aboutsummaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)AuthorFilesLines
2015-03-27perf: Add per event clockid supportPeter Zijlstra1-3/+74
While thinking on the whole clock discussion it occurred to me we have two distinct uses of time: 1) the tracking of event/ctx/cgroup enabled/running/stopped times which includes the self-monitoring support in struct perf_event_mmap_page. 2) the actual timestamps visible in the data records. And we've been conflating them. The first is all about tracking time deltas, nobody should really care in what time base that happens, its all relative information, as long as its internally consistent it works. The second however is what people are worried about when having to merge their data with external sources. And here we have the discussion on MONOTONIC vs MONOTONIC_RAW etc.. Where MONOTONIC is good for correlating between machines (static offset), MONOTNIC_RAW is required for correlating against a fixed rate hardware clock. This means configurability; now 1) makes that hard because it needs to be internally consistent across groups of unrelated events; which is why we had to have a global perf_clock(). However, for 2) it doesn't really matter, perf itself doesn't care what it writes into the buffer. The below patch makes the distinction between these two cases by adding perf_event_clock() which is used for the second case. It further makes this configurable on a per-event basis, but adds a few sanity checks such that we cannot combine events with different clocks in confusing ways. And since we then have per-event configurability we might as well retain the 'legacy' behaviour as a default. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Arnaldo Carvalho de Melo <[email protected]> Cc: David Ahern <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: John Stultz <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Cc: Thomas Gleixner <[email protected]> Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27Merge branch 'perf/core' into perf/timer, before applying new changesIngo Molnar3-141/+160
Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27Merge branch 'timers/core' into perf/timer, to apply dependent patchIngo Molnar6-287/+589
An upcoming patch will depend on tai_ns() and NMI-safe ktime_get_raw_fast(), so merge timers/core here in a separate topic branch until it's all cooked and timers/core is merged upstream. Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27perf: Fix racy group accessPeter Zijlstra1-0/+11
While looking at some fuzzer output I noticed that we do not hold any locks on leader->ctx and therefore the sibling_list iteration is unsafe. Acquire the relevant ctx->mutex before calling into the pmu specific code. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Vince Weaver <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Sasha Levin <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27Merge branch 'perf/x86' into perf/core, because it's readyIngo Molnar3-57/+34
Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27Merge branch 'perf/urgent' into perf/core, to pick up fixes and to refresh ↵Ingo Molnar13-57/+182
the tree Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27time: Introduce tk_fast_rawPeter Zijlstra1-0/+13
Add the NMI safe CLOCK_MONOTONIC_RAW accessor.. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: John Stultz <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27time: Parametrize all tk_fast_mono usersPeter Zijlstra1-10/+15
In preparation for more tk_fast instances, remove all hard-coded tk_fast_mono references. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: John Stultz <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27time: Add timerkeeper::tkr_rawPeter Zijlstra1-22/+19
Introduce tkr_raw and make use of it. base_raw -> tkr_raw.base clock->{mult,shift} -> tkr_raw.{mult.shift} Kill timekeeping_get_ns_raw() in favour of timekeeping_get_ns(&tkr_raw), this removes all mono_raw special casing. Duplicate the updates to tkr_mono.cycle_last into tkr_raw.cycle_last, both need the same value. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: John Stultz <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27time: Rename timekeeper::tkr to timekeeper::tkr_monoPeter Zijlstra1-75/+75
In preparation of adding another tkr field, rename this one to tkr_mono. Also rename tk_read_base::base_mono to tk_read_base::base, since the structure is not specific to CLOCK_MONOTONIC and the mono name got added to the tk_read_base instance. Lots of trivial churn. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: John Stultz <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Clean up the code a bitIngo Molnar1-51/+56
Trivial cleanups, to improve the readability of the generic sched_clock() code: - Improve and standardize comments - Standardize the coding style - Use vertical spacing where appropriate - etc. No code changed: md5: 19a053b31e0c54feaeff1492012b019a sched_clock.o.before.asm 19a053b31e0c54feaeff1492012b019a sched_clock.o.after.asm Cc: Catalin Marinas <[email protected]> Cc: Daniel Thompson <[email protected]> Cc: John Stultz <[email protected]> Cc: Peter Zijlstra (Intel) <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Avoid deadlock during read from NMIDaniel Thompson1-35/+68
Currently it is possible for an NMI (or FIQ on ARM) to come in and read sched_clock() whilst update_sched_clock() has locked the seqcount for writing. This results in the NMI handler locking up when it calls raw_read_seqcount_begin(). This patch fixes the NMI safety issues by providing banked clock data. This is a similar approach to the one used in Thomas Gleixner's 4396e058c52e("timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC"). Suggested-by: Stephen Boyd <[email protected]> Signed-off-by: Daniel Thompson <[email protected]> Signed-off-by: John Stultz <[email protected]> Reviewed-by: Stephen Boyd <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Remove redundant notrace from update functionDaniel Thompson1-1/+1
Currently update_sched_clock() is marked as notrace but this function is not called by ftrace. This is trivially fixed by removing the mark up. Signed-off-by: Daniel Thompson <[email protected]> Signed-off-by: John Stultz <[email protected]> Reviewed-by: Stephen Boyd <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Remove suspend from clock_read_data()Daniel Thompson1-15/+25
Currently cd.read_data.suspended is read by the hotpath function sched_clock(). This variable need not be accessed on the hotpath. In fact, once it is removed, we can remove the conditional branches from sched_clock() and install a dummy read_sched_clock function to suspend the clock. The new master copy of the function pointer (actual_read_sched_clock) is introduced and is used for all reads of the clock hardware except those within sched_clock itself. Suggested-by: Thomas Gleixner <[email protected]> Signed-off-by: Daniel Thompson <[email protected]> Signed-off-by: John Stultz <[email protected]> Reviewed-by: Stephen Boyd <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Will Deacon <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Optimize cache line usageDaniel Thompson1-35/+77
Currently sched_clock(), a very hot code path, is not optimized to minimise its cache profile. In particular: 1. cd is not ____cacheline_aligned, 2. struct clock_data does not distinguish between hotpath and coldpath data, reducing locality of reference in the hotpath, 3. Some hotpath data is missing from struct clock_data and is marked __read_mostly (which more or less guarantees it will not share a cache line with cd). This patch corrects these problems by extracting all hotpath data into a separate structure and using ____cacheline_aligned to ensure the hotpath uses a single (64 byte) cache line. Signed-off-by: Daniel Thompson <[email protected]> Signed-off-by: John Stultz <[email protected]> Reviewed-by: Stephen Boyd <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-27timers, sched/clock: Match scope of read and write seqcountsDaniel Thompson1-15/+11
Currently the scope of the raw_write_seqcount_begin/end() in sched_clock_register() far exceeds the scope of the read section in sched_clock(). This gives the impression of safety during cursory review but achieves little. Note that this is likely to be a latent issue at present because sched_clock_register() is typically called before we enable interrupts, however the issue does risk bugs being needlessly introduced as the code evolves. This patch fixes the problem by increasing the scope of the read locking performed by sched_clock() to cover all data modified by sched_clock_register. We also improve clarity by moving writes to struct clock_data that do not impact sched_clock() outside of the critical section. Signed-off-by: Daniel Thompson <[email protected]> [ Reworked it slightly to apply to tip/timers/core] Signed-off-by: John Stultz <[email protected]> Reviewed-by: Stephen Boyd <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Russell King <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Will Deacon <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-25mm: numa: slow PTE scan rate if migration failures occurMel Gorman1-2/+6
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226 Across the board the 4.0-rc1 numbers are much slower, and the degradation is far worse when using the large memory footprint configs. Perf points straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config: - 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys - default_send_IPI_mask_sequence_phys - 99.99% physflat_send_IPI_mask - 99.37% native_send_call_func_ipi smp_call_function_many - native_flush_tlb_others - 99.85% flush_tlb_page ptep_clear_flush try_to_unmap_one rmap_walk try_to_unmap migrate_pages migrate_misplaced_page - handle_mm_fault - 99.73% __do_page_fault trace_do_page_fault do_async_page_fault + async_page_fault 0.63% native_send_call_func_single_ipi generic_exec_single smp_call_function_single This is showing excessive migration activity even though excessive migrations are meant to get throttled. Normally, the scan rate is tuned on a per-task basis depending on the locality of faults. However, if migrations fail for any reason then the PTE scanner may scan faster if the faults continue to be remote. This means there is higher system CPU overhead and fault trapping at exactly the time we know that migrations cannot happen. This patch tracks when migration failures occur and slows the PTE scanner. Signed-off-by: Mel Gorman <[email protected]> Reported-by: Dave Chinner <[email protected]> Tested-by: Dave Chinner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Aneesh Kumar <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2015-03-23perf: Remove type specific target pointersPeter Zijlstra3-19/+13
The only reason CQM had to use a hard-coded pmu type was so it could use cqm_target in hw_perf_event. Do away with the {tp,bp,cqm}_target pointers and provide a non type specific one. This allows us to do away with that silly pmu type as well. Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Vince Weaver <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-23perf: Fix irq_work 'tail' recursionPeter Zijlstra1-0/+10
Vince reported a watchdog lockup like: [<ffffffff8115e114>] perf_tp_event+0xc4/0x210 [<ffffffff810b4f8a>] perf_trace_lock+0x12a/0x160 [<ffffffff810b7f10>] lock_release+0x130/0x260 [<ffffffff816c7474>] _raw_spin_unlock_irqrestore+0x24/0x40 [<ffffffff8107bb4d>] do_send_sig_info+0x5d/0x80 [<ffffffff811f69df>] send_sigio_to_task+0x12f/0x1a0 [<ffffffff811f71ce>] send_sigio+0xae/0x100 [<ffffffff811f72b7>] kill_fasync+0x97/0xf0 [<ffffffff8115d0b4>] perf_event_wakeup+0xd4/0xf0 [<ffffffff8115d103>] perf_pending_event+0x33/0x60 [<ffffffff8114e3fc>] irq_work_run_list+0x4c/0x80 [<ffffffff8114e448>] irq_work_run+0x18/0x40 [<ffffffff810196af>] smp_trace_irq_work_interrupt+0x3f/0xc0 [<ffffffff816c99bd>] trace_irq_work_interrupt+0x6d/0x80 Which is caused by an irq_work generating new irq_work and therefore not allowing forward progress. This happens because processing the perf irq_work triggers another perf event (tracepoint stuff) which in turn generates an irq_work ad infinitum. Avoid this by raising the recursion counter in the irq_work -- which effectively disables all software events (including tracepoints) from actually triggering again. Reported-by: Vince Weaver <[email protected]> Tested-by: Vince Weaver <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Arnaldo Carvalho de Melo <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-18Merge branch 'for-linus' of ↵Linus Torvalds1-4/+26
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching Pull livepatching fix from Jiri Kosina: - fix for potential race with module loading, from Petr Mladek. The race is very unlikely to be seen in real world and has been found by code inspection, but should be fixed for 4.0 anyway. * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: Fix subtle race with coming and going modules
2015-03-17Merge branches 'perf-urgent-for-linus' and 'timers-urgent-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf and timer fixes from Ingo Molnar: "Two small perf fixes: - kernel side context leak fix - tooling crash fix And two clocksource driver fixes" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf: Fix context leak in put_event() perf annotate: Fix fallback to unparsed disassembler line * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: clockevents: sun5i: Fix setup_irq init sequence clocksource: efm32: Fix a NULL pointer dereference
2015-03-17livepatch: Fix subtle race with coming and going modulesPetr Mladek1-4/+26
There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [[email protected]: use one boolean instead of two] Signed-off-by: Petr Mladek <[email protected]> Acked-by: Josh Poimboeuf <[email protected]> Acked-by: Rusty Russell <[email protected]> Signed-off-by: Jiri Kosina <[email protected]>
2015-03-13perf: Fix context leak in put_event()Leon Yu1-1/+1
Commit: a83fe28e2e45 ("perf: Fix put_event() ctx lock") changed the locking logic in put_event() by replacing mutex_lock_nested() with perf_event_ctx_lock_nested(), but didn't fix the subsequent mutex_unlock() with a correct counterpart, perf_event_ctx_unlock(). Contexts are thus leaked as a result of incremented refcount in perf_event_ctx_lock_nested(). Signed-off-by: Leon Yu <[email protected]> Cc: Arnaldo Carvalho de Melo <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Peter Zijlstra <[email protected]> Fixes: a83fe28e2e45 ("perf: Fix put_event() ctx lock") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13clocksource: Rename __clocksource_updatefreq_*() to ↵John Stultz1-5/+6
__clocksource_update_freq_*() Ingo requested this function be renamed to improve readability, so I've renamed __clocksource_updatefreq_scale() as well as the __clocksource_updatefreq_hz/khz() functions to avoid squishedtogethernames. This touches some of the sh clocksources, which I've not tested. The arch/arm/plat-omap change is just a comment change for consistency. Signed-off-by: John Stultz <[email protected]> Cc: Daniel Lezcano <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13clocksource: Add some debug info about clocksources being registeredJohn Stultz1-0/+3
Print the mask, max_cycles, and max_idle_ns values for clocksources being registered. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13clocksource: Mostly kill clocksource_register()John Stultz2-49/+36
A long running project has been to clean up remaining uses of clocksource_register(), replacing it with the simpler clocksource_register_khz/hz() functions. However, there are a few cases where we need to self-define our mult/shift values, so switch the function to a more obviously internal __clocksource_register() name, and consolidate much of the internal logic so we don't have duplication. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: David S. Miller <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Martin Schwidefsky <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] [ Minor cleanups. ] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13clocksource: Improve clocksource watchdog reportingJohn Stultz1-9/+9
The clocksource watchdog reporting has been less helpful then desired, as it just printed the delta between the two clocksources. This prevents any useful analysis of why the skew occurred. Thus this patch tries to improve the output when we mark a clocksource as unstable, printing out the cycle last and now values for both the current clocksource and the watchdog clocksource. This will allow us to see if the result was due to a false positive caused by a problematic watchdog. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] [ Minor cleanups of kernel messages. ] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13timekeeping: Add warnings when overflows or underflows are observedJohn Stultz1-7/+57
It was suggested that the underflow/overflow protection should probably throw some sort of warning out, rather than just silently fixing the issue. So this patch adds some warnings here. The flag variables used are not protected by locks, but since we can't print from the reading functions, just being able to say we saw an issue in the update interval is useful enough, and can be slightly racy without real consequence. The big complication is that we're only under a read seqlock, so the data could shift under us during our calculation to see if there was a problem. This patch avoids this issue by nesting another seqlock which allows us to snapshot the just required values atomically. So we shouldn't see false positives. I also added some basic rate-limiting here, since on one build machine w/ skewed TSCs it was fairly noisy at bootup. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13timekeeping: Try to catch clocksource delta underflowsJohn Stultz1-0/+7
In the case where there is a broken clocksource where there are multiple actual clocks that aren't perfectly aligned, we may see small "negative" deltas when we subtract 'now' from 'cycle_last'. The values are actually negative with respect to the clocksource mask value, not necessarily negative if cast to a s64, but we can check by checking the delta to see if it is a small (relative to the mask) negative value (again negative relative to the mask). If so, we assume we jumped backwards somehow and instead use zero for our delta. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13timekeeping: Add checks to cap clocksource reads to the 'max_cycles' valueJohn Stultz1-14/+35
When calculating the current delta since the last tick, we currently have no hard protections to prevent a multiplication overflow from occuring. This patch introduces infrastructure to allow a cap that limits the clocksource read delta value to the 'max_cycles' value, which is where an overflow would occur. Since this is in the hotpath, it adds the extra checking under CONFIG_DEBUG_TIMEKEEPING=y. There was some concern that capping time like this could cause problems as we may stop expiring timers, which could go circular if the timer that triggers time accumulation were mis-scheduled too far in the future, which would cause time to stop. However, since the mult overflow would result in a smaller time value, we would effectively have the same problem there. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-13timekeeping: Add debugging checks to warn if we see delaysJohn Stultz2-0/+29
Recently there's been requests for better sanity checking in the time code, so that it's more clear when something is going wrong, since timekeeping issues could manifest in a large number of strange ways in various subsystems. Thus, this patch adds some extra infrastructure to add a check to update_wall_time() to print two new warnings: 1) if we see the call delayed beyond the 'max_cycles' overflow point, 2) or if we see the call delayed beyond the clocksource's 'max_idle_ns' value, which is currently 50% of the overflow point. This extra infrastructure is conditional on a new CONFIG_DEBUG_TIMEKEEPING option, also added in this patch - default off. Tested this a bit by halting qemu for specified lengths of time to trigger the warnings. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] [ Improved the changelog and the messages a bit. ] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-12kasan, module, vmalloc: rework shadow allocation for modulesAndrey Ryabinin1-2/+0
Current approach in handling shadow memory for modules is broken. Shadow memory could be freed only after memory shadow corresponds it is no longer used. vfree() called from interrupt context could use memory its freeing to store 'struct llist_node' in it: void vfree(const void *addr) { ... if (unlikely(in_interrupt())) { struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); if (llist_add((struct llist_node *)addr, &p->list)) schedule_work(&p->wq); Later this list node used in free_work() which actually frees memory. Currently module_memfree() called in interrupt context will free shadow before freeing module's memory which could provoke kernel crash. So shadow memory should be freed after module's memory. However, such deallocation order could race with kasan_module_alloc() in module_alloc(). Free shadow right before releasing vm area. At this point vfree()'d memory is not used anymore and yet not available for other allocations. New VM_KASAN flag used to indicate that vm area has dynamically allocated shadow memory so kasan frees shadow only if it was previously allocated. Signed-off-by: Andrey Ryabinin <[email protected]> Acked-by: Rusty Russell <[email protected]> Cc: Dmitry Vyukov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2015-03-12clocksource: Add 'max_cycles' to 'struct clocksource'John Stultz2-13/+17
In order to facilitate clocksource validation, add a 'max_cycles' field to the clocksource structure which will hold the maximum cycle value that can safely be multiplied without potentially causing an overflow. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-12clocksource: Simplify the logic around clocksource wrapping safety marginsJohn Stultz2-16/+14
The clocksource logic has a number of places where we try to include a safety margin. Most of these are 12% safety margins, but they are inconsistently applied and sometimes are applied on top of each other. Additionally, in the previous patch, we corrected an issue where we unintentionally in effect created a 50% safety margin, which these 12.5% margins where then added to. So to simplify the logic here, this patch removes the various 12.5% margins, and consolidates adding the margin in one place: clocks_calc_max_nsecs(). Additionally, Linus prefers a 50% safety margin, as it allows bad clock values to be more easily caught. This should really have no net effect, due to the corrected issue earlier which caused greater then 50% margins to be used w/o issue. Signed-off-by: John Stultz <[email protected]> Acked-by: Stephen Boyd <[email protected]> (for the sched_clock.c bit) Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-12clocksource: Simplify the clocks_calc_max_nsecs() logicJohn Stultz1-12/+3
The previous clocks_calc_max_nsecs() code had some unecessarily complex bit logic to find the max interval that could cause multiplication overflows. Since this is not in the hot path, just do the divide to make it easier to read. The previous implementation also had a subtle issue that it avoided overflows with signed 64-bit values, where as the intervals are always unsigned. This resulted in overly conservative intervals, which other safety margins were then added to, reducing the intended interval length. Signed-off-by: John Stultz <[email protected]> Cc: Dave Jones <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prarit Bhargava <[email protected]> Cc: Richard Cochran <[email protected]> Cc: Stephen Boyd <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2015-03-09Merge tag 'trace-fixes-v4.0-rc2-2' of ↵Linus Torvalds1-10/+30
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull seq-buf/ftrace fixes from Steven Rostedt: "This includes fixes for seq_buf_bprintf() truncation issue. It also contains fixes to ftrace when /proc/sys/kernel/ftrace_enabled and function tracing are started. Doing the following causes some issues: # echo 0 > /proc/sys/kernel/ftrace_enabled # echo function_graph > /sys/kernel/debug/tracing/current_tracer # echo 1 > /proc/sys/kernel/ftrace_enabled # echo nop > /sys/kernel/debug/tracing/current_tracer # echo function_graph > /sys/kernel/debug/tracing/current_tracer As well as with function tracing too. Pratyush Anand first reported this issue to me and supplied a patch. When I tested this on my x86 test box, it caused thousands of backtraces and warnings to appear in dmesg, which also caused a denial of service (a warning for every function that was listed). I applied Pratyush's patch but it did not fix the issue for me. I looked into it and found a slight problem with trampoline accounting. I fixed it and sent Pratyush a patch, but he said that it did not fix the issue for him. I later learned tha Pratyush was using an ARM64 server, and when I tested on my ARM board, I was able to reproduce the same issue as Pratyush. After applying his patch, it fixed the problem. The above test uncovered two different bugs, one in x86 and one in ARM and ARM64. As this looked like it would affect PowerPC, I tested it on my PPC64 box. It too broke, but neither the patch that fixed ARM or x86 fixed this box (the changes were all in generic code!). The above test, uncovered two more bugs that affected PowerPC. Again, the changes were only done to generic code. It's the way the arch code expected things to be done that was different between the archs. Some where more sensitive than others. The rest of this series fixes the PPC bugs as well" * tag 'trace-fixes-v4.0-rc2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: ftrace: Fix ftrace enable ordering of sysctl ftrace_enabled ftrace: Fix en(dis)able graph caller when en(dis)abling record via sysctl ftrace: Clear REGS_EN and TRAMP_EN flags on disabling record via sysctl seq_buf: Fix seq_buf_bprintf() truncation seq_buf: Fix seq_buf_vprintf() truncation
2015-03-09Merge branch 'for-4.0-fixes' of ↵Linus Torvalds1-5/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup fixes from Tejun Heo: "The cgroup iteration update two years ago and the recent cpuset restructuring introduced regressions in subset of cpuset configurations. Three patches to fix them. All are marked for -stable" * 'for-4.0-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cpuset: Fix cpuset sched_relax_domain_level cpuset: fix a warning when clearing configured masks in old hierarchy cpuset: initialize effective masks when clone_children is enabled
2015-03-09Merge branch 'for-4.0-fixes' of ↵Linus Torvalds1-4/+52
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq Pull workqueue fix from Tejun Heo: "One fix patch for a subtle livelock condition which can happen on PREEMPT_NONE kernels involving two racing cancel_work calls. Whoever comes in the second has to wait for the previous one to finish. This was implemented by making the later one block for the same condition that the former would be (work item completion) and then loop and retest; unfortunately, depending on the wake up order, the later one could lock out the former one to finish by busy looping on the cpu. This is fixed by implementing explicit wait mechanism. Work item might not belong anywhere at this point and there's remote possibility of thundering herd problem. I originally tried to use bit_waitqueue but it didn't work for static work items on modules. It's currently using single wait queue with filtering wake up function and exclusive wakeup. If this ever becomes a problem, which is not very likely, we can try to figure out a way to piggy back on bit_waitqueue" * 'for-4.0-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: workqueue: fix hang involving racing cancel[_delayed]_work_sync()'s for PREEMPT_NONE
2015-03-09ftrace: Fix ftrace enable ordering of sysctl ftrace_enabledSteven Rostedt (Red Hat)1-3/+3
Some archs (specifically PowerPC), are sensitive with the ordering of the enabling of the calls to function tracing and setting of the function to use to be traced. That is, update_ftrace_function() sets what function the ftrace_caller trampoline should call. Some archs require this to be set before calling ftrace_run_update_code(). Another bug was discovered, that ftrace_startup_sysctl() called ftrace_run_update_code() directly. If the function the ftrace_caller trampoline changes, then it will not be updated. Instead a call to ftrace_startup_enable() should be called because it tests to see if the callback changed since the code was disabled, and will tell the arch to update appropriately. Most archs do not need this notification, but PowerPC does. The problem could be seen by the following commands: # echo 0 > /proc/sys/kernel/ftrace_enabled # echo function > /sys/kernel/debug/tracing/current_tracer # echo 1 > /proc/sys/kernel/ftrace_enabled # cat /sys/kernel/debug/tracing/trace The trace will show that function tracing was not active. Cc: [email protected] # 2.6.27+ Signed-off-by: Steven Rostedt <[email protected]>
2015-03-09ftrace: Fix en(dis)able graph caller when en(dis)abling record via sysctlPratyush Anand1-6/+22
When ftrace is enabled globally through the proc interface, we must check if ftrace_graph_active is set. If it is set, then we should also pass the FTRACE_START_FUNC_RET command to ftrace_run_update_code(). Similarly, when ftrace is disabled globally through the proc interface, we must check if ftrace_graph_active is set. If it is set, then we should also pass the FTRACE_STOP_FUNC_RET command to ftrace_run_update_code(). Consider the following situation. # echo 0 > /proc/sys/kernel/ftrace_enabled After this ftrace_enabled = 0. # echo function_graph > /sys/kernel/debug/tracing/current_tracer Since ftrace_enabled = 0, ftrace_enable_ftrace_graph_caller() is never called. # echo 1 > /proc/sys/kernel/ftrace_enabled Now ftrace_enabled will be set to true, but still ftrace_enable_ftrace_graph_caller() will not be called, which is not desired. Further if we execute the following after this: # echo nop > /sys/kernel/debug/tracing/current_tracer Now since ftrace_enabled is set it will call ftrace_disable_ftrace_graph_caller(), which causes a kernel warning on the ARM platform. On the ARM platform, when ftrace_enable_ftrace_graph_caller() is called, it checks whether the old instruction is a nop or not. If it's not a nop, then it returns an error. If it is a nop then it replaces instruction at that address with a branch to ftrace_graph_caller. ftrace_disable_ftrace_graph_caller() behaves just the opposite. Therefore, if generic ftrace code ever calls either ftrace_enable_ftrace_graph_caller() or ftrace_disable_ftrace_graph_caller() consecutively two times in a row, then it will return an error, which will cause the generic ftrace code to raise a warning. Note, x86 does not have an issue with this because the architecture specific code for ftrace_enable_ftrace_graph_caller() and ftrace_disable_ftrace_graph_caller() does not check the previous state, and calling either of these functions twice in a row has no ill effect. Link: http://lkml.kernel.org/r/e4fbe64cdac0dd0e86a3bf914b0f83c0b419f146.1425666454.git.panand@redhat.com Cc: [email protected] # 2.6.31+ Signed-off-by: Pratyush Anand <[email protected]> [ removed extra if (ftrace_start_up) and defined ftrace_graph_active as 0 if CONFIG_FUNCTION_GRAPH_TRACER is not set. ] Signed-off-by: Steven Rostedt <[email protected]>
2015-03-09ftrace: Clear REGS_EN and TRAMP_EN flags on disabling record via sysctlSteven Rostedt (Red Hat)1-2/+6
When /proc/sys/kernel/ftrace_enabled is set to zero, all function tracing is disabled. But the records that represent the functions still hold information about the ftrace_ops that are hooked to them. ftrace_ops may request "REGS" (have a full set of pt_regs passed to the callback), or "TRAMP" (the ops has its own trampoline to use). When the record is updated to represent the state of the ops hooked to it, it sets "REGS_EN" and/or "TRAMP_EN" to state that the callback points to the correct trampoline (REGS has its own trampoline). When ftrace_enabled is set to zero, all ftrace locations are a nop, so they do not point to any trampoline. But the _EN flags are still set. This can cause the accounting to go wrong when ftrace_enabled is cleared and an ops that has a trampoline is registered or unregistered. For example, the following will cause ftrace to crash: # echo function_graph > /sys/kernel/debug/tracing/current_tracer # echo 0 > /proc/sys/kernel/ftrace_enabled # echo nop > /sys/kernel/debug/tracing/current_tracer # echo 1 > /proc/sys/kernel/ftrace_enabled # echo function_graph > /sys/kernel/debug/tracing/current_tracer As function_graph uses a trampoline, when ftrace_enabled is set to zero the updates to the record are not done. When enabling function_graph again, the record will still have the TRAMP_EN flag set, and it will look for an op that has a trampoline other than the function_graph ops, and fail to find one. Cc: [email protected] # 3.17+ Reported-by: Pratyush Anand <[email protected]> Signed-off-by: Steven Rostedt <[email protected]>
2015-03-08Merge tag 'tty-4.0-rc3' of ↵Linus Torvalds2-1/+2
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty Pull tty/serial fixes from Greg KH: "Here are some tty and serial driver fixes for 4.0-rc3. Along with the atime fix that you know about, here are some other serial driver bugfixes as well. Most notable is a wait_until_sent bugfix that was traced back to being around since before 2.6.12 that Johan has fixed up. All have been in linux-next successfully" * tag 'tty-4.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: TTY: fix tty_wait_until_sent maximum timeout TTY: fix tty_wait_until_sent on 64-bit machines USB: serial: fix infinite wait_until_sent timeout TTY: bfin_jtag_comm: remove incorrect wait_until_sent operation net: irda: fix wait_until_sent poll timeout serial: uapi: Declare all userspace-visible io types serial: core: Fix iotype userspace breakage serial: sprd: Fix missing spin_unlock in sprd_handle_irq() console: Fix console name size mismatch tty: fix up atime/mtime mess, take four serial: 8250_dw: Fix get_mctrl behaviour serial:8250:8250_pci: delete unneeded quirk entries serial:8250:8250_pci: fix redundant entry report for WCH_CH352_2S Change email address for 8250_pci serial: 8250: Revert "tty: serial: 8250_core: read only RX if there is something in the FIFO" Revert "tty/serial: of_serial: add DT alias ID handling"
2015-03-07Merge tag 'arm64-fixes' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: "arm64 and generic kernel/module.c (acked by Rusty) fixes for CONFIG_DEBUG_SET_MODULE_RONX" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: kernel/module.c: Update debug alignment after symtable generation arm64: Don't use is_module_addr in setting page attributes
2015-03-07console: Fix console name size mismatchPeter Hurley2-1/+2
commit 6ae9200f2cab7 ("enlarge console.name") increased the storage for the console name to 16 bytes, but not the corresponding struct console_cmdline::name storage. Console names longer than 8 bytes cause read beyond end-of-string and failure to match console; I'm not sure if there are other unexpected consequences. Cc: <[email protected]> # 2.6.22+ Signed-off-by: Peter Hurley <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
2015-03-06Merge branch 'for-linus' of ↵Linus Torvalds1-1/+2
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching Pull livepatching fix from Jiri Kosina: "Fix an RCU unlock misplacement in live patching infrastructure, from Peter Zijlstra" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: fix RCU usage in klp_find_external_symbol()
2015-03-06kernel/module.c: Update debug alignment after symtable generationLaura Abbott1-0/+2
When CONFIG_DEBUG_SET_MODULE_RONX is enabled, the sizes of module sections are aligned up so appropriate permissions can be applied. Adjusting for the symbol table may cause them to become unaligned. Make sure to re-align the sizes afterward. Signed-off-by: Laura Abbott <[email protected]> Acked-by: Rusty Russell <[email protected]> Signed-off-by: Catalin Marinas <[email protected]>
2015-03-06Merge branch 'irq-pm'Rafael J. Wysocki2-2/+12
* irq-pm: genirq / PM: describe IRQF_COND_SUSPEND tty: serial: atmel: rework interrupt and wakeup handling watchdog: at91sam9: request the irq with IRQF_NO_SUSPEND clk: at91: implement suspend/resume for the PMC irqchip rtc: at91rm9200: rework wakeup and interrupt handling rtc: at91sam9: rework wakeup and interrupt handling PM / wakeup: export pm_system_wakeup symbol genirq / PM: Add flag for shared NO_SUSPEND interrupt lines genirq / PM: better describe IRQF_NO_SUSPEND semantics
2015-03-05Merge branch 'suspend-to-idle'Rafael J. Wysocki1-21/+33
* suspend-to-idle: cpuidle / sleep: Use broadcast timer for states that stop local timer cpuidle: Clean up fallback handling in cpuidle_idle_call() cpuidle / sleep: Do sanity checks in cpuidle_enter_freeze() too idle / sleep: Avoid excessive disabling and enabling interrupts
2015-03-05cpuidle / sleep: Use broadcast timer for states that stop local timerRafael J. Wysocki1-9/+21
Commit 381063133246 (PM / sleep: Re-implement suspend-to-idle handling) overlooked the fact that entering some sufficiently deep idle states by CPUs may cause their local timers to stop and in those cases it is necessary to switch over to a broadcast timer prior to entering the idle state. If the cpuidle driver in use does not provide the new ->enter_freeze callback for any of the idle states, that problem affects suspend-to-idle too, but it is not taken into account after the changes made by commit 381063133246. Fix that by changing the definition of cpuidle_enter_freeze() and re-arranging of the code in cpuidle_idle_call(), so the former does not call cpuidle_enter() any more and the fallback case is handled by cpuidle_idle_call() directly. Fixes: 381063133246 (PM / sleep: Re-implement suspend-to-idle handling) Reported-and-tested-by: Lorenzo Pieralisi <[email protected]> Signed-off-by: Rafael J. Wysocki <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]>
2015-03-05workqueue: fix hang involving racing cancel[_delayed]_work_sync()'s for ↵Tejun Heo1-4/+52
PREEMPT_NONE cancel[_delayed]_work_sync() are implemented using __cancel_work_timer() which grabs the PENDING bit using try_to_grab_pending() and then flushes the work item with PENDING set to prevent the on-going execution of the work item from requeueing itself. try_to_grab_pending() can always grab PENDING bit without blocking except when someone else is doing the above flushing during cancelation. In that case, try_to_grab_pending() returns -ENOENT. In this case, __cancel_work_timer() currently invokes flush_work(). The assumption is that the completion of the work item is what the other canceling task would be waiting for too and thus waiting for the same condition and retrying should allow forward progress without excessive busy looping Unfortunately, this doesn't work if preemption is disabled or the latter task has real time priority. Let's say task A just got woken up from flush_work() by the completion of the target work item. If, before task A starts executing, task B gets scheduled and invokes __cancel_work_timer() on the same work item, its try_to_grab_pending() will return -ENOENT as the work item is still being canceled by task A and flush_work() will also immediately return false as the work item is no longer executing. This puts task B in a busy loop possibly preventing task A from executing and clearing the canceling state on the work item leading to a hang. task A task B worker executing work __cancel_work_timer() try_to_grab_pending() set work CANCELING flush_work() block for work completion completion, wakes up A __cancel_work_timer() while (forever) { try_to_grab_pending() -ENOENT as work is being canceled flush_work() false as work is no longer executing } This patch removes the possible hang by updating __cancel_work_timer() to explicitly wait for clearing of CANCELING rather than invoking flush_work() after try_to_grab_pending() fails with -ENOENT. Link: http://lkml.kernel.org/g/[email protected] v3: bit_waitqueue() can't be used for work items defined in vmalloc area. Switched to custom wake function which matches the target work item and exclusive wait and wakeup. v2: v1 used wake_up() on bit_waitqueue() which leads to NULL deref if the target bit waitqueue has wait_bit_queue's on it. Use DEFINE_WAIT_BIT() and __wake_up_bit() instead. Reported by Tomeu Vizoso. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Rabin Vincent <[email protected]> Cc: Tomeu Vizoso <[email protected]> Cc: [email protected] Tested-by: Jesper Nilsson <[email protected]> Tested-by: Rabin Vincent <[email protected]>