| Age | Commit message (Collapse) | Author | Files | Lines |
|
Certain files in procfs are formatted in byteorder-dependent formats.
For example the IP addresses in /proc/net/udp.
When using emulation like qemu-user, applications are not guaranteed to
be using the same byteorder as the kernel.
Therefore the kernel needs to provide a way for applications to discover
the byteorder used in API-filesystems.
Using systemcalls is not enough because these are intercepted and
translated by the emulation.
Also this makes it easier for non-compiled applications like
shellscripts to discover the byteorder.
Signed-off-by: Thomas Weißschuh <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
|
|
Replace printk(KERN_WARNING) by pr_warn() and printk() by pr_info().
While at it, use %pa for the resource_size_t variables. With that,
for the sake of consistency, introduce a temporary variable for
the end address in iomem_map_sanity_check() like it's done in another
function in the same module.
Signed-off-by: Andy Shevchenko <[email protected]>
Reviewed-by: Rafael J. Wysocki <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
|
|
In order to allow arches to use code patching to conditionally emit the
shadow stack pushes and pops, rather than always taking the performance
hit even on CPUs that implement alternatives such as stack pointer
authentication on arm64, add a Kconfig symbol that can be set by the
arch to omit the SCS codegen itself, without otherwise affecting how
support code for SCS and compiler options (for register reservation, for
instance) are emitted.
Also, add a static key and some plumbing to omit the allocation of
shadow call stack for dynamic SCS configurations if SCS is disabled at
runtime.
Signed-off-by: Ard Biesheuvel <[email protected]>
Reviewed-by: Nick Desaulniers <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Reviewed-by: Sami Tolvanen <[email protected]>
Tested-by: Sami Tolvanen <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Will Deacon <[email protected]>
|
|
Currenty there is no upper limit for /proc/sys/vm/page-cluster, and it's a
bit shift value, so it could result in overflow of the 32-bit integer.
Add a reasonable upper limit for it, read-in at most 2**31 pages, which is
a large enough value for readahead.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Kairui Song <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
The priority of hotplug memory callback is defined in a different file.
And there are some callers using numbers directly. Collect them together
into include/linux/memory.h for easy reading. This allows us to sort
their priorities more intuitively without additional comments.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Liu Shixin <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: Kefeng Wang <[email protected]>
Cc: Waiman Long <[email protected]>
Cc: zefan li <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
Patch series "mm: Use hotplug_memory_notifier() instead of
register_hotmemory_notifier()", v4.
Commit f02c69680088 ("include/linux/memory.h: implement
register_hotmemory_notifier()") introduced register_hotmemory_notifier()
to avoid a compile problem with gcc-4.4.4:
When CONFIG_MEMORY_HOTPLUG=n, we don't want the memory-hotplug notifier
handlers to be included in the .o files, for space reasons.
The existing hotplug_memory_notifier() tries to handle this but testing
with gcc-4.4.4 shows that it doesn't work - the hotplug functions are
still present in the .o files.
Since commit 76ae847497bc52 ("Documentation: raise minimum supported
version of GCC to 5.1") has already updated the minimum gcc version to
5.1. The previous problem mentioned in f02c69680088 does not exist. So
we can now revert to use hotplug_memory_notifier() directly rather than
register_hotmemory_notifier().
In the last patch, we move all hotplug memory notifier priority to same
file for easy sorting.
This patch (of 8):
Commit 76ae847497bc52 ("Documentation: raise minimum supported version of
GCC to 5.1") updated the minimum gcc version to 5.1. So the problem
mentioned in f02c69680088 ("include/linux/memory.h: implement
register_hotmemory_notifier()") no longer exist. So we can now switch to
use hotplug_memory_notifier() directly rather than
register_hotmemory_notifier().
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Liu Shixin <[email protected]>
Reviewed-by: David Hildenbrand <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Kefeng Wang <[email protected]>
Cc: Waiman Long <[email protected]>
Cc: zefan li <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Martin KaFai Lau <[email protected]>
|
|
To catch missing SIGTRAP we employ a WARN in __perf_event_overflow(),
which fires if pending_sigtrap was already set: returning to user space
without consuming pending_sigtrap, and then having the event fire again
would re-enter the kernel and trigger the WARN.
This, however, seemed to miss the case where some events not associated
with progress in the user space task can fire and the interrupt handler
runs before the IRQ work meant to consume pending_sigtrap (and generate
the SIGTRAP).
syzbot gifted us this stack trace:
| WARNING: CPU: 0 PID: 3607 at kernel/events/core.c:9313 __perf_event_overflow
| Modules linked in:
| CPU: 0 PID: 3607 Comm: syz-executor100 Not tainted 6.1.0-rc2-syzkaller-00073-g88619e77b33d #0
| Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
| RIP: 0010:__perf_event_overflow+0x498/0x540 kernel/events/core.c:9313
| <...>
| Call Trace:
| <TASK>
| perf_swevent_hrtimer+0x34f/0x3c0 kernel/events/core.c:10729
| __run_hrtimer kernel/time/hrtimer.c:1685 [inline]
| __hrtimer_run_queues+0x1c6/0xfb0 kernel/time/hrtimer.c:1749
| hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811
| local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1096 [inline]
| __sysvec_apic_timer_interrupt+0x17c/0x640 arch/x86/kernel/apic/apic.c:1113
| sysvec_apic_timer_interrupt+0x40/0xc0 arch/x86/kernel/apic/apic.c:1107
| asm_sysvec_apic_timer_interrupt+0x16/0x20 arch/x86/include/asm/idtentry.h:649
| <...>
| </TASK>
In this case, syzbot produced a program with event type
PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK. The hrtimer
manages to fire again before the IRQ work got a chance to run, all while
never having returned to user space.
Improve the WARN to check for real progress in user space: approximate
this by storing a 32-bit hash of the current IP into pending_sigtrap,
and if an event fires while pending_sigtrap still matches the previous
IP, we assume no progress (false negatives are possible given we could
return to user space and trigger again on the same IP).
Fixes: ca6c21327c6a ("perf: Fix missing SIGTRAPs")
Reported-by: [email protected]
Signed-off-by: Marco Elver <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
When building with clang:
kernel/bpf/dispatcher.c:126:33: error: pointer type mismatch ('void *' and 'unsigned int (*)(const void *, const struct bpf_insn *, bpf_func_t)' (aka 'unsigned int (*)(const void *, const struct bpf_insn *, unsigned int (*)(const void *, const struct bpf_insn *))')) [-Werror,-Wpointer-type-mismatch]
__BPF_DISPATCHER_UPDATE(d, new ?: &bpf_dispatcher_nop_func);
~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/bpf.h:1045:54: note: expanded from macro '__BPF_DISPATCHER_UPDATE'
__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
^~~~
1 error generated.
The warning is pointing out that the type of new ('void *') and
&bpf_dispatcher_nop_func are not compatible, which could have side
effects coming out of a conditional operator due to promotion rules.
Add the explicit cast to 'void *' to make it clear that this is
expected, as __BPF_DISPATCHER_UPDATE() expands to a call to
__static_call_update(), which expects a 'void *' as its final argument.
Fixes: c86df29d11df ("bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace)")
Link: https://github.com/ClangBuiltLinux/linux/issues/1755
Reported-by: kernel test robot <[email protected]>
Reported-by: "kernelci.org bot" <[email protected]>
Signed-off-by: Nathan Chancellor <[email protected]>
Acked-by: Björn Töpel <[email protected]>
Acked-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Martin KaFai Lau <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Add Cooper Lake's stepping to the PEBS guest/host events isolation
fixed microcode revisions checking quirk
- Update Icelake and Sapphire Rapids events constraints
- Use the standard energy unit for Sapphire Rapids in RAPL
- Fix the hw_breakpoint test to fail more graciously on !SMP configs
* tag 'perf_urgent_for_v6.1_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Add Cooper Lake stepping to isolation_ucodes[]
perf/x86/intel: Fix pebs event constraints for SPR
perf/x86/intel: Fix pebs event constraints for ICL
perf/x86/rapl: Use standard Energy Unit for SPR Dram RAPL domain
perf/hw_breakpoint: test: Skip the test if dependencies unmet
|
|
The dispatcher function is currently abusing the ftrace __fentry__
call location for its own purposes -- this obviously gives trouble
when the dispatcher and ftrace are both in use.
A previous solution tried using __attribute__((patchable_function_entry()))
which works, except it is GCC-8+ only, breaking the build on the
earlier still supported compilers. Instead use static_call() -- which
has its own annotations and does not conflict with ftrace -- to
rewrite the dispatch function.
By using: return static_call()(ctx, insni, bpf_func) you get a perfect
forwarding tail call as function body (iow a single jmp instruction).
By having the default static_call() target be bpf_dispatcher_nop_func()
it retains the default behaviour (an indirect call to the argument
function). Only once a dispatcher program is attached is the target
rewritten to directly call the JIT'ed image.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Tested-by: Björn Töpel <[email protected]>
Tested-by: Jiri Olsa <[email protected]>
Acked-by: Björn Töpel <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Link: https://lkml.kernel.org/r/Y1/oBlK0yFk5c/[email protected]
Link: https://lore.kernel.org/bpf/[email protected]
|
|
Because __attribute__((patchable_function_entry)) is only available
since GCC-8 this solution fails to build on the minimum required GCC
version.
Undo these changes so we might try again -- without cluttering up the
patches with too many changes.
This is an almost complete revert of:
dbe69b299884 ("bpf: Fix dispatcher patchable function entry to 5 bytes nop")
ceea991a019c ("bpf: Move bpf_dispatcher function out of ftrace locations")
(notably the arch/x86/Kconfig hunk is kept).
Reported-by: David Laight <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Tested-by: Björn Töpel <[email protected]>
Tested-by: Jiri Olsa <[email protected]>
Acked-by: Björn Töpel <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lore.kernel.org/bpf/[email protected]
|
|
Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.
There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.
Cilium results are more modest, but happen across wider range of programs.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.
Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.
End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.
This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.
But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.
First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.
To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.
More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.
Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.
Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.
This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.
With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When equivalent completed state is found and it has additional precision
restrictions, BPF verifier propagates precision to
currently-being-verified state chain (i.e., including parent states) so
that if some of the states in the chain are not yet completed, necessary
precision restrictions are enforced.
Unfortunately, right now this happens only for the last frame (deepest
active subprogram's frame), not all the frames. This can lead to
incorrect matching of states due to missing precision marker. Currently
this doesn't seem possible as BPF verifier forces everything to precise
when validated BPF program has any subprograms. But with the next patch
lifting this restriction, this becomes problematic.
In fact, without this fix, we'll start getting failure in one of the
existing test_verifier test cases:
#906/p precise: cross frame pruning FAIL
Unexpected success to load!
verification time 48 usec
stack depth 0+0
processed 26 insns (limit 1000000) max_states_per_insn 3 total_states 17 peak_states 17 mark_read 8
This patch adds precision propagation across all frames.
Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.
This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.
This does have (negative) effect on some selftest programs and few
Cilium programs. ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_cubic.bpf.linked1.o bpf_cubic_cong_avoid 997 1700 +703 (+70.51%) 62 90 +28 (+45.16%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 5469 +910 (+19.96%) 118 126 +8 (+6.78%)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3396 3446 +50 (+1.47%) 201 203 +2 (+1.00%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_xdp.o tail_lb_ipv4 71736 73442 +1706 (+2.38%) 4295 4370 +75 (+1.75%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.
[0] https://github.com/cilium/cilium/
[1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Refactor map->off_arr handling into generic functions that can work on
their own without hardcoding map specific code. The btf_fields_offs
structure is now returned from btf_parse_field_offs, which can be reused
later for types in program BTF.
All functions like copy_map_value, zero_map_value call generic
underlying functions so that they can also be reused later for copying
to values allocated in programs which encode specific fields.
Later, some helper functions will also require access to this
btf_field_offs structure to be able to skip over special fields at
runtime.
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
bpf 2022-11-04
We've added 8 non-merge commits during the last 3 day(s) which contain
a total of 10 files changed, 113 insertions(+), 16 deletions(-).
The main changes are:
1) Fix memory leak upon allocation failure in BPF verifier's stack state
tracking, from Kees Cook.
2) Fix address leakage when BPF progs release reference to an object,
from Youlin Li.
3) Fix BPF CI breakage from buggy in.h uapi header dependency,
from Andrii Nakryiko.
4) Fix bpftool pin sub-command's argument parsing, from Pu Lehui.
5) Fix BPF sockmap lockdep warning by cancelling psock work outside
of socket lock, from Cong Wang.
6) Follow-up for BPF sockmap to fix sk_forward_alloc accounting,
from Wang Yufen.
bpf-for-netdev
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
selftests/bpf: Add verifier test for release_reference()
bpf: Fix wrong reg type conversion in release_reference()
bpf, sock_map: Move cancel_work_sync() out of sock lock
tools/headers: Pull in stddef.h to uapi to fix BPF selftests build in CI
net/ipv4: Fix linux/in.h header dependencies
bpftool: Fix NULL pointer dereference when pin {PROG, MAP, LINK} without FILE
bpf, sockmap: Fix the sk->sk_forward_alloc warning of sk_stream_kill_queues
bpf, verifier: Fix memory leak in array reallocation for stack state
====================
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
|
|
It is not scalable to maintain a list of types that can have non-zero
ref_obj_id. It is never set for scalars anyway, so just remove the
conditional on register types and print it whenever it is non-zero.
Acked-by: Dave Marchevsky <[email protected]>
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Acked-by: David Vernet <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
For the case where allow_ptr_leaks is false, code is checking whether
slot type is STACK_INVALID and STACK_SPILL and rejecting other cases.
This is a consequence of incorrectly checking for register type instead
of the slot type (NOT_INIT and SCALAR_VALUE respectively). Fix the
check.
Fixes: 01f810ace9ed ("bpf: Allow variable-offset stack access")
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When support was added for spilled PTR_TO_BTF_ID to be accessed by
helper memory access, the stack slot was not overwritten to STACK_MISC
(and that too is only safe when env->allow_ptr_leaks is true).
This means that helpers who take ARG_PTR_TO_MEM and write to it may
essentially overwrite the value while the verifier continues to track
the slot for spilled register.
This can cause issues when PTR_TO_BTF_ID is spilled to stack, and then
overwritten by helper write access, which can then be passed to BPF
helpers or kfuncs.
Handle this by falling back to the case introduced in a later commit,
which will also handle PTR_TO_BTF_ID along with other pointer types,
i.e. cd17d38f8b28 ("bpf: Permits pointers on stack for helper calls").
Finally, include a comment on why REG_LIVE_WRITTEN is not being set when
clobber is set to true. In short, the reason is that while when clobber
is unset, we know that we won't be writing, when it is true, we *may*
write to any of the stack slots in that range. It may be a partial or
complete write, to just one or many stack slots.
We cannot be sure, hence to be conservative, we leave things as is and
never set REG_LIVE_WRITTEN for any stack slot. However, clobber still
needs to reset them to STACK_MISC assuming writes happened. However read
marks still need to be propagated upwards from liveness point of view,
as parent stack slot's contents may still continue to matter to child
states.
Cc: Yonghong Song <[email protected]>
Fixes: 1d68f22b3d53 ("bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary")
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
This is useful in particular to mark the pointer as volatile, so that
compiler treats each load and store to the field as a volatile access.
The alternative is having to define and use READ_ONCE and WRITE_ONCE in
the BPF program.
Signed-off-by: Kumar Kartikeya Dwivedi <[email protected]>
Acked-by: David Vernet <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
test_gen_kprobe_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Move kfree(buf) from fail path to common path
to prevent the memleak. The same reason and solution in
test_gen_kretprobe_cmd().
unreferenced object 0xffff888143b14000 (size 2048):
comm "insmod", pid 52490, jiffies 4301890980 (age 40.553s)
hex dump (first 32 bytes):
70 3a 6b 70 72 6f 62 65 73 2f 67 65 6e 5f 6b 70 p:kprobes/gen_kp
72 6f 62 65 5f 74 65 73 74 20 64 6f 5f 73 79 73 robe_test do_sys
backtrace:
[<000000006d7b836b>] kmalloc_trace+0x27/0xa0
[<0000000009528b5b>] 0xffffffffa059006f
[<000000008408b580>] do_one_initcall+0x87/0x2a0
[<00000000c4980a7e>] do_init_module+0xdf/0x320
[<00000000d775aad0>] load_module+0x3006/0x3390
[<00000000e9a74b80>] __do_sys_finit_module+0x113/0x1b0
[<000000003726480d>] do_syscall_64+0x35/0x80
[<000000003441e93b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Link: https://lore.kernel.org/all/[email protected]/
Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Cc: [email protected]
Signed-off-by: Shang XiaoJing <[email protected]>
Acked-by: Masami Hiramatsu (Google) <[email protected]>
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
|
|
Since commit ab51e15d535e ("fprobe: Introduce FPROBE_FL_KPROBE_SHARED flag
for fprobe") introduced fprobe_kprobe_handler() for fprobe::ops::func,
unregister_fprobe() fails to unregister the registered if user specifies
FPROBE_FL_KPROBE_SHARED flag.
Moreover, __register_ftrace_function() is possible to change the
ftrace_ops::func, thus we have to check fprobe::ops::saved_func instead.
To check it correctly, it should confirm the fprobe::ops::saved_func is
either fprobe_handler() or fprobe_kprobe_handler().
Link: https://lore.kernel.org/all/166677683946.1459107.15997653945538644683.stgit@devnote3/
Fixes: cad9931f64dc ("fprobe: Add ftrace based probe APIs")
Cc: [email protected]
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
|
|
Check if fp->rethook succeeded to be allocated. Otherwise, if
rethook_alloc() fails, then we end up dereferencing a NULL pointer in
rethook_add_node().
Link: https://lore.kernel.org/all/[email protected]/
Fixes: 5b0ab78998e3 ("fprobe: Add exit_handler support")
Cc: [email protected]
Signed-off-by: Rafael Mendonca <[email protected]>
Acked-by: Steven Rostedt (Google) <[email protected]>
Acked-by: Masami Hiramatsu (Google) <[email protected]>
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
|
|
In aggregate kprobe case, when arm_kprobe failed,
we need set the kp->flags with KPROBE_FLAG_DISABLED again.
If not, the 'kp' kprobe will been considered as enabled
but it actually not enabled.
Link: https://lore.kernel.org/all/[email protected]/
Fixes: 12310e343755 ("kprobes: Propagate error from arm_kprobe_ftrace()")
Cc: [email protected]
Signed-off-by: Li Qiang <[email protected]>
Acked-by: Masami Hiramatsu (Google) <[email protected]>
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
|
|
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
No conflicts.
Signed-off-by: Jakub Kicinski <[email protected]>
|
|
The actual maximum image size formula in hibernate_preallocate_memory()
is as follows:
max_size = (count - (size + PAGES_FOR_IO)) / 2
- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
but the one in the kerneldoc comment of the function is different and
incorrect.
Fixes: ddeb64870810 ("PM / Hibernate: Add sysfs knob to control size of memory for drivers")
Signed-off-by: xiongxin <[email protected]>
[ rjw: Subject and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
KASAN reported a use-after-free with ftrace ops [1]. It was found from
vmcore that perf had registered two ops with the same content
successively, both dynamic. After unregistering the second ops, a
use-after-free occurred.
In ftrace_shutdown(), when the second ops is unregistered, the
FTRACE_UPDATE_CALLS command is not set because there is another enabled
ops with the same content. Also, both ops are dynamic and the ftrace
callback function is ftrace_ops_list_func, so the
FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value
of 'command' will be 0 and ftrace_shutdown() will skip the rcu
synchronization.
However, ftrace may be activated. When the ops is released, another CPU
may be accessing the ops. Add the missing synchronization to fix this
problem.
[1]
BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468
CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132
show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1b4/0x248 lib/dump_stack.c:118
print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387
__kasan_report mm/kasan/report.c:547 [inline]
kasan_report+0x118/0x210 mm/kasan/report.c:564
check_memory_region_inline mm/kasan/generic.c:187 [inline]
__asan_load8+0x98/0xc0 mm/kasan/generic.c:253
__ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
ftrace_graph_call+0x0/0x4
__might_sleep+0x8/0x100 include/linux/perf_event.h:1170
__might_fault mm/memory.c:5183 [inline]
__might_fault+0x58/0x70 mm/memory.c:5171
do_strncpy_from_user lib/strncpy_from_user.c:41 [inline]
strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139
getname_flags+0xb0/0x31c fs/namei.c:149
getname+0x2c/0x40 fs/namei.c:209
[...]
Allocated by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc mm/kasan/common.c:479 [inline]
__kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449
kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493
kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950
kmalloc include/linux/slab.h:563 [inline]
kzalloc include/linux/slab.h:675 [inline]
perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
__arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723
[...]
Freed by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track+0x24/0x34 mm/kasan/common.c:56
kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358
__kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437
__kasan_slab_free mm/kasan/common.c:445 [inline]
kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446
slab_free_hook mm/slub.c:1569 [inline]
slab_free_freelist_hook mm/slub.c:1608 [inline]
slab_free mm/slub.c:3179 [inline]
kfree+0x12c/0xc10 mm/slub.c:4176
perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
[...]
Link: https://lore.kernel.org/linux-trace-kernel/[email protected]
Fixes: edb096e00724f ("ftrace: Fix memleak when unregistering dynamic ops when tracing disabled")
Cc: [email protected]
Suggested-by: Steven Rostedt <[email protected]>
Signed-off-by: Li Huafei <[email protected]>
Signed-off-by: Steven Rostedt (Google) <[email protected]>
|
|
On some machines the number of listed CPUs may be bigger than the actual
CPUs that exist. The tracing subsystem allocates a per_cpu directory with
access to the per CPU ring buffer via a cpuX file. But to save space, the
ring buffer will only allocate buffers for online CPUs, even though the
CPU array will be as big as the nr_cpu_ids.
With the addition of waking waiters on the ring buffer when closing the
file, the ring_buffer_wake_waiters() now needs to make sure that the
buffer is allocated (with the irq_work allocated with it) before trying to
wake waiters, as it will cause a NULL pointer dereference.
While debugging this, I added a NULL check for the buffer itself (which is
OK to do), and also NULL pointer checks against buffer->buffers (which is
not fine, and will WARN) as well as making sure the CPU number passed in
is within the nr_cpu_ids (which is also not fine if it isn't).
Link: https://lore.kernel.org/all/[email protected]/
Link: https://lore.kernel.org/all/CAM6Wdxc0KRJMXVAA0Y=u6Jh2V=uWB-_Fn6M4xRuNppfXzL1mUg@mail.gmail.com/
Link: https://lkml.kernel.org/linux-trace-kernel/[email protected]
Cc: [email protected]
Cc: Steven Noonan <[email protected]>
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705
Reported-by: Takashi Iwai <[email protected]>
Reported-by: Roland Ruckerbauer <[email protected]>
Fixes: f3ddb74ad079 ("tracing: Wake up ring buffer waiters on closing of the file")
Reviewed-by: Masami Hiramatsu (Google) <[email protected]>
Signed-off-by: Steven Rostedt (Google) <[email protected]>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2022-11-02
We've added 70 non-merge commits during the last 14 day(s) which contain
a total of 96 files changed, 3203 insertions(+), 640 deletions(-).
The main changes are:
1) Make cgroup local storage available to non-cgroup attached BPF programs
such as tc BPF ones, from Yonghong Song.
2) Avoid unnecessary deadlock detection and failures wrt BPF task storage
helpers, from Martin KaFai Lau.
3) Add LLVM disassembler as default library for dumping JITed code
in bpftool, from Quentin Monnet.
4) Various kprobe_multi_link fixes related to kernel modules,
from Jiri Olsa.
5) Optimize x86-64 JIT with emitting BMI2-based shift instructions,
from Jie Meng.
6) Improve BPF verifier's memory type compatibility for map key/value
arguments, from Dave Marchevsky.
7) Only create mmap-able data section maps in libbpf when data is exposed
via skeletons, from Andrii Nakryiko.
8) Add an autoattach option for bpftool to load all object assets,
from Wang Yufen.
9) Various memory handling fixes for libbpf and BPF selftests,
from Xu Kuohai.
10) Initial support for BPF selftest's vmtest.sh on arm64,
from Manu Bretelle.
11) Improve libbpf's BTF handling to dedup identical structs,
from Alan Maguire.
12) Add BPF CI and denylist documentation for BPF selftests,
from Daniel Müller.
13) Check BPF cpumap max_entries before doing allocation work,
from Florian Lehner.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (70 commits)
samples/bpf: Fix typo in README
bpf: Remove the obsolte u64_stats_fetch_*_irq() users.
bpf: check max_entries before allocating memory
bpf: Fix a typo in comment for DFS algorithm
bpftool: Fix spelling mistake "disasembler" -> "disassembler"
selftests/bpf: Fix bpftool synctypes checking failure
selftests/bpf: Panic on hard/soft lockup
docs/bpf: Add documentation for new cgroup local storage
selftests/bpf: Add test cgrp_local_storage to DENYLIST.s390x
selftests/bpf: Add selftests for new cgroup local storage
selftests/bpf: Fix test test_libbpf_str/bpf_map_type_str
bpftool: Support new cgroup local storage
libbpf: Support new cgroup local storage
bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
bpf: Refactor some inode/task/sk storage functions for reuse
bpf: Make struct cgroup btf id global
selftests/bpf: Tracing prog can still do lookup under busy lock
selftests/bpf: Ensure no task storage failure for bpf_lsm.s prog due to deadlock detection
bpf: Add new bpf_task_storage_delete proto with no deadlock detection
bpf: bpf_task_storage_delete_recur does lookup first before the deadlock check
...
====================
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
|
|
Running the test currently fails on non-SMP systems, despite being
enabled by default. This means that running the test with:
./tools/testing/kunit/kunit.py run --arch x86_64 hw_breakpoint
results in every hw_breakpoint test failing with:
# test_one_cpu: failed to initialize: -22
not ok 1 - test_one_cpu
Instead, use kunit_skip(), which will mark the test as skipped, and give
a more comprehensible message:
ok 1 - test_one_cpu # SKIP not enough cpus
This makes it more obvious that the test is not suited to the test
environment, and so wasn't run, rather than having run and failed.
Signed-off-by: David Gow <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Daniel Latypov <[email protected]>
Acked-by: Marco Elver <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
A common exploit pattern for ROP attacks is to abuse prepare_kernel_cred()
in order to construct escalated privileges[1]. Instead of providing a
short-hand argument (NULL) to the "daemon" argument to indicate using
init_cred as the base cred, require that "daemon" is always set to
an actual task. Replace all existing callers that were passing NULL
with &init_task.
Future attacks will need to have sufficiently powerful read/write
primitives to have found an appropriately privileged task and written it
to the ROP stack as an argument to succeed, which is similarly difficult
to the prior effort needed to escalate privileges before struct cred
existed: locate the current cred and overwrite the uid member.
This has the added benefit of meaning that prepare_kernel_cred() can no
longer exceed the privileges of the init task, which may have changed from
the original init_cred (e.g. dropping capabilities from the bounding set).
[1] https://google.com/search?q=commit_creds(prepare_kernel_cred(0))
Cc: "Eric W. Biederman" <[email protected]>
Cc: David Howells <[email protected]>
Cc: "Rafael J. Wysocki" <[email protected]>
Cc: Steve French <[email protected]>
Cc: Ronnie Sahlberg <[email protected]>
Cc: Shyam Prasad N <[email protected]>
Cc: Tom Talpey <[email protected]>
Cc: Namjae Jeon <[email protected]>
Cc: Trond Myklebust <[email protected]>
Cc: Anna Schumaker <[email protected]>
Cc: Chuck Lever <[email protected]>
Cc: Jeff Layton <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Eric Dumazet <[email protected]>
Cc: Jakub Kicinski <[email protected]>
Cc: Paolo Abeni <[email protected]>
Cc: "Michal Koutný" <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Kees Cook <[email protected]>
Acked-by: Luis Chamberlain <[email protected]>
Reviewed-by: Sergey Senozhatsky <[email protected]>
Acked-by: Russ Weight <[email protected]>
Acked-by: Greg Kroah-Hartman <[email protected]>
Acked-by: Paulo Alcantara (SUSE) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: c69431aab67a ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <[email protected]>
Reported-by: Kees Cook <[email protected]>
Signed-off-by: Kees Cook <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Reviewed-by: Bill Wendling <[email protected]>
Cc: Lorenz Bauer <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
This is a full revert of commit:
f1389181622a ("kallsyms: Take callthunks into account")
The commit assumes a number of things that are not quite right.
Notably it assumes every symbol has PADDING_BYTES in front of it that
are not claimed by another symbol.
This is not true; even when compiled with:
-fpatchable-function-entry=${PADDING_BYTES},${PADDING_BYTES}
Notably things like .cold subfunctions do not need to adhere to this
change in ABI. It it also not true when build with CFI_CLANG, which
claims these PADDING_BYTES in the __cfi_##name symbol.
Once the prefix bytes are not consistent and or otherwise claimed the
approach this patch takes goes out the window and kallsym resolution
will report invalid symbol names.
Therefore revert this to make room for another approach.
Reported-by: Reported-by: kernel test robot <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Tested-by: Yujie Liu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
|
|
At the moment the AMD encrypted platform reserves 6% of RAM for SWIOTLB
or 1GB, whichever is less. However it is possible that there is no block
big enough in the low memory which make SWIOTLB allocation fail and
the kernel continues without DMA. In such case a VM hangs on DMA.
This moves alloc+remap to a helper and calls it from a loop where
the size is halved on each iteration.
This updates default_nslabs on successful allocation which looks like
an oversight as not doing so should have broken callers of
swiotlb_size_or_default().
Signed-off-by: Alexey Kardashevskiy <[email protected]>
Reviewed-by: Pankaj Gupta <[email protected]>
Signed-off-by: Christoph Hellwig <[email protected]>
|
|
Now that the 32bit UP oddity is gone and 32bit uses always a sequence
count, there is no need for the fetch_irq() variants anymore.
Convert to the regular interface.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Sebastian Andrzej Siewior <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
6ab428604f72 ("cgroup: Implement DEBUG_CGROUP_REF") added a config option
which forces cgroup refcnt functions to be not inlined so that they can be
kprobed for debugging. However, it forgot export them when the config is
enabled breaking modules which make use of css reference counting.
Fix it by adding CGROUP_REF_EXPORT() macro to cgroup_refcnt.h which is
defined to EXPORT_SYMBOL_GPL when CONFIG_DEBUG_CGROUP_REF is set.
Signed-off-by: Tejun Heo <[email protected]>
Fixes: 6ab428604f72 ("cgroup: Implement DEBUG_CGROUP_REF")
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Rename a perf memory level event define to denote it is of CXL type
- Add Alder and Raptor Lakes support to RAPL
- Make sure raw sample data is output with tracepoints
* tag 'perf_urgent_for_v6.1_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/mem: Rename PERF_MEM_LVLNUM_EXTN_MEM to PERF_MEM_LVLNUM_CXL
perf/x86/rapl: Add support for Intel Raptor Lake
perf/x86/rapl: Add support for Intel AlderLake-N
perf: Fix missing raw data on tracepoint events
|
|
The commit d583d360a620 ("psi: Fix psi state corruption when schedule()
races with cgroup move") fixed a race problem by making cgroup_move_task()
use task->psi_flags instead of looking at the scheduler state.
We can extend task->psi_flags usage to CPU migration, which should be
a minor optimization for performance and code simplicity.
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Psi polling mechanism is trying to minimize the number of wakeups to
run psi_poll_work and is currently relying on timer_pending() to detect
when this work is already scheduled. This provides a window of opportunity
for psi_group_change to schedule an immediate psi_poll_work after
poll_timer_fn got called but before psi_poll_work could reschedule itself.
Below is the depiction of this entire window:
poll_timer_fn
wake_up_interruptible(&group->poll_wait);
psi_poll_worker
wait_event_interruptible(group->poll_wait, ...)
psi_poll_work
psi_schedule_poll_work
if (timer_pending(&group->poll_timer)) return;
...
mod_timer(&group->poll_timer, jiffies + delay);
Prior to 461daba06bdc we used to rely on poll_scheduled atomic which was
reset and set back inside psi_poll_work and therefore this race window
was much smaller.
The larger window causes increased number of wakeups and our partners
report visible power regression of ~10mA after applying 461daba06bdc.
Bring back the poll_scheduled atomic and make this race window even
narrower by resetting poll_scheduled only when we reach polling expiration
time. This does not completely eliminate the possibility of extra wakeups
caused by a race with psi_group_change however it will limit it to the
worst case scenario of one extra wakeup per every tracking window (0.5s
in the worst case).
This patch also ensures correct ordering between clearing poll_scheduled
flag and obtaining changed_states using memory barrier. Correct ordering
between updating changed_states and setting poll_scheduled is ensured by
atomic_xchg operation.
By tracing the number of immediate rescheduling attempts performed by
psi_group_change and the number of these attempts being blocked due to
psi monitor being already active, we can assess the effects of this change:
Before the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 684365 1385156 1261240
Immediate reschedules blocked: 682846 1381654 1258682
Immediate reschedules (delta): 1519 3502 2558
Immediate reschedules (% of attempted): 0.22% 0.25% 0.20%
After the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 882244 770298 426218
Immediate reschedules blocked: 881996 769796 426074
Immediate reschedules (delta): 248 502 144
Immediate reschedules (% of attempted): 0.03% 0.07% 0.03%
The number of non-blocked immediate reschedules dropped from 0.22-0.25%
to 0.03-0.07%. The drop is attributed to the decrease in the race window
size and the fact that we allow this race only when psi monitors reach
polling window expiration time.
Fixes: 461daba06bdc ("psi: eliminate kthread_worker from psi trigger scheduling mechanism")
Reported-by: Kathleen Chang <[email protected]>
Reported-by: Wenju Xu <[email protected]>
Reported-by: Jonathan Chen <[email protected]>
Signed-off-by: Suren Baghdasaryan <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Chengming Zhou <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Tested-by: SH Chen <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Pavan reported a problem that PSI avgs_work idle shutoff is not
working at all. Because PSI_NONIDLE condition would be observed in
psi_avgs_work()->collect_percpu_times()->get_recent_times() even if
only the kworker running avgs_work on the CPU.
Although commit 1b69ac6b40eb ("psi: fix aggregation idle shut-off")
avoided the ping-pong wake problem when the worker sleep, psi_avgs_work()
still will always re-arm the avgs_work, so shutoff is not working.
This patch changes to use PSI_STATE_RESCHEDULE to flag whether to
re-arm avgs_work in get_recent_times(). For the current CPU, we re-arm
avgs_work only when (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0),
for other CPUs we can just check PSI_NONIDLE delta. The new flag
is only used in psi_avgs_work(), so we check in get_recent_times()
that current_work() is avgs_work.
One potential problem is that the brief period of non-idle time
incurred between the aggregation run and the kworker's dequeue will
be stranded in the per-cpu buckets until avgs_work run next time.
The buckets can hold 4s worth of time, and future activity will wake
the avgs_work with a 2s delay, giving us 2s worth of data we can leave
behind when shut off the avgs_work. If the kworker run other works after
avgs_work shut off and doesn't have any scheduler activities for 2s,
this maybe a problem.
Reported-by: Pavan Kondeti <[email protected]>
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Acked-by: Suren Baghdasaryan <[email protected]>
Tested-by: Chengming Zhou <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When a pending event exists and growth is less than the threshold, the
current logic is to skip this trigger without generating event. However,
from e6df4ead85d9 ("psi: fix possible trigger missing in the window"),
our purpose is to generate event as long as pending event exists and the
rate meets the limit, no matter what growth is.
This patch handles this case properly.
Fixes: e6df4ead85d9 ("psi: fix possible trigger missing in the window")
Signed-off-by: Hao Lee <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Suren Baghdasaryan <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
"These make the intel_pstate driver work as expected on all hybrid
platforms to date (regardless of possible platform firmware issues),
fix hybrid sleep on systems using suspend-to-idle by default, make the
generic power domains code handle disabled idle states properly and
update pm-graph.
Specifics:
- Make intel_pstate use what is known about the hardware instead of
relying on information from the platform firmware (ACPI CPPC in
particular) to establish the relationship between the HWP CPU
performance levels and frequencies on all hybrid platforms
available to date (Rafael Wysocki)
- Allow hybrid sleep to use suspend-to-idle as a system suspend
method if it is the current suspend method of choice (Mario
Limonciello)
- Fix handling of unavailable/disabled idle states in the generic
power domains code (Sudeep Holla)
- Update the pm-graph suite of utilities to version 5.10 which is
fixes-mostly and does not add any new features (Todd Brandt)"
* tag 'pm-6.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM: domains: Fix handling of unavailable/disabled idle states
pm-graph v5.10
cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores
cpufreq: intel_pstate: Read all MSRs on the target CPU
PM: hibernate: Allow hybrid sleep to work with s2idle
|
|
For maps of type BPF_MAP_TYPE_CPUMAP memory is allocated first before
checking the max_entries argument. If then max_entries is greater than
NR_CPUS additional work needs to be done to free allocated memory before
an error is returned.
This changes moves the check on max_entries before the allocation
happens.
Signed-off-by: Florian Lehner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Martin KaFai Lau <[email protected]>
|
|
It's really difficult to debug when cgroup or css refs leak. Let's add a
debug option to force the refcnt function to not be inlined so that they can
be kprobed for debugging.
Signed-off-by: Tejun Heo <[email protected]>
|