| Age | Commit message (Collapse) | Author | Files | Lines |
|
Linus suggested that the kconfig here is confusing:
https://lore.kernel.org/all/CAHk-=wgUiAtiszwseM1p2fCJ+sC4XWQ+YN4TanFhUgvUqjr9Xw@mail.gmail.com/
Let's break it into three kconfigs controlling distinct things:
- CONFIG_IOMMU_MM_DATA controls if the mm_struct has the additional
fields for the IOMMU. Currently only PASID, but later patches store
a struct iommu_mm_data *
- CONFIG_ARCH_HAS_CPU_PASID controls if the arch needs the scheduling bit
for keeping track of the ENQCMD instruction. x86 will select this if
IOMMU_SVA is enabled
- IOMMU_SVA controls if the IOMMU core compiles in the SVA support code
for iommu driver use and the IOMMU exported API
This way ARM will not enable CONFIG_ARCH_HAS_CPU_PASID
Signed-off-by: Jason Gunthorpe <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Joerg Roedel <[email protected]>
|
|
Use the fact that we are passing subprog index around and have
a corresponding struct bpf_subprog_info in bpf_verifier_env for each
subprogram. We don't need to separately pass around a flag whether
subprog is exception callback or not, each relevant verifier function
can determine this using provided subprog index if we maintain
bpf_subprog_info properly.
Also move out exception callback-specific logic from
btf_prepare_func_args(), keeping it generic. We can enforce all these
restriction right before exception callback verification pass. We add
out parameter, arg_cnt, for now, but this will be unnecessary with
subsequent refactoring and will be removed.
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Emit dynptr type for CONST_PTR_TO_DYNPTR register. Also emit id,
ref_obj_id, and dynptr_id fields for STACK_DYNPTR stack slots.
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Emit valid memory size addressable through PTR_TO_MEM register.
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
If an SRCU barrier is queued while callbacks are running and a new
callbacks invocator for the same sdp were to run concurrently, the
RCU barrier might execute too early. As this requirement is non-obvious,
make sure to keep a record.
Signed-off-by: Frederic Weisbecker <[email protected]>
Reviewed-by: Joel Fernandes (Google) <[email protected]>
Signed-off-by: Paul E. McKenney <[email protected]>
Signed-off-by: Neeraj Upadhyay (AMD) <[email protected]>
|
|
While in grace period start, there is nothing to accelerate and
therefore no need to advance the callbacks either if no callback is
to be enqueued.
Spare these needless operations in this case.
Signed-off-by: Frederic Weisbecker <[email protected]>
Reviewed-by: Joel Fernandes (Google) <[email protected]>
Signed-off-by: Paul E. McKenney <[email protected]>
Signed-off-by: Neeraj Upadhyay (AMD) <[email protected]>
|
|
Callbacks advancing on SRCU must be performed on two specific places:
1) On enqueue time in order to make room for the acceleration of the
new callback.
2) On invocation time in order to move the callbacks ready to invoke.
Any other callback advancing callsite is needless. Remove the remaining
one in srcu_gp_start().
Co-developed-by: Yong He <[email protected]>
Signed-off-by: Yong He <[email protected]>
Co-developed-by: Joel Fernandes <[email protected]>
Signed-off-by: Joel Fernandes <[email protected]>
Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Paul E. McKenney <[email protected]>
Co-developed-by: Neeraj Upadhyay (AMD) <[email protected]>
Signed-off-by: Neeraj Upadhyay (AMD) <[email protected]>
|
|
The error variable in snapshot_write_next() gets a value before it is
used, so don't initialize it to 0 upfront.
Signed-off-by: Li zeming <[email protected]>
[ rjw: Subject and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
'error' first receives the function result before it is used, and it
does not need to be assigned a value during definition.
Signed-off-by: Li zeming <[email protected]>
[ rjw: Subject rewrite ]
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
It is not necessary to intialize the error variable in
create_basic_memory_bitmaps(), because it is only read after
being assigned a value.
Signed-off-by: Wang chaodong <[email protected]>
[ rjw: Subject and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
Although the RCU CPU stall notifiers can be useful for dumping state when
tracking down delicate forward-progress bugs where NUMA effects cause
cache lines to be delivered to a given CPU regularly, but always in a
state that prevents that CPU from making forward progress. These bugs can
be detected by the RCU CPU stall-warning mechanism, but in some cases,
the stall-warnings printk()s disrupt the forward-progress bug before
any useful state can be obtained.
Unfortunately, the notifier mechanism added by commit 5b404fdabacf ("rcu:
Add RCU CPU stall notifier") can make matters worse if used at all
carelessly. For example, if the stall warning was caused by a lock not
being released, then any attempt to acquire that lock in the notifier
will hang. This will prevent not only the notifier from producing any
useful output, but it will also prevent the stall-warning message from
ever appearing.
This commit therefore hides this new RCU CPU stall notifier
mechanism under a new RCU_CPU_STALL_NOTIFIER Kconfig option that
depends on both DEBUG_KERNEL and RCU_EXPERT. In addition, the
rcupdate.rcu_cpu_stall_notifiers=1 kernel boot parameter must also
be specified. The RCU_CPU_STALL_NOTIFIER Kconfig option's help text
contains a warning and explains the dangers of careless use, recommending
lockless notifier code. In addition, a WARN() is triggered each time
that an attempt is made to register a stall-warning notifier in kernels
built with CONFIG_RCU_CPU_STALL_NOTIFIER=y.
This combination of measures will keep use of this mechanism confined to
debug kernels and away from routine deployments.
[ paulmck: Apply Dan Carpenter feedback. ]
Fixes: 5b404fdabacf ("rcu: Add RCU CPU stall notifier")
Reported-by: Linus Torvalds <[email protected]>
Signed-off-by: Paul E. McKenney <[email protected]>
Reviewed-by: Joel Fernandes (Google) <[email protected]>
Signed-off-by: Neeraj Upadhyay (AMD) <[email protected]>
|
|
The task_struct structure's ->rcu_tasks_idle_cpu can be concurrently
read and written from the RCU Tasks grace-period kthread and from the
CPU on which the task_struct structure's task is running. This commit
therefore marks the accesses appropriately.
Reported-by: Boqun Feng <[email protected]>
Signed-off-by: Paul E. McKenney <[email protected]>
Reviewed-by: Joel Fernandes (Google) <[email protected]>
Signed-off-by: Neeraj Upadhyay (AMD) <[email protected]>
|
|
If multiple CPUs trigger softlockup at the same time with
'softlockup_all_cpu_backtrace=0', the softlockup's logs will appear
staggeredly in dmesg, which will affect the viewing of the logs for
developer. Since the code path for outputting softlockup logs is not a
kernel hotspot and the performance requirements for the code are not
strict, locks are used to serialize the softlockup log output to improve
the readability of the logs.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Li Zhe <[email protected]>
Reviewed-by: Petr Mladek <[email protected]>
Reviewed-by: Douglas Anderson <[email protected]>
Cc: Lecopzer Chen <[email protected]>
Cc: Pingfan Liu <[email protected]>
Cc: Zefan Li <[email protected]>
Cc: John Ogness <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
Patch series "kexec_file: Load kernel at top of system RAM if required".
Justification:
==============
Kexec_load interface has been doing top down searching and loading
kernel/initrd/purgtory etc to prepare for kexec reboot. In that way, the
benefits are that it avoids to consume and fragment limited low memory
which satisfy DMA buffer allocation and big chunk of continuous memory
during system init; and avoids to stir with BIOS/FW reserved or occupied
areas, or corner case handling/work around/quirk occupied areas when doing
system init. By the way, the top-down searching and loading of kexec-ed
kernel is done in user space utility code.
For kexec_file loading, even if kexec_buf.top_down is 'true', it's simply
ignored. It calls walk_system_ram_res() directly to go through all
resources of System RAM bottom up, to find an available memory region,
then call locate_mem_hole_callback() to allocate memory in that found
memory region from top to down. This is not expected and inconsistent
with kexec_load.
Implementation
===============
In patch 1, introduce a new function walk_system_ram_res_rev() which is a
variant of walk_system_ram_res(), it walks through a list of all the
resources of System RAM in reversed order, i.e., from higher to lower.
In patch 2, check if kexec_buf.top_down is 'true' in
kexec_walk_resources(), if yes, call walk_system_ram_res_rev() to find
memory region of system RAM from top to down to load kernel/initrd etc.
Background information: ======================= And I ever tried this in
the past in a different way, please see below link. In the post, I tried
to adjust struct sibling linking code, replace the the singly linked list
with list_head so that walk_system_ram_res_rev() can be implemented in a
much easier way. Finally I failed.
https://lore.kernel.org/all/[email protected]/
This time, I picked up the patch from AKASHI Takahiro's old post and made
some change to take as the current patch 1:
https://lists.infradead.org/pipermail/linux-arm-kernel/2017-September/531456.html
This patch (of 2):
Kexec_load interface has been doing top down searching and loading
kernel/initrd/purgtory etc to prepare for kexec reboot. In that way, the
benefits are that it avoids to consume and fragment limited low memory
which satisfy DMA buffer allocation and big chunk of continuous memory
during system init; and avoids to stir with BIOS/FW reserved or occupied
areas, or corner case handling/work around/quirk occupied areas when doing
system init. By the way, the top-down searching and loading of kexec-ed
kernel is done in user space utility code.
For kexec_file loading, even if kexec_buf.top_down is 'true', it's simply
ignored. It calls walk_system_ram_res() directly to go through all
resources of System RAM bottom up, to find an available memory region,
then call locate_mem_hole_callback() to allocate memory in that found
memory region from top to down. This is not expected and inconsistent
with kexec_load.
Here check if kexec_buf.top_down is 'true' in kexec_walk_resources(), if
yes, call the newly added walk_system_ram_res_rev() to find memory region
of system RAM from top to down to load kernel/initrd etc.
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Baoquan He <[email protected]>
Cc: AKASHI Takahiro <[email protected]>
Cc: Baoquan He <[email protected]>
Cc: Eric Biederman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
This function, being a variant of walk_system_ram_res() introduced in
commit 8c86e70acead ("resource: provide new functions to walk through
resources"), walks through a list of all the resources of System RAM in
reversed order, i.e., from higher to lower.
It will be used in kexec_file code to load kernel, initrd etc when
preparing kexec reboot.
Link: https://lkml.kernel.org/r/ZVTA6z/06cLnWKUz@MiWiFi-R3L-srv
Signed-off-by: AKASHI Takahiro <[email protected]>
Signed-off-by: Baoquan He <[email protected]>
Cc: Eric Biederman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED,
and empty one that is only referenced when FAIR_GROUP_SCHED is disabled
but CGROUP_SCHED is still enabled. If both are turned off, the functions
are still defined but the misisng prototype causes a W=1 warning:
kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group'
kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group'
kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group'
kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group'
Move the alternatives into the header as static inline functions with the
correct combination of #ifdef checks to avoid the warning without adding
even more complexity.
[A different patch with the same description got applied by accident
and was later reverted, but the original patch is still missing]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: 7aa55f2a5902 ("sched/fair: Move unused stub functions to header")
Signed-off-by: Arnd Bergmann <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: David Woodhouse <[email protected]>
Cc: Dinh Nguyen <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Ivan Kokshaysky <[email protected]>
Cc: John Paul Adrian Glaubitz <[email protected]>
Cc: Kees Cook <[email protected]>
Cc: Masahiro Yamada <[email protected]>
Cc: Matt Turner <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Nathan Chancellor <[email protected]>
Cc: Nicolas Schier <[email protected]>
Cc: Palmer Dabbelt <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Richard Henderson <[email protected]>
Cc: Richard Weinberger <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: Stephen Rothwell <[email protected]>
Cc: Thomas Bogendoerfer <[email protected]>
Cc: Tudor Ambarus <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Cc: Zhihao Cheng <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
Use atomic_try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
crash_kexec(). x86 CMPXCHG instruction returns success in ZF flag,
so this change saves a compare after cmpxchg.
No functional change intended.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Uros Bizjak <[email protected]>
Acked-by: Baoquan He <[email protected]>
Cc: Eric Biederman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
The corner case described by the comment is no longer possible after the
commit 7b3c36fc4c23 ("ptrace: fix task_join_group_stop() for the case when
current is traced"), task_join_group_stop() ensures that the new thread
has the correct signr in JOBCTL_STOP_SIGMASK regardless of ptrace.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Oleg Nesterov <[email protected]>
Cc: Eric Biederman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
recalc_sigpending_and_wake()
The purpose of recalc_sigpending_and_wake() is not clear, it looks
"obviously unneeded" because we are going to send the signal which can't
be blocked or ignored.
Add the comment to explain why we can't rely on send_signal_locked() and
make this logic more simple/explicit. recalc_sigpending_and_wake() has no
other users, it can die.
In fact I think we don't even need signal_wake_up(), the target task must
be either current or a TASK_TRACED child, otherwise the usage of siglock
is not safe. But this needs another change.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Oleg Nesterov <[email protected]>
Cc: Eric Biederman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
IA-64 was the only architecture which selected ARCH_TASK_STRUCT_ALLOCATOR.
IA-64 was removed with commit cf8e8658100d ("arch: Remove Itanium (IA-64)
architecture"). Therefore remove support for ARCH_THREAD_STACK_ALLOCATOR
as well.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Heiko Carstens <[email protected]>
Reviewed-by: Arnd Bergmann <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Nicholas Piggin <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
Patch series "Remove unused code after IA-64 removal".
While looking into something different I noticed that there are a couple
of Kconfig options which were only selected by IA-64 and which are now
unused.
So remove them and simplify the code a bit.
This patch (of 3):
IA-64 was the only architecture which selected ARCH_THREAD_STACK_ALLOCATOR.
IA-64 was removed with commit cf8e8658100d ("arch: Remove Itanium (IA-64)
architecture"). Therefore remove support for ARCH_THREAD_STACK_ALLOCATOR as
well.
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Heiko Carstens <[email protected]>
Reviewed-by: Arnd Bergmann <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Nicholas Piggin <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
Cosmetic, but imho it makes the usage look more clear and simple, the new
helper doesn't require to initialize "t".
After this change while_each_thread() has only 3 users, and it is only
used in the do/while loops.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Oleg Nesterov <[email protected]>
Reviewed-by: Christian Brauner <[email protected]>
Cc: "Eric W. Biederman" <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
When kernel_can_power_off() returns false, and reboot has called with
LINUX_REBOOT_CMD_POWER_OFF, kernel_halt() will be initiated instead of
actual power off function.
However, in this situation, Kernel never explicitly notifies user that
system halted instead of requested power off.
Since halt and power off perform different behavior, and user initiated
reboot call with power off command, not halt, This could be unintended
behavior to user, like this:
~ # poweroff -f
[ 3.581482] reboot: System halted
Therefore, this explicitly notifies user that poweroff is not available,
and halting has been occured as an alternative behavior instead:
~ # poweroff -f
[ 4.123668] reboot: Power off not available: System halted instead
[[email protected]: tweak comment text]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Dongmin Lee <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
In dup_mmap(), using __mt_dup() to duplicate the old maple tree and then
directly replacing the entries of VMAs in the new maple tree can result in
better performance. __mt_dup() uses DFS pre-order to duplicate the maple
tree, so it is efficient.
The average time complexity of __mt_dup() is O(n), where n is the number
of VMAs. The proof of the time complexity is provided in the commit log
that introduces __mt_dup(). After duplicating the maple tree, each
element is traversed and replaced (ignoring the cases of deletion, which
are rare). Since it is only a replacement operation for each element,
this process is also O(n).
Analyzing the exact time complexity of the previous algorithm is
challenging because each insertion can involve appending to a node,
pushing data to adjacent nodes, or even splitting nodes. The frequency of
each action is difficult to calculate. The worst-case scenario for a
single insertion is when the tree undergoes splitting at every level. If
we consider each insertion as the worst-case scenario, we can determine
that the upper bound of the time complexity is O(n*log(n)), although this
is a loose upper bound. However, based on the test data, it appears that
the actual time complexity is likely to be O(n).
As the entire maple tree is duplicated using __mt_dup(), if dup_mmap()
fails, there will be a portion of VMAs that have not been duplicated in
the maple tree. To handle this, we mark the failure point with
XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, stop
releasing VMAs that have not been duplicated after this point.
There is a "spawn" in byte-unixbench[1], which can be used to test the
performance of fork(). I modified it slightly to make it work with
different number of VMAs.
Below are the test results. The first row shows the number of VMAs. The
second and third rows show the number of fork() calls per ten seconds,
corresponding to next-20231006 and the this patchset, respectively. The
test results were obtained with CPU binding to avoid scheduler load
balancing that could cause unstable results. There are still some
fluctuations in the test results, but at least they are better than the
original performance.
21 121 221 421 821 1621 3221 6421 12821 25621 51221
112100 76261 54227 34035 20195 11112 6017 3161 1606 802 393
114558 83067 65008 45824 28751 16072 8922 4747 2436 1233 599
2.19% 8.92% 19.88% 34.64% 42.37% 44.64% 48.28% 50.17% 51.68% 53.74% 52.42%
[1] https://github.com/kdlucas/byte-unixbench/tree/master
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Peng Zhang <[email protected]>
Suggested-by: Liam R. Howlett <[email protected]>
Reviewed-by: Liam R. Howlett <[email protected]>
Cc: Christian Brauner <[email protected]>
Cc: Jonathan Corbet <[email protected]>
Cc: Mateusz Guzik <[email protected]>
Cc: Mathieu Desnoyers <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Michael S. Tsirkin <[email protected]>
Cc: Mike Christie <[email protected]>
Cc: Nicholas Piggin <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Suren Baghdasaryan <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Borislav Petkov:
- Make sure tasks are thawed exactly and only once to avoid their state
getting corrupted
* tag 'sched_urgent_for_v6.7_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
freezer,sched: Do not restore saved_state of a thawed task
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event fix from Borislav Petkov:
- Make sure perf event size validation is done on every event in the
group
* tag 'perf_urgent_for_v6.7_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix perf_event_validate_size()
|
|
It can be useful to query how many bits are set in a cpumask. For
example, if you want to perform special logic for the last remaining
core that's set in a mask. Let's therefore add a new
bpf_cpumask_weight() kfunc which checks how many bits are set in a mask.
Signed-off-by: David Vernet <[email protected]>
Acked-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When verifier validates BPF_ST_MEM instruction that stores known
constant to stack (e.g., *(u64 *)(r10 - 8) = 123), it effectively spills
a fake register with a constant (but initially imprecise) value to
a stack slot. Because read-side logic treats it as a proper register
fill from stack slot, we need to mark such stack slot initialization as
INSN_F_STACK_ACCESS instruction to stop precision backtracking from
missing it.
Fixes: 41f6f64e6999 ("bpf: support non-r10 register spill/fill to/from stack in precision tracking")
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.
Fix it by setting uattr->batch.count as zero beore batched update or
deletion.
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
There is no need to call maybe_wait_bpf_programs() if update or deletion
operation fails. So only call maybe_wait_bpf_programs() if update or
deletion operation succeeds.
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When doing batched lookup and deletion operations on htab of maps,
maybe_wait_bpf_programs() is needed to ensure all programs don't use the
inner map after the bpf syscall returns.
Instead of adding the wait in __htab_map_lookup_and_delete_batch(),
adding the wait in bpf_map_do_batch() and also removing the calling of
maybe_wait_bpf_programs() from generic_map_{delete,update}_batch().
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Just like commit 9087c6ff8dfe ("bpf: Call maybe_wait_bpf_programs() only
once from generic_map_delete_batch()"), there is also no need to call
maybe_wait_bpf_programs() for each update in batched update, so only
call it once in generic_map_update_batch().
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Both map_lookup_elem() and generic_map_lookup_batch() use
bpf_map_copy_value() to lookup and copy the value, and there is no
update operation in bpf_map_copy_value(), so just remove the invocation
of maybe_wait_bpf_programs() from it.
Fixes: 15c14a3dca42 ("bpf: Add bpf_map_{value_size, update_value, map_copy_value} functions")
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
In the current cgroup1 environment, associating operations between cgroups
and applications in a BPF program requires storing a mapping of cgroup_id
to application either in a hash map or maintaining it in userspace.
However, by enabling bpf_cgrp_storage for cgroup1, it becomes possible to
conveniently store application-specific information in cgroup-local storage
and utilize it within BPF programs. Furthermore, enabling this feature for
cgroup1 involves minor modifications for the non-attach case, streamlining
the process.
However, when it comes to enabling this functionality for the cgroup1
attach case, it presents challenges. Therefore, the decision is to focus on
enabling it solely for the cgroup1 non-attach case at present. If
attempting to attach to a cgroup1 fd, the operation will simply fail with
the error code -EBADF.
Signed-off-by: Yafang Shao <[email protected]>
Acked-by: Tejun Heo <[email protected]>
Acked-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Martin KaFai Lau <[email protected]>
|
|
Push the rounding up of stack offsets into the function responsible for
growing the stack, rather than relying on all the callers to do it.
Uncertainty about whether the callers did it or not tripped up people in
a previous review.
Signed-off-by: Andrei Matei <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.
This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.
This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <[email protected]>
Signed-off-by: Andrei Matei <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Snapshot buffer issues:
1. When instances started allowing latency tracers, it uses a
snapshot buffer (another buffer that is not written to but swapped
with the main buffer that is). The snapshot buffer needs to be the
same size as the main buffer. But when the snapshot buffers were
added to instances, the code to make the snapshot equal to the
main buffer still was only doing it for the main buffer and not
the instances.
2. Need to stop the current tracer when resizing the buffers.
Otherwise there can be a race if the tracer decides to make a
snapshot between resizing the main buffer and the snapshot buffer.
3. When a tracer is "stopped" in disables both the main buffer and
the snapshot buffer. This needs to be done for instances and not
only the main buffer, now that instances also have a snapshot
buffer.
- Buffered event for filtering issues:
When filtering is enabled, because events can be dropped often, it is
quicker to copy the event into a temp buffer and write that into the
main buffer if it is not filtered or just drop the event if it is,
than to write the event into the ring buffer and then try to discard
it. This temp buffer is allocated and needs special synchronization
to do so. But there were some issues with that:
1. When disabling the filter and freeing the buffer, a call to all
CPUs is required to stop each per_cpu usage. But the code called
smp_call_function_many() which does not include the current CPU.
If the task is migrated to another CPU when it enables the CPUs
via smp_call_function_many(), it will not enable the one it is
currently on and this causes issues later on. Use
on_each_cpu_mask() instead, which includes the current CPU.
2.When the allocation of the buffered event fails, it can give a
warning. But the buffered event is just an optimization (it's
still OK to write to the ring buffer and free it). Do not WARN in
this case.
3.The freeing of the buffer event requires synchronization. First a
counter is decremented to zero so that no new uses of it will
happen. Then it sets the buffered event to NULL, and finally it
frees the buffered event. There's a synchronize_rcu() between the
counter decrement and the setting the variable to NULL, but only a
smp_wmb() between that and the freeing of the buffer. It is
theoretically possible that a user missed seeing the decrement,
but will use the buffer after it is free. Another
synchronize_rcu() is needed in place of that smp_wmb().
- ring buffer timestamps on 32 bit machines
The ring buffer timestamp on 32 bit machines has to break the 64 bit
number into multiple values as cmpxchg is required on it, and a 64
bit cmpxchg on 32 bit architectures is very slow. The code use to
just use two 32 bit values and make it a 60 bit timestamp where the
other 4 bits were used as counters for synchronization. It later came
known that the timestamp on 32 bit still need all 64 bits in some
cases. So 3 words were created to handle the 64 bits. But issues
arised with this:
1. The synchronization logic still only compared the counter with
the first two, but not with the third number, so the
synchronization could fail unknowingly.
2. A check on discard of an event could race if an event happened
between the discard and updating one of the counters. The counter
needs to be updated (forcing an absolute timestamp and not to use
a delta) before the actual discard happens.
* tag 'trace-v6.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Test last update in 32bit version of __rb_time_read()
ring-buffer: Force absolute timestamp on discard of event
tracing: Fix a possible race when disabling buffered events
tracing: Fix a warning when allocating buffered events fails
tracing: Fix incomplete locking when disabling buffered events
tracing: Disable snapshot buffer when stopping instance tracers
tracing: Stop current tracer when resizing buffer
tracing: Always update snapshot buffer size
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"31 hotfixes. Ten of these address pre-6.6 issues and are marked
cc:stable. The remainder address post-6.6 issues or aren't considered
serious enough to justify backporting"
* tag 'mm-hotfixes-stable-2023-12-07-18-47' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (31 commits)
mm/madvise: add cond_resched() in madvise_cold_or_pageout_pte_range()
nilfs2: prevent WARNING in nilfs_sufile_set_segment_usage()
mm/hugetlb: have CONFIG_HUGETLB_PAGE select CONFIG_XARRAY_MULTI
scripts/gdb: fix lx-device-list-bus and lx-device-list-class
MAINTAINERS: drop Antti Palosaari
highmem: fix a memory copy problem in memcpy_from_folio
nilfs2: fix missing error check for sb_set_blocksize call
kernel/Kconfig.kexec: drop select of KEXEC for CRASH_DUMP
units: add missing header
drivers/base/cpu: crash data showing should depends on KEXEC_CORE
mm/damon/sysfs-schemes: add timeout for update_schemes_tried_regions
scripts/gdb/tasks: fix lx-ps command error
mm/Kconfig: make userfaultfd a menuconfig
selftests/mm: prevent duplicate runs caused by TEST_GEN_PROGS
mm/damon/core: copy nr_accesses when splitting region
lib/group_cpus.c: avoid acquiring cpu hotplug lock in group_cpus_evenly
checkstack: fix printed address
mm/memory_hotplug: fix error handling in add_memory_resource()
mm/memory_hotplug: add missing mem_hotplug_lock
.mailmap: add a new address mapping for Chester Lin
...
|
|
Cross-merge networking fixes after downstream PR.
Conflicts:
drivers/net/ethernet/stmicro/stmmac/dwmac5.c
drivers/net/ethernet/stmicro/stmmac/dwmac5.h
drivers/net/ethernet/stmicro/stmmac/dwxgmac2_core.c
drivers/net/ethernet/stmicro/stmmac/hwif.h
37e4b8df27bc ("net: stmmac: fix FPE events losing")
c3f3b97238f6 ("net: stmmac: Refactor EST implementation")
https://lore.kernel.org/all/[email protected]/
Adjacent changes:
net/ipv4/tcp_ao.c
9396c4ee93f9 ("net/tcp: Don't store TCP-AO maclen on reqsk")
7b0f570f879a ("tcp: Move TCP-AO bits from cookie_v[46]_check() to tcp_ao_syncookie().")
Signed-off-by: Jakub Kicinski <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from bpf and netfilter.
Current release - regressions:
- veth: fix packet segmentation in veth_convert_skb_to_xdp_buff
Current release - new code bugs:
- tcp: assorted fixes to the new Auth Option support
Older releases - regressions:
- tcp: fix mid stream window clamp
- tls: fix incorrect splice handling
- ipv4: ip_gre: handle skb_pull() failure in ipgre_xmit()
- dsa: mv88e6xxx: restore USXGMII support for 6393X
- arcnet: restore support for multiple Sohard Arcnet cards
Older releases - always broken:
- tcp: do not accept ACK of bytes we never sent
- require admin privileges to receive packet traces via netlink
- packet: move reference count in packet_sock to atomic_long_t
- bpf:
- fix incorrect branch offset comparison with cpu=v4
- fix prog_array_map_poke_run map poke update
- netfilter:
- three fixes for crashes on bad admin commands
- xt_owner: fix race accessing sk->sk_socket, TOCTOU null-deref
- nf_tables: fix 'exist' matching on bigendian arches
- leds: netdev: fix RTNL handling to prevent potential deadlock
- eth: tg3: prevent races in error/reset handling
- eth: r8169: fix rtl8125b PAUSE storm when suspended
- eth: r8152: improve reset and surprise removal handling
- eth: hns: fix race between changing features and sending
- eth: nfp: fix sleep in atomic for bonding offload"
* tag 'net-6.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (62 commits)
vsock/virtio: fix "comparison of distinct pointer types lacks a cast" warning
net/smc: fix missing byte order conversion in CLC handshake
net: dsa: microchip: provide a list of valid protocols for xmit handler
drop_monitor: Require 'CAP_SYS_ADMIN' when joining "events" group
psample: Require 'CAP_NET_ADMIN' when joining "packets" group
bpf: sockmap, updating the sg structure should also update curr
net: tls, update curr on splice as well
nfp: flower: fix for take a mutex lock in soft irq context and rcu lock
net: dsa: mv88e6xxx: Restore USXGMII support for 6393X
tcp: do not accept ACK of bytes we never sent
selftests/bpf: Add test for early update in prog_array_map_poke_run
bpf: Fix prog_array_map_poke_run map poke update
netfilter: xt_owner: Fix for unsafe access of sk->sk_socket
netfilter: nf_tables: validate family when identifying table via handle
netfilter: nf_tables: bail out on mismatching dynset and set expressions
netfilter: nf_tables: fix 'exist' matching on bigendian arches
netfilter: nft_set_pipapo: skip inactive elements during set walk
netfilter: bpf: fix bad registration on nf_defrag
leds: trigger: netdev: fix RTNL handling to prevent potential deadlock
octeontx2-af: Update Tx link register range
...
|
|
This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.
[1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498
[2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904
Reported-by: Andrii Nakryiko <[email protected]>
Signed-off-by: Andrei Matei <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.
The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).
Thanks Hao for reporting!
Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <[email protected]>
Signed-off-by: Andrei Matei <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fix from Tejun Heo:
"Just one fix.
Commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic")
changed how freezing state is recorded which made cgroup_freezing()
disagree with the actual state of the task while thawing triggering a
warning. Fix it by updating cgroup_freezing()"
* tag 'cgroup-for-6.7-rc4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup_freezer: cgroup_freezing: Check if not frozen
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fix from Tejun Heo:
"Just one patch to fix a bug which can crash the kernel if the
housekeeping and wq_unbound_cpu cpumask configuration combination
leaves the latter empty"
* tag 'wq-for-6.7-rc4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Make sure that wq_unbound_cpumask is never empty
|
|
Instead of blindly allocating PAGE_SIZE for each trampoline, check the size
of the trampoline with arch_bpf_trampoline_size(). This size is saved in
bpf_tramp_image->size, and used for modmem charge/uncharge. The fallback
arch_alloc_bpf_trampoline() still allocates a whole page because we need to
use set_memory_* to protect the memory.
struct_ops trampoline still uses a whole page for multiple trampolines.
With this size check at caller (regular trampoline and struct_ops
trampoline), remove arch_bpf_trampoline_size() from
arch_prepare_bpf_trampoline() in archs.
Also, update bpf_image_ksym_add() to handle symbol of different sizes.
Signed-off-by: Song Liu <[email protected]>
Acked-by: Ilya Leoshkevich <[email protected]>
Tested-by: Ilya Leoshkevich <[email protected]> # on s390x
Acked-by: Jiri Olsa <[email protected]>
Acked-by: Björn Töpel <[email protected]>
Tested-by: Björn Töpel <[email protected]> # on riscv
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
This helper will be used to calculate the size of the trampoline before
allocating the memory.
arch_prepare_bpf_trampoline() for arm64 and riscv64 can use
arch_bpf_trampoline_size() to check the trampoline fits in the image.
OTOH, arch_prepare_bpf_trampoline() for s390 has to call the JIT process
twice, so it cannot use arch_bpf_trampoline_size().
Signed-off-by: Song Liu <[email protected]>
Acked-by: Ilya Leoshkevich <[email protected]>
Tested-by: Ilya Leoshkevich <[email protected]> # on s390x
Acked-by: Jiri Olsa <[email protected]>
Acked-by: Björn Töpel <[email protected]>
Tested-by: Björn Töpel <[email protected]> # on riscv
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
As BPF trampoline of different archs moves from bpf_jit_[alloc|free]_exec()
to bpf_prog_pack_[alloc|free](), we need to use different _alloc, _free for
different archs during the transition. Add the following helpers for this
transition:
void *arch_alloc_bpf_trampoline(unsigned int size);
void arch_free_bpf_trampoline(void *image, unsigned int size);
void arch_protect_bpf_trampoline(void *image, unsigned int size);
void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
The fallback version of these helpers require size <= PAGE_SIZE, but they
are only called with size == PAGE_SIZE. They will be called with size <
PAGE_SIZE when arch_bpf_trampoline_size() helper is introduced later.
Signed-off-by: Song Liu <[email protected]>
Acked-by: Ilya Leoshkevich <[email protected]>
Tested-by: Ilya Leoshkevich <[email protected]> # on s390x
Acked-by: Jiri Olsa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
We are using "im" for "struct bpf_tramp_image" and "tr" for "struct
bpf_trampoline" in most of the code base. The only exception is the
prototype and fallback version of arch_prepare_bpf_trampoline(). Update
them to match the rest of the code base.
We mix "orig_call" and "func_addr" for the argument in different versions
of arch_prepare_bpf_trampoline(). s/orig_call/func_addr/g so they match.
Signed-off-by: Song Liu <[email protected]>
Acked-by: Ilya Leoshkevich <[email protected]>
Tested-by: Ilya Leoshkevich <[email protected]> # on s390x
Acked-by: Jiri Olsa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Currently, bpf_prog_pack_free only can only free pointer to struct
bpf_binary_header, which is not flexible. Add a size argument to
bpf_prog_pack_free so that it can handle any pointer.
Signed-off-by: Song Liu <[email protected]>
Acked-by: Ilya Leoshkevich <[email protected]>
Tested-by: Ilya Leoshkevich <[email protected]> # on s390x
Reviewed-by: Björn Töpel <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
|