correct gfp_mask. So, every callsites for alloc_huge_page_nodemask() are changed to provide gfp_mask. Note that it's safe to remove a node id check in alloc_huge_page_node() since there is no caller passing NUMA_NO_NODE as a node id. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Reviewed-by: Vlastimil Babka <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Christoph Hellwig <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Roman Gushchin <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-12mm/hugetlb.c: delete duplicated wordsRandy Dunlap1-2/+2
Drop the repeated word "the" in two places. Signed-off-by: Randy Dunlap <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Reviewed-by: Zi Yan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-12mm: hugetlb: fix the name of hugetlb CMABarry Song1-1/+3
Once we enable CMA_DEBUGFS, we will get the below errors: directory 'cma-hugetlb' with parent 'cma' already present. We should have different names for different CMA areas. Signed-off-by: Barry Song <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: Roman Gushchin <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-12hugetlbfs: remove call to huge_pte_alloc without i_mmap_rwsemMike Kravetz1-8/+7
Commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") requires callers of huge_pte_alloc to hold i_mmap_rwsem in at least read mode. This is because the explicit locking in huge_pmd_share (called by huge_pte_alloc) was removed. When restructuring the code, the call to huge_pte_alloc in the else block at the beginning of hugetlb_fault was missed. Unfortunately, that else clause is exercised when there is no page table entry. This will likely lead to a call to huge_pmd_share. If huge_pmd_share thinks pmd sharing is possible, it will traverse the mapping tree (i_mmap) without holding i_mmap_rwsem. If someone else is modifying the tree, bad things such as addressing exceptions or worse could happen. Simply remove the else clause. It should have been removed previously. The code following the else will call huge_pte_alloc with the appropriate locking. To prevent this type of issue in the future, add routines to assert that i_mmap_rwsem is held, and call these routines in huge pmd sharing routines. Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Suggested-by: Matthew Wilcox <[email protected]> Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: "Kirill A.Shutemov" <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Prakash Sangappa <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-12mm/hugetlb: add mempolicy check in the reservation routineMuchun Song1-4/+18
In the reservation routine, we only check whether the cpuset meets the memory allocation requirements. But we ignore the mempolicy of MPOL_BIND case. If someone mmap hugetlb succeeds, but the subsequent memory allocation may fail due to mempolicy restrictions and receives the SIGBUS signal. This can be reproduced by the follow steps. 1) Compile the test case. cd tools/testing/selftests/vm/ gcc map_hugetlb.c -o map_hugetlb 2) Pre-allocate huge pages. Suppose there are 2 numa nodes in the system. Each node will pre-allocate one huge page. echo 2 > /proc/sys/vm/nr_hugepages 3) Run test case(mmap 4MB). We receive the SIGBUS signal. numactl --membind=3D0 ./map_hugetlb 4 With this patch applied, the mmap will fail in the step 3) and throw "mmap: Cannot allocate memory". [[email protected]: include sched.h for `current'] Reported-by: Jianchao Guo <[email protected]> Suggested-by: Michal Hocko <[email protected]> Signed-off-by: Muchun Song <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: David Rientjes <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Michel Lespinasse <[email protected]> Cc: Baoquan He <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-07mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possiblePeter Xu1-14/+10
This is found by code observation only. Firstly, the worst case scenario should assume the whole range was covered by pmd sharing. The old algorithm might not work as expected for ranges like (1g-2m, 1g+2m), where the adjusted range should be (0, 1g+2m) but the expected range should be (0, 2g). Since at it, remove the loop since it should not be required. With that, the new code should be faster too when the invalidating range is huge. Mike said: : With range (1g-2m, 1g+2m) within a vma (0, 2g) the existing code will only : adjust to (0, 1g+2m) which is incorrect. : : We should cc stable. The original reason for adjusting the range was to : prevent data corruption (getting wrong page). Since the range is not : always adjusted correctly, the potential for corruption still exists. : : However, I am fairly confident that adjust_range_if_pmd_sharing_possible : is only gong to be called in two cases: : : 1) for a single page : 2) for range == entire vma : : In those cases, the current code should produce the correct results. : : To be safe, let's just cc stable. Fixes: 017b1660df89 ("mm: migration: fix migration of huge PMD shared pages") Signed-off-by: Peter Xu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-08-07mm: remove unneeded includes of <asm/pgalloc.h>Mike Rapoport1-0/+1
Patch series "mm: cleanup usage of <asm/pgalloc.h>" Most architectures have very similar versions of pXd_alloc_one() and pXd_free_one() for intermediate levels of page table. These patches add generic versions of these functions in <asm-generic/pgalloc.h> and enable use of the generic functions where appropriate. In addition, functions declared and defined in <asm/pgalloc.h> headers are used mostly by core mm and early mm initialization in arch and there is no actual reason to have the <asm/pgalloc.h> included all over the place. The first patch in this series removes unneeded includes of <asm/pgalloc.h> In the end it didn't work out as neatly as I hoped and moving pXd_alloc_track() definitions to <asm-generic/pgalloc.h> would require unnecessary changes to arches that have custom page table allocations, so I've decided to move lib/ioremap.c to mm/ and make pgalloc-track.h local to mm/. This patch (of 8): In most cases <asm/pgalloc.h> header is required only for allocations of page table memory. Most of the .c files that include that header do not use symbols declared in <asm/pgalloc.h> and do not require that header. As for the other header files that used to include <asm/pgalloc.h>, it is possible to move that include into the .c file that actually uses symbols from <asm/pgalloc.h> and drop the include from the header file. The process was somewhat automated using sed -i -E '/[<"]asm\/pgalloc\.h/d' \ $(grep -L -w -f /tmp/xx \ $(git grep -E -l '[<"]asm/pgalloc\.h')) where /tmp/xx contains all the symbols defined in arch/*/include/asm/pgalloc.h. [[email protected]: fix powerpc warning] Signed-off-by: Mike Rapoport <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Pekka Enberg <[email protected]> Acked-by: Geert Uytterhoeven <[email protected]> [m68k] Cc: Abdul Haleem <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Christophe Leroy <[email protected]> Cc: Joerg Roedel <[email protected]> Cc: Max Filippov <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Satheesh Rajendran <[email protected]> Cc: Stafford Horne <[email protected]> Cc: Stephen Rothwell <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Joerg Roedel <[email protected]> Cc: Matthew Wilcox <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-07-24mm/hugetlb: avoid hardcoding while checking if cma is enabledBarry Song1-5/+10
hugetlb_cma[0] can be NULL due to various reasons, for example, node0 has no memory. so NULL hugetlb_cma[0] doesn't necessarily mean cma is not enabled. gigantic pages might have been reserved on other nodes. This patch fixes possible double reservation and CMA leak. [[email protected]: fix CONFIG_CMA=n warning] [[email protected]: better checks before using hugetlb_cma] Link: http://lkml.kernel.org/r/[email protected] Fixes: cf11e85fc08c ("mm: hugetlb: optionally allocate gigantic hugepages using cma") Signed-off-by: Barry Song <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: Roman Gushchin <[email protected]> Cc: Jonathan Cameron <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-07-03mm/hugetlb.c: fix pages per hugetlb calculationMike Kravetz1-1/+1
The routine hpage_nr_pages() was incorrectly used to calculate the number of base pages in a hugetlb page. hpage_nr_pages is designed to be called for THP pages and will return HPAGE_PMD_NR for hugetlb pages of any size. Due to the context in which hpage_nr_pages was called, it is unlikely to produce a user visible error. The routine with the incorrect call is only exercised in the case of hugetlb memory error or migration. In addition, this would need to be on an architecture which supports huge page sizes less than PMD_SIZE. And, the vma containing the huge page would also need to smaller than PMD_SIZE. Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") Reported-by: Matthew Wilcox (Oracle) <[email protected]> Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Matthew Wilcox (Oracle) <[email protected]> Cc: Michal Hocko <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-09mmap locking API: convert mmap_sem commentsMichel Lespinasse1-1/+1
Convert comments that reference mmap_sem to reference mmap_lock instead. [[email protected]: fix up linux-next leftovers] [[email protected]: s/lockaphore/lock/, per Vlastimil] [[email protected]: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Vlastimil Babka <[email protected]> Reviewed-by: Daniel Jordan <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: David Rientjes <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: John Hubbard <[email protected]> Cc: Laurent Dufour <[email protected]> Cc: Liam Howlett <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Ying Han <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-09mm: don't include asm/pgtable.h if linux/mm.h is already includedMike Rapoport1-1/+0
Patch series "mm: consolidate definitions of page table accessors", v2. The low level page table accessors (pXY_index(), pXY_offset()) are duplicated across all architectures and sometimes more than once. For instance, we have 31 definition of pgd_offset() for 25 supported architectures. Most of these definitions are actually identical and typically it boils down to, e.g. static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } These definitions can be shared among 90% of the arches provided XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined. For architectures that really need a custom version there is always possibility to override the generic version with the usual ifdefs magic. These patches introduce include/linux/pgtable.h that replaces include/asm-generic/pgtable.h and add the definitions of the page table accessors to the new header. This patch (of 12): The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the functions involving page table manipulations, e.g. pte_alloc() and pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h> in the files that include <linux/mm.h>. The include statements in such cases are remove with a simple loop: for f in $(git grep -l "include <linux/mm.h>") ; do sed -i -e '/include <asm\/pgtable.h>/ d' $f done Signed-off-by: Mike Rapoport <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Borislav Petkov <[email protected]> Cc: Brian Cain <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Chris Zankel <[email protected]> Cc: "David S. Miller" <[email protected]> Cc: Geert Uytterhoeven <[email protected]> Cc: Greentime Hu <[email protected]> Cc: Greg Ungerer <[email protected]> Cc: Guan Xuetao <[email protected]> Cc: Guo Ren <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Helge Deller <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Ley Foon Tan <[email protected]> Cc: Mark Salter <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Matt Turner <[email protected]> Cc: Max Filippov <[email protected]> Cc: Michael Ellerman <[email protected]> Cc: Michal Simek <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Nick Hu <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Richard Weinberger <[email protected]> Cc: Rich Felker <[email protected]> Cc: Russell King <[email protected]> Cc: Stafford Horne <[email protected]> Cc: Thomas Bogendoerfer <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Tony Luck <[email protected]> Cc: Vincent Chen <[email protected]> Cc: Vineet Gupta <[email protected]> Cc: Will Deacon <[email protected]> Cc: Yoshinori Sato <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-04mm/hugetlb: fix a typos in commentsEthon Paul1-8/+8
[[email protected]: coding style fixes] Signed-off-by: Ethon Paul <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Reviewed-by: Ralph Campbell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-50/+158
Merge more updates from Andrew Morton: "More mm/ work, plenty more to come Subsystems affected by this patch series: slub, memcg, gup, kasan, pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs, thp, mmap, kconfig" * akpm: (131 commits) arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined riscv: support DEBUG_WX mm: add DEBUG_WX support drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid() powerpc/mm: drop platform defined pmd_mknotpresent() mm: thp: don't need to drain lru cache when splitting and mlocking THP hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs sparc32: register memory occupied by kernel as memblock.memory include/linux/memblock.h: fix minor typo and unclear comment mm, mempolicy: fix up gup usage in lookup_node tools/vm/page_owner_sort.c: filter out unneeded line mm: swap: memcg: fix memcg stats for huge pages mm: swap: fix vmstats for huge pages mm: vmscan: limit the range of LRU type balancing mm: vmscan: reclaim writepage is IO cost mm: vmscan: determine anon/file pressure balance at the reclaim root mm: balance LRU lists based on relative thrashing mm: only count actual rotations as LRU reclaim cost ...
2020-06-03mm/hugetlb: avoid unnecessary check on pud and pmd entry in huge_pte_offsetLi Xinhai1-17/+11
When huge_pte_offset() is called, the parameter sz can only be PUD_SIZE or PMD_SIZE. If sz is PUD_SIZE and code can reach pud, then *pud must be none, or normal hugetlb entry, or non-present (migration or hwpoisoned) hugetlb entry, and we can directly return pud. When sz is PMD_SIZE, pud must be none or present, and if code can reach pmd, we can directly return pmd. So after this patch the code is simplified by first check on the parameter sz, and avoid unnecessary checks in current code. Same semantics of existing code is maintained. More details about relevant commits: commit 9b19df292c66 ("mm/hugetlb.c: make huge_pte_offset() consistent and document behaviour") changed the code path for pud and pmd handling, see comments about why this patch intends to change it. ... pud = pud_offset(p4d, addr); if (sz != PUD_SIZE && pud_none(*pud)) // [1] return NULL; /* hugepage or swap? */ if (pud_huge(*pud) || !pud_present(*pud)) // [2] return (pte_t *)pud; pmd = pmd_offset(pud, addr); if (sz != PMD_SIZE && pmd_none(*pmd)) // [3] return NULL; /* hugepage or swap? */ if (pmd_huge(*pmd) || !pmd_present(*pmd)) // [4] return (pte_t *)pmd; return NULL; // [5] ... [1]: this is necessary, return NULL for sz == PMD_SIZE; [2]: if sz == PUD_SIZE, all valid values of pud entry will cause return; [3]: dead code, sz != PMD_SIZE never true; [4]: all valid values of pmd entry will cause return; [5]: dead code, because of check in [4]. Now, this patch combines [1] and [2] for pud, and combines [3], [4] and [5] for pmd, so avoid unnecessary checks. I don't try to catch any invalid values in page table entry, as that will be checked by caller and avoid extra branch in this function. Also no assert on sz must equal PUD_SIZE or PMD_SIZE, since this function only call for hugetlb mapping. For commit 3c1d7e6ccb64 ("mm/hugetlb: fix a addressing exception caused by huge_pte_offset"), since we don't read the entry more than once now, variable pud_entry and pmd_entry are not needed. Signed-off-by: Li Xinhai <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: Punit Agrawal <[email protected]> Cc: Longpeng <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03hugetlbfs: fix changes to command line processingMike Kravetz1-16/+4
Previously, a check for hugepages_supported was added before processing hugetlb command line parameters. On some architectures such as powerpc, hugepages_supported() is not set to true until after command line processing. Therefore, no hugetlb command line parameters would be accepted. Remove the additional checks for hugepages_supported. In hugetlb_init, print a warning if !hugepages_supported and command line parameters were specified. Reported-by: Sandipan Das <[email protected]> Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Stephen Rothwell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03hugetlbfs: clean up command line processingMike Kravetz1-31/+128
With all hugetlb page processing done in a single file clean up code. - Make code match desired semantics - Update documentation with semantics - Make all warnings and errors messages start with 'HugeTLB:'. - Consistently name command line parsing routines. - Warn if !hugepages_supported() and command line parameters have been specified. - Add comments to code - Describe some of the subtle interactions - Describe semantics of command line arguments This patch also fixes issues with implicitly setting the number of gigantic huge pages to preallocate. Previously on X86 command line, hugepages=2 default_hugepagesz=1G would result in zero 1G pages being preallocated and, # grep HugePages_Total /proc/meminfo HugePages_Total: 0 # sysctl -a | grep nr_hugepages vm.nr_hugepages = 2 vm.nr_hugepages_mempolicy = 2 # cat /proc/sys/vm/nr_hugepages 2 After this patch 2 gigantic pages will be preallocated and all the proc, sysfs, sysctl and meminfo files will accurately reflect this. To address the issue with gigantic pages, a small change in behavior was made to command line processing. Previously the command line, hugepages=128 default_hugepagesz=2M hugepagesz=2M hugepages=256 would result in the allocation of 256 2M huge pages. The value 128 would be ignored without any warning. After this patch, 128 2M pages will be allocated and a warning message will be displayed indicating the value of 256 is ignored. This change in behavior is required because allocation of implicitly specified gigantic pages must be done when the default_hugepagesz= is encountered for gigantic pages. Previously the code waited until later in the boot process (hugetlb_init), to allocate pages of default size. However the bootmem allocator required for gigantic allocations is not available at this time. Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Sandipan Das <[email protected]> Acked-by: Gerald Schaefer <[email protected]> [s390] Acked-by: Will Deacon <[email protected]> Cc: Albert Ou <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Christian Borntraeger <[email protected]> Cc: Christophe Leroy <[email protected]> Cc: Dave Hansen <[email protected]> Cc: David S. Miller <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Longpeng <[email protected]> Cc: Mina Almasry <[email protected]> Cc: Nitesh Narayan Lal <[email protected]> Cc: Palmer Dabbelt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Peter Xu <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Vasily Gorbik <[email protected]> Cc: Anders Roxell <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Qian Cai <[email protected]> Cc: Stephen Rothwell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03hugetlbfs: remove hugetlb_add_hstate() warning for existing hstateMike Kravetz1-3/+6
hugetlb_add_hstate() prints a warning if the hstate already exists. This was originally done as part of kernel command line parsing. If 'hugepagesz=' was specified more than once, the warning pr_warn("hugepagesz= specified twice, ignoring\n"); would be printed. Some architectures want to enable all huge page sizes. They would call hugetlb_add_hstate for all supported sizes. However, this was done after command line processing and as a result hstates could have already been created for some sizes. To make sure no warning were printed, there would often be code like: if (!size_to_hstate(size) hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT) The only time we want to print the warning is as the result of command line processing. So, remove the warning from hugetlb_add_hstate and add it to the single arch independent routine processing "hugepagesz=". After this, calls to size_to_hstate() in arch specific code can be removed and hugetlb_add_hstate can be called without worrying about warning messages. [[email protected]: fix hugetlb initialization] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Anders Roxell <[email protected]> Acked-by: Mina Almasry <[email protected]> Acked-by: Gerald Schaefer <[email protected]> [s390] Acked-by: Will Deacon <[email protected]> Cc: Albert Ou <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Christian Borntraeger <[email protected]> Cc: Christophe Leroy <[email protected]> Cc: Dave Hansen <[email protected]> Cc: David S. Miller <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Longpeng <[email protected]> Cc: Nitesh Narayan Lal <[email protected]> Cc: Palmer Dabbelt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Peter Xu <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Vasily Gorbik <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Qian Cai <[email protected]> Cc: Stephen Rothwell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03hugetlbfs: move hugepagesz= parsing to arch independent codeMike Kravetz1-6/+17
Now that architectures provide arch_hugetlb_valid_size(), parsing of "hugepagesz=" can be done in architecture independent code. Create a single routine to handle hugepagesz= parsing and remove all arch specific routines. We can also remove the interface hugetlb_bad_size() as this is no longer used outside arch independent code. This also provides consistent behavior of hugetlbfs command line options. The hugepagesz= option should only be specified once for a specific size, but some architectures allow multiple instances. This appears to be more of an oversight when code was added by some architectures to set up ALL huge pages sizes. Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Sandipan Das <[email protected]> Reviewed-by: Peter Xu <[email protected]> Acked-by: Mina Almasry <[email protected]> Acked-by: Gerald Schaefer <[email protected]> [s390] Acked-by: Will Deacon <[email protected]> Cc: Albert Ou <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Christian Borntraeger <[email protected]> Cc: Christophe Leroy <[email protected]> Cc: Dave Hansen <[email protected]> Cc: David S. Miller <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Longpeng <[email protected]> Cc: Nitesh Narayan Lal <[email protected]> Cc: Palmer Dabbelt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Vasily Gorbik <[email protected]> Cc: Anders Roxell <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Qian Cai <[email protected]> Cc: Stephen Rothwell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-06-03hugetlbfs: add arch_hugetlb_valid_sizeMike Kravetz1-3/+18
Patch series "Clean up hugetlb boot command line processing", v4. Longpeng(Mike) reported a weird message from hugetlb command line processing and proposed a solution [1]. While the proposed patch does address the specific issue, there are other related issues in command line processing. As hugetlbfs evolved, updates to command line processing have been made to meet immediate needs and not necessarily in a coordinated manner. The result is that some processing is done in arch specific code, some is done in arch independent code and coordination is problematic. Semantics can vary between architectures. The patch series does the following: - Define arch specific arch_hugetlb_valid_size routine used to validate passed huge page sizes. - Move hugepagesz= command line parsing out of arch specific code and into an arch independent routine. - Clean up command line processing to follow desired semantics and document those semantics. [1] https://lore.kernel.org/linux-mm/[email protected] This patch (of 3): The architecture independent routine hugetlb_default_setup sets up the default huge pages size. It has no way to verify if the passed value is valid, so it accepts it and attempts to validate at a later time. This requires undocumented cooperation between the arch specific and arch independent code. For architectures that support more than one huge page size, provide a routine arch_hugetlb_valid_size to validate a huge page size. hugetlb_default_setup can use this to validate passed values. arch_hugetlb_valid_size will also be used in a subsequent patch to move processing of the "hugepagesz=" in arch specific code to a common routine in arch independent code. Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Acked-by: Gerald Schaefer <[email protected]> [s390] Acked-by: Will Deacon <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Paul Walmsley <[email protected]> Cc: Palmer Dabbelt <[email protected]> Cc: Albert Ou <[email protected]> Cc: Heiko Carstens <[email protected]> Cc: Vasily Gorbik <[email protected]> Cc: Christian Borntraeger <[email protected]> Cc: David S. Miller <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Longpeng <[email protected]> Cc: Christophe Leroy <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Mina Almasry <[email protected]> Cc: Peter Xu <[email protected]> Cc: Nitesh Narayan Lal <[email protected]> Cc: Anders Roxell <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Qian Cai <[email protected]> Cc: Stephen Rothwell <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-28Merge branch 'work.sysctl' of ↵Daniel Borkmann1-5/+4
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler methods to take kernel pointers instead. It gets rid of the set_fs address space overrides used by BPF. As per discussion, pull in the feature branch into bpf-next as it relates to BPF sysctl progs. Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]/T/
2020-04-27sysctl: pass kernel pointers to ->proc_handlerChristoph Hellwig1-5/+4
Instead of having all the sysctl handlers deal with user pointers, which is rather hairy in terms of the BPF interaction, copy the input to and from userspace in common code. This also means that the strings are always NUL-terminated by the common code, making the API a little bit safer. As most handler just pass through the data to one of the common handlers a lot of the changes are mechnical. Signed-off-by: Christoph Hellwig <[email protected]> Acked-by: Andrey Ignatov <[email protected]> Signed-off-by: Al Viro <[email protected]>
2020-04-21mm/hugetlb: fix a addressing exception caused by huge_pte_offsetLongpeng1-6/+8
Our machine encountered a panic(addressing exception) after run for a long time and the calltrace is: RIP: hugetlb_fault+0x307/0xbe0 RSP: 0018:ffff9567fc27f808 EFLAGS: 00010286 RAX: e800c03ff1258d48 RBX: ffffd3bb003b69c0 RCX: e800c03ff1258d48 RDX: 17ff3fc00eda72b7 RSI: 00003ffffffff000 RDI: e800c03ff1258d48 RBP: ffff9567fc27f8c8 R08: e800c03ff1258d48 R09: 0000000000000080 R10: ffffaba0704c22a8 R11: 0000000000000001 R12: ffff95c87b4b60d8 R13: 00005fff00000000 R14: 0000000000000000 R15: ffff9567face8074 FS: 00007fe2d9ffb700(0000) GS:ffff956900e40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffd3bb003b69c0 CR3: 000000be67374000 CR4: 00000000003627e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: follow_hugetlb_page+0x175/0x540 __get_user_pages+0x2a0/0x7e0 __get_user_pages_unlocked+0x15d/0x210 __gfn_to_pfn_memslot+0x3c5/0x460 [kvm] try_async_pf+0x6e/0x2a0 [kvm] tdp_page_fault+0x151/0x2d0 [kvm] ... kvm_arch_vcpu_ioctl_run+0x330/0x490 [kvm] kvm_vcpu_ioctl+0x309/0x6d0 [kvm] do_vfs_ioctl+0x3f0/0x540 SyS_ioctl+0xa1/0xc0 system_call_fastpath+0x22/0x27 For 1G hugepages, huge_pte_offset() wants to return NULL or pudp, but it may return a wrong 'pmdp' if there is a race. Please look at the following code snippet: ... pud = pud_offset(p4d, addr); if (sz != PUD_SIZE && pud_none(*pud)) return NULL; /* hugepage or swap? */ if (pud_huge(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, addr); if (sz != PMD_SIZE && pmd_none(*pmd)) return NULL; /* hugepage or swap? */ if (pmd_huge(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; ... The following sequence would trigger this bug: - CPU0: sz = PUD_SIZE and *pud = 0 , continue - CPU0: "pud_huge(*pud)" is false - CPU1: calling hugetlb_no_page and set *pud to xxxx8e7(PRESENT) - CPU0: "!pud_present(*pud)" is false, continue - CPU0: pmd = pmd_offset(pud, addr) and maybe return a wrong pmdp However, we want CPU0 to return NULL or pudp in this case. We must make sure there is exactly one dereference of pud and pmd. Signed-off-by: Longpeng <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Reviewed-by: Jason Gunthorpe <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Sean Christopherson <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-10mm: hugetlb: optionally allocate gigantic hugepages using cmaRoman Gushchin1-0/+109
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation at runtime") has added the run-time allocation of gigantic pages. However it actually works only at early stages of the system loading, when the majority of memory is free. After some time the memory gets fragmented by non-movable pages, so the chances to find a contiguous 1GB block are getting close to zero. Even dropping caches manually doesn't help a lot. At large scale rebooting servers in order to allocate gigantic hugepages is quite expensive and complex. At the same time keeping some constant percentage of memory in reserved hugepages even if the workload isn't using it is a big waste: not all workloads can benefit from using 1 GB pages. The following solution can solve the problem: 1) On boot time a dedicated cma area* is reserved. The size is passed as a kernel argument. 2) Run-time allocations of gigantic hugepages are performed using the cma allocator and the dedicated cma area In this case gigantic hugepages can be allocated successfully with a high probability, however the memory isn't completely wasted if nobody is using 1GB hugepages: it can be used for pagecache, anon memory, THPs, etc. * On a multi-node machine a per-node cma area is allocated on each node. Following gigantic hugetlb allocation are using the first available numa node if the mask isn't specified by a user. Usage: 1) configure the kernel to allocate a cma area for hugetlb allocations: pass hugetlb_cma=10G as a kernel argument 2) allocate hugetlb pages as usual, e.g. echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages If the option isn't enabled or the allocation of the cma area failed, the current behavior of the system is preserved. x86 and arm-64 are covered by this patch, other architectures can be trivially added later. The patch contains clean-ups and fixes proposed and implemented by Aslan Bakirov and Randy Dunlap. It also contains ideas and suggestions proposed by Rik van Riel, Michal Hocko and Mike Kravetz. Thanks! Signed-off-by: Roman Gushchin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Andreas Schaufler <[email protected]> Acked-by: Mike Kravetz <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Aslan Bakirov <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Rik van Riel <[email protected]> Cc: Joonsoo Kim <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-07mm/hugetlb: add missing annotation for gather_surplus_pages()Jules Irenge1-0/+1
Sparse reports a warning at gather_surplus_pages() warning: context imbalance in hugetlb_cow() - unexpected unlock The root cause is the missing annotation at gather_surplus_pages() Add the missing __must_hold(&hugetlb_lock) Signed-off-by: Jules Irenge <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/hugetlb: remove unnecessary memory fetch in PageHeadHuge()Vlastimil Babka1-1/+1
Commit f1e61557f023 ("mm: pack compound_dtor and compound_order into one word in struct page") changed compound_dtor from a pointer to an array index in order to pack it. To check if page has the hugeltbfs compound_dtor, we can just compare the index directly without fetching the function pointer. Said commit did that with PageHuge() and we can do the same with PageHeadHuge() to make the code a bit smaller and faster. Signed-off-by: Vlastimil Babka <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: David Rientjes <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Neha Agarwal <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/hugetlb.c: clean code by removing unnecessary initializationMateusz Nosek1-1/+1
Previously variable 'check_addr' was initialized, but was not read later before reassigning. So the initialization can be removed. Signed-off-by: Mateusz Nosek <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb: support file_region coalescing againMina Almasry1-0/+44
An earlier patch in this series disabled file_region coalescing in order to hang the hugetlb_cgroup uncharge info on the file_region entries. This patch re-adds support for coalescing of file_region entries. Essentially everytime we add an entry, we call a recursive function that tries to coalesce the added region with the regions next to it. The worst case call depth for this function is 3: one to coalesce with the region next to it, one to coalesce to the region prev, and one to reach the base case. This is an important performance optimization as private mappings add their entries page by page, and we could incur big performance costs for large mappings with lots of file_region entries in their resv_map. [[email protected]: fix CONFIG_CGROUP_HUGETLB ifdefs] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: remove check_coalesce_bug debug code] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: David Rientjes <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Cc: Randy Dunlap <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb_cgroup: support noreserve mappingsMina Almasry1-1/+26
Support MAP_NORESERVE accounting as part of the new counter. For each hugepage allocation, at allocation time we check if there is a reservation for this allocation or not. If there is a reservation for this allocation, then this allocation was charged at reservation time, and we don't re-account it. If there is no reserevation for this allocation, we charge the appropriate hugetlb_cgroup. The hugetlb_cgroup to uncharge for this allocation is stored in page[3].private. We use new APIs added in an earlier patch to set this pointer. Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: David Rientjes <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb_cgroup: add accounting for shared mappingsMina Almasry1-54/+94
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives in the resv_map entries, in file_region->reservation_counter. After a call to region_chg, we charge the approprate hugetlb_cgroup, and if successful, we pass on the hugetlb_cgroup info to a follow up region_add call. When a file_region entry is added to the resv_map via region_add, we put the pointer to that cgroup in file_region->reservation_counter. If charging doesn't succeed, we report the error to the caller, so that the kernel fails the reservation. On region_del, which is when the hugetlb memory is unreserved, we also uncharge the file_region->reservation_counter. [[email protected]: forward declare struct file_region] Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: David Rientjes <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb: disable region_add file_region coalescingMina Almasry1-108/+228
A follow up patch in this series adds hugetlb cgroup uncharge info the file_region entries in resv->regions. The cgroup uncharge info may differ for different regions, so they can no longer be coalesced at region_add time. So, disable region coalescing in region_add in this patch. Behavior change: Say a resv_map exists like this [0->1], [2->3], and [5->6]. Then a region_chg/add call comes in region_chg/add(f=0, t=5). Old code would generate resv->regions: [0->5], [5->6]. New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5], [5->6]. Special care needs to be taken to handle the resv->adds_in_progress variable correctly. In the past, only 1 region would be added for every region_chg and region_add call. But now, each call may add multiple regions, so we can no longer increment adds_in_progress by 1 in region_chg, or decrement adds_in_progress by 1 after region_add or region_abort. Instead, region_chg calls add_reservation_in_range() to count the number of regions needed and allocates those, and that info is passed to region_add and region_abort to decrement adds_in_progress correctly. We've also modified the assumption that region_add after region_chg never fails. region_chg now pre-allocates at least 1 region for region_add. If region_add needs more regions than region_chg has allocated for it, then it may fail. [[email protected]: fix file_region entry allocations] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: David Rientjes <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Miguel Ojeda <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb_cgroup: add reservation accounting for private mappingsMina Almasry1-3/+44
Normally the pointer to the cgroup to uncharge hangs off the struct page, and gets queried when it's time to free the page. With hugetlb_cgroup reservations, this is not possible. Because it's possible for a page to be reserved by one task and actually faulted in by another task. The best place to put the hugetlb_cgroup pointer to uncharge for reservations is in the resv_map. But, because the resv_map has different semantics for private and shared mappings, the code patch to charge/uncharge shared and private mappings is different. This patch implements charging and uncharging for private mappings. For private mappings, the counter to uncharge is in resv_map->reservation_counter. On initializing the resv_map this is set to NULL. On reservation of a region in private mapping, the tasks hugetlb_cgroup is charged and the hugetlb_cgroup is placed is resv_map->reservation_counter. On hugetlb_vm_op_close, we uncharge resv_map->reservation_counter. [[email protected]: forward declare struct resv_map] Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: David Rientjes <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlb_cgroup: add interface for charge/uncharge hugetlb reservationsMina Almasry1-0/+2
Augments hugetlb_cgroup_charge_cgroup to be able to charge hugetlb usage or hugetlb reservation counter. Adds a new interface to uncharge a hugetlb_cgroup counter via hugetlb_cgroup_uncharge_counter. Integrates the counter with hugetlb_cgroup, via hugetlb_cgroup_init, hugetlb_cgroup_have_usage, and hugetlb_cgroup_css_offline. Signed-off-by: Mina Almasry <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Acked-by: Mike Kravetz <[email protected]> Acked-by: David Rientjes <[email protected]> Cc: Greg Thelen <[email protected]> Cc: Sandipan Das <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Shuah Khan <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlbfs: Use i_mmap_rwsem to address page fault/truncate raceMike Kravetz1-12/+11
hugetlbfs page faults can race with truncate and hole punch operations. Current code in the page fault path attempts to handle this by 'backing out' operations if we encounter the race. One obvious omission in the current code is removing a page newly added to the page cache. This is pretty straight forward to address, but there is a more subtle and difficult issue of backing out hugetlb reservations. To handle this correctly, the 'reservation state' before page allocation needs to be noted so that it can be properly backed out. There are four distinct possibilities for reservation state: shared/reserved, shared/no-resv, private/reserved and private/no-resv. Backing out a reservation may require memory allocation which could fail so that needs to be taken into account as well. Instead of writing the required complicated code for this rare occurrence, just eliminate the race. i_mmap_rwsem is now held in read mode for the duration of page fault processing. Hold i_mmap_rwsem in write mode when modifying i_size. In this way, truncation can not proceed when page faults are being processed. In addition, i_size will not change during fault processing so a single check can be made to ensure faults are not beyond (proposed) end of file. Faults can still race with hole punch, but that race is handled by existing code and the use of hugetlb_fault_mutex. With this modification, checks for races with truncation in the page fault path can be simplified and removed. remove_inode_hugepages no longer needs to take hugetlb_fault_mutex in the case of truncation. Comments are expanded to explain reasoning behind locking. Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: "Aneesh Kumar K . V" <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Prakash Sangappa <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronizationMike Kravetz1-11/+145
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/[email protected]/ [2] https://lore.kernel.org/linux-mm/[email protected]/ [3] https://lore.kernel.org/linux-mm/[email protected] [4] https://lore.kernel.org/linux-mm/[email protected]/ [5] https://lore.kernel.org/lkml/[email protected]/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: "Aneesh Kumar K . V" <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Prakash Sangappa <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/gup: allow to react to fatal signalsPeter Xu1-1/+2
The existing gup code does not react to the fatal signals in many code paths. For example, in one retry path of gup we're still using down_read() rather than down_read_killable(). Also, when doing page faults we don't pass in FAULT_FLAG_KILLABLE as well, which means that within the faulting process we'll wait in non-killable way as well. These were spotted by Linus during the code review of some other patches. Let's allow the gup code to react to fatal signals to improve the responsiveness of threads when during gup and being killed. Signed-off-by: Peter Xu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Brian Geffon <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Bobby Powers <[email protected]> Cc: David Hildenbrand <[email protected]> Cc: Denis Plotnikov <[email protected]> Cc: "Dr . David Alan Gilbert" <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Martin Cracauer <[email protected]> Cc: Marty McFadden <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Maya Gokhale <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Pavel Emelyanov <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/gup: allow VM_FAULT_RETRY for multiple timesPeter Xu1-2/+4
This is the gup counterpart of the change that allows the VM_FAULT_RETRY to happen for more than once. One thing to mention is that we must check the fatal signal here before retry because the GUP can be interrupted by that, otherwise we can loop forever. Signed-off-by: Peter Xu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Brian Geffon <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Bobby Powers <[email protected]> Cc: David Hildenbrand <[email protected]> Cc: Denis Plotnikov <[email protected]> Cc: "Dr . David Alan Gilbert" <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Martin Cracauer <[email protected]> Cc: Marty McFadden <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Maya Gokhale <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Pavel Emelyanov <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/gup: rename "nonblocking" to "locked" where properPeter Xu1-4/+4
Patch series "mm: Page fault enhancements", v6. This series contains cleanups and enhancements to current page fault logic. The whole idea comes from the discussion between Andrea and Linus on the bug reported by syzbot here: https://lkml.org/lkml/2017/11/2/833 Basically it does two things: (a) Allows the page fault logic to be more interactive on not only SIGKILL, but also the rest of userspace signals, and, (b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more than once. For (a): with the changes we should be able to react faster when page faults are working in parallel with userspace signals like SIGSTOP and SIGCONT (and more), and with that we can remove the buggy part in userfaultfd and benefit the whole page fault mechanism on faster signal processing to reach the userspace. For (b), we should be able to allow the page fault handler to loop for even more than twice. Some context: for now since we have FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the same interrupt context, however never more than twice. This can be not only a potential cleanup to remove this assumption since AFAIU the code itself doesn't really have this twice-only limitation (though that should be a protective approach in the past), at the same time it'll greatly simplify future works like userfaultfd write-protect where it's possible to retry for more than twice (please have a look at [1] below for a possible user that might require the page fault to be handled for a third time; if we can remove the retry limitation we can simply drop that patch and those complexity). This patch (of 16): There's plenty of places around __get_user_pages() that has a parameter "nonblocking" which does not really mean that "it won't block" (because it can really block) but instead it shows whether the mmap_sem is released by up_read() during the page fault handling mostly when VM_FAULT_RETRY is returned. We have the correct naming in e.g. get_user_pages_locked() or get_user_pages_remote() as "locked", however there're still many places that are using the "nonblocking" as name. Renaming the places to "locked" where proper to better suite the functionality of the variable. While at it, fixing up some of the comments accordingly. Signed-off-by: Peter Xu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Tested-by: Brian Geffon <[email protected]> Reviewed-by: Mike Rapoport <[email protected]> Reviewed-by: Jerome Glisse <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Martin Cracauer <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: "Dr . David Alan Gilbert" <[email protected]> Cc: Bobby Powers <[email protected]> Cc: Maya Gokhale <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Marty McFadden <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Denis Plotnikov <[email protected]> Cc: Pavel Emelyanov <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pagesJohn Hubbard1-0/+6
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS scheme tends to overflow too easily, each tail page increments the head page->_refcount by GUP_PIN_COUNTING_BIAS (1024). That limits the number of huge pages that can be pinned. This patch removes that limitation, by using an exact form of pin counting for compound pages of order > 1. The "order > 1" is required because this approach uses the 3rd struct page in the compound page, and order 1 compound pages only have two pages, so that won't work there. A new struct page field, hpage_pinned_refcount, has been added, replacing a padding field in the union (so no new space is used). This enhancement also has a useful side effect: huge pages and compound pages (of order > 1) do not suffer from the "potential false positives" problem that is discussed in the page_dma_pinned() comment block. That is because these compound pages have extra space for tracking things, so they get exact pin counts instead of overloading page->_refcount. Documentation/core-api/pin_user_pages.rst is updated accordingly. Suggested-by: Jan Kara <[email protected]> Signed-off-by: John Hubbard <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Jan Kara <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Ira Weiny <[email protected]> Cc: Jérôme Glisse <[email protected]> Cc: "Matthew Wilcox (Oracle)" <[email protected]> Cc: Al Viro <[email protected]> Cc: Christoph Hellwig <[email protected]> Cc: Dan Williams <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Shuah Khan <[email protected]> Cc: Vlastimil Babka <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-04-02mm/gup: track FOLL_PIN pagesJohn Hubbard1-18/+36
Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [[email protected]: add kerneldoc] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: fix put_compound_head defined but not used] Suggested-by: Jan Kara <[email protected]> Suggested-by: Jérôme Glisse <[email protected]> Signed-off-by: John Hubbard <[email protected]> Signed-off-by: Claudio Imbrenda <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Reviewed-by: Jan Kara <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Ira Weiny <[email protected]> Cc: "Matthew Wilcox (Oracle)" <[email protected]> Cc: Al Viro <[email protected]> Cc: Christoph Hellwig <[email protected]> Cc: Dan Williams <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: Jonathan Corbet <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Shuah Khan <[email protected]> Cc: Vlastimil Babka <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Linus Torvalds <[email protected]>
2020-01-04mm/hugetlb: defer freeing of huge pages if in non-task contextWaiman Long1-1/+50
The following lockdep splat was observed when a certain hugetlbfs test was run: ================================ WARNING: inconsistent lock state 4.18.0-159.el8.x86_64+debug #1 Tainted: G W --------- - - -------------------------------- inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. swapper/30/0 [HC0[0]:SC1[1]:HE1:SE0] takes: ffffffff9acdc038 (hugetlb_lock){+.?.}, at: free_huge_page+0x36f/0xaa0 {SOFTIRQ-ON-W} state was registered at: lock_acquire+0x14f/0x3b0 _raw_spin_lock+0x30/0x70 __nr_hugepages_store_common+0x11b/0xb30 hugetlb_sysctl_handler_common+0x209/0x2d0 proc_sys_call_handler+0x37f/0x450 vfs_write+0x157/0x460 ksys_write+0xb8/0x170 do_syscall_64+0xa5/0x4d0 entry_SYSCALL_64_after_hwframe+0x6a/0xdf irq event stamp: 691296 hardirqs last enabled at (691296): [<ffffffff99bb034b>] _raw_spin_unlock_irqrestore+0x4b/0x60 hardirqs last disabled at (691295): [<ffffffff99bb0ad2>] _raw_spin_lock_irqsave+0x22/0x81 softirqs last enabled at (691284): [<ffffffff97ff0c63>] irq_enter+0xc3/0xe0 softirqs last disabled at (691285): [<ffffffff97ff0ebe>] irq_exit+0x23e/0x2b0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(hugetlb_lock); <Interrupt> lock(hugetlb_lock); *** DEADLOCK *** : Call Trace: <IRQ> __lock_acquire+0x146b/0x48c0 lock_acquire+0x14f/0x3b0 _raw_spin_lock+0x30/0x70 free_huge_page+0x36f/0xaa0 bio_check_pages_dirty+0x2fc/0x5c0 clone_endio+0x17f/0x670 [dm_mod] blk_update_request+0x276/0xe50 scsi_end_request+0x7b/0x6a0 scsi_io_completion+0x1c6/0x1570 blk_done_softirq+0x22e/0x350 __do_softirq+0x23d/0xad8 irq_exit+0x23e/0x2b0 do_IRQ+0x11a/0x200 common_interrupt+0xf/0xf </IRQ> Both the hugetbl_lock and the subpool lock can be acquired in free_huge_page(). One way to solve the problem is to make both locks irq-safe. However, Mike Kravetz had learned that the hugetlb_lock is held for a linear scan of ALL hugetlb pages during a cgroup reparentling operation. So it is just too long to have irq disabled unless we can break hugetbl_lock down into finer-grained locks with shorter lock hold times. Another alternative is to defer the freeing to a workqueue job. This patch implements the deferred freeing by adding a free_hpage_workfn() work function to do the actual freeing. The free_huge_page() call in a non-task context saves the page to be freed in the hpage_freelist linked list in a lockless manner using the llist APIs. The generic workqueue is used to process the work, but a dedicated workqueue can be used instead if it is desirable to have the huge page freed ASAP. Thanks to Kirill Tkhai <[email protected]> for suggesting the use of llist APIs which simplfy the code. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Waiman Long <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: Davidlohr Bueso <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Kirill Tkhai <[email protected]> Cc: Aneesh Kumar K.V <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Andi Kleen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01mm/hugetlb: avoid looping to the same hugepage if !pages and !vmasZhigang Lu1-0/+15
When mmapping an existing hugetlbfs file with MAP_POPULATE, we find it is very time consuming. For example, mmapping a 128GB file takes about 50 milliseconds. Sampling with perfevent shows it spends 99% time in the same_page loop in follow_hugetlb_page(). samples: 205 of event 'cycles', Event count (approx.): 136686374 - 99.04% test_mmap_huget [kernel.kallsyms] [k] follow_hugetlb_page follow_hugetlb_page __get_user_pages __mlock_vma_pages_range __mm_populate vm_mmap_pgoff sys_mmap_pgoff sys_mmap system_call_fastpath __mmap64 follow_hugetlb_page() is called with pages=NULL and vmas=NULL, so for each hugepage, we run into the same_page loop for pages_per_huge_page() times, but doing nothing. With this change, it takes less then 1 millisecond to mmap a 128GB file in hugetlbfs. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Zhigang Lu <[email protected]> Reviewed-by: Haozhong Zhang <[email protected]> Reviewed-by: Zongming Zhang <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Acked-by: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01hugetlb: remove unused hstate in hugetlb_fault_mutex_hash()Wei Yang1-6/+4
The first parameter hstate in function hugetlb_fault_mutex_hash() is not used anymore. This patch removes it. [[email protected]: various build fixes] [[email protected]: fix a GCC compilation warning] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Signed-off-by: Qian Cai <[email protected]> Suggested-by: Andrew Morton <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Andrea Arcangeli <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01hugetlb: remove duplicated codeMina Almasry1-62/+57
Remove duplicated code between region_chg and region_add, and refactor it into a common function, add_reservation_in_range. This is mostly done because there is a follow up change in another series that disables region coalescing in region_add, and I want to make that change in one place only. It should improve maintainability anyway on its own. [[email protected]: coding style fixes] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mina Almasry <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: David Rientjes <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Greg Thelen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01hugetlb: region_chg provides only cache entryMina Almasry1-52/+11
Current behavior is that region_chg provides both a cache entry in resv->region_cache, AND a placeholder entry in resv->regions. region_add first tries to use the placeholder, and if it finds that the placeholder has been deleted by a racing region_del call, it uses the cache entry. This behavior is completely unnecessary and is removed in this patch for a couple of reasons: 1. region_add needs to either find a cached file_region entry in resv->region_cache, or find an entry in resv->regions to expand. It does not need both. 2. region_chg adding a placeholder entry in resv->regions opens up a possible race with region_del, where region_chg adds a placeholder region in resv->regions, and this region is deleted by a racing call to region_del during region_chg execution or before region_add is called. Removing the race makes the code easier to reason about and maintain. In addition, a follow up patch in another series that disables region coalescing, which would be further complicated if the race with region_del exists. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mina Almasry <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: David Rientjes <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Greg Thelen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01hugetlbfs: take read_lock on i_mmap for PMD sharingWaiman Long1-2/+2
A customer with large SMP systems (up to 16 sockets) with application that uses large amount of static hugepages (~500-1500GB) are experiencing random multisecond delays. These delays were caused by the long time it took to scan the VMA interval tree with mmap_sem held. The sharing of huge PMD does not require changes to the i_mmap at all. Therefore, we can just take the read lock and let other threads searching for the right VMA share it in parallel. Once the right VMA is found, either the PMD lock (2M huge page for x86-64) or the mm->page_table_lock will be acquired to perform the actual PMD sharing. Lock contention, if present, will happen in the spinlock. That is much better than contention in the rwsem where the time needed to scan the the interval tree is indeterminate. With this patch applied, the customer is seeing significant performance improvement over the unpatched kernel. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Waiman Long <[email protected]> Suggested-by: Mike Kravetz <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Will Deacon <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01hugetlbfs: hugetlb_fault_mutex_hash() cleanupMike Kravetz1-5/+5
A new clang diagnostic (-Wsizeof-array-div) warns about the calculation to determine the number of u32's in an array of unsigned longs. Suppress warning by adding parentheses. While looking at the above issue, noticed that the 'address' parameter to hugetlb_fault_mutex_hash is no longer used. So, remove it from the definition and all callers. No functional change. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mike Kravetz <[email protected]> Reported-by: Nathan Chancellor <[email protected]> Reviewed-by: Nathan Chancellor <[email protected]> Reviewed-by: Davidlohr Bueso <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Nick Desaulniers <[email protected]> Cc: Ilie Halip <[email protected]> Cc: David Bolvansky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-12-01mm/page_alloc: add alloc_contig_pages()Anshuman Khandual1-75/+2
HugeTLB helper alloc_gigantic_page() implements fairly generic allocation method where it scans over various zones looking for a large contiguous pfn range before trying to allocate it with alloc_contig_range(). Other than deriving the requested order from 'struct hstate', there is nothing HugeTLB specific in there. This can be made available for general use to allocate contiguous memory which could not have been allocated through the buddy allocator. alloc_gigantic_page() has been split carving out actual allocation method which is then made available via new alloc_contig_pages() helper wrapped under CONFIG_CONTIG_ALLOC. All references to 'gigantic' have been replaced with more generic term 'contig'. Allocated pages here should be freed with free_contig_range() or by calling __free_page() on each allocated page. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Anshuman Khandual <[email protected]> Acked-by: David Hildenbrand <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Michal Hocko <[email protected]> Cc: David Rientjes <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Oscar Salvador <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Dan Williams <[email protected]> Cc: Pavel Tatashin <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: David Hildenbrand <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-10-19hugetlbfs: don't access uninitialized memmaps in pfn_range_valid_gigantic()David Hildenbrand1-3/+2
Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. Let's make sure that we only consider online memory (managed by the buddy) that has initialized memmaps. ZONE_DEVICE is not applicable. page_zone() will call page_to_nid(), which will trigger VM_BUG_ON_PGFLAGS(PagePoisoned(page), page) with CONFIG_PAGE_POISONING and CONFIG_DEBUG_VM_PGFLAGS when called on uninitialized memmaps. This can be the case when an offline memory block (e.g., never onlined) is spanned by a zone. Note: As explained by Michal in [1], alloc_contig_range() will verify the range. So it boils down to the wrong access in this function. [1] http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b319] Signed-off-by: David Hildenbrand <[email protected]> Reported-by: Michal Hocko <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Mike Kravetz <[email protected]> Cc: Anshuman Khandual <[email protected]> Cc: <[email protected]> [4.13+] Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-09-24hugetlbfs: don't retry when pool page allocations start to failMike Kravetz1-10/+79
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the pages will be interleaved between all nodes of the system. If nodes are not equal, it is quite possible for one node to fill up before the others. When this happens, the code still attempts to allocate pages from the full node. This results in calls to direct reclaim and compaction which slow things down considerably. When allocating pool pages, note the state of the previous allocation for each node. If previous allocation failed, do not use the aggressive retry algorithm on successive attempts. The allocation will still succeed if there is memory available, but it will not try as hard to free up memory. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mike Kravetz <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Hillf Danton <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Michal Hocko <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-08-13hugetlbfs: fix hugetlb page migration/fault race causing SIGBUSMike Kravetz1-0/+19
Li Wang discovered that LTP/move_page12 V2 sometimes triggers SIGBUS in the kernel-v5.2.3 testing. This is caused by a race between hugetlb page migration and page fault. If a hugetlb page can not be allocated to satisfy a page fault, the task is sent SIGBUS. This is normal hugetlbfs behavior. A hugetlb fault mutex exists to prevent two tasks from trying to instantiate the same page. This protects against the situation where there is only one hugetlb page, and both tasks would try to allocate. Without the mutex, one would fail and SIGBUS even though the other fault would be successful. There is a similar race between hugetlb page migration and fault. Migration code will allocate a page for the target of the migration. It will then unmap the original page from all page tables. It does this unmap by first clearing the pte and then writing a migration entry. The page table lock is held for the duration of this clear and write operation. However, the beginnings of the hugetlb page fault code optimistically checks the pte without taking the page table lock. If clear (as it can be during the migration unmap operation), a hugetlb page allocation is attempted to satisfy the fault. Note that the page which will eventually satisfy this fault was already allocated by the migration code. However, the allocation within the fault path could fail which would result in the task incorrectly being sent SIGBUS. Ideally, we could take the hugetlb fault mutex in the migration code when modifying the page tables. However, locks must be taken in the order of hugetlb fault mutex, page lock, page table lock. This would require significant rework of the migration code. Instead, the issue is addressed in the hugetlb fault code. After failing to allocate a huge page, take the page table lock and check for huge_pte_none before returning an error. This is the same check that must be made further in the code even if page allocation is successful. Link: http://lkml.kernel.org/r/[email protected] Fixes: 290408d4a250 ("hugetlb: hugepage migration core") Signed-off-by: Mike Kravetz <[email protected]> Reported-by: Li Wang <[email protected]> Tested-by: Li Wang <[email protected]> Reviewed-by: Naoya Horiguchi <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Cyril Hrubis <[email protected]> Cc: Xishi Qiu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>