Age | Commit message (Collapse) | Author | Files | Lines |
|
Instead of always printing numbers as either decimals (and in some
cases, like for "imm=%llx", in hexadecimals), decide the form based on
actual values. For numbers in a reasonably small range (currently,
[0, U16_MAX] for unsigned values, and [S16_MIN, S16_MAX] for signed ones),
emit them as decimals. In all other cases, even for signed values,
emit them in hexadecimals.
For large values hex form is often times way more useful: it's easier to
see an exact difference between 0xffffffff80000000 and 0xffffffff7fffffff,
than between 18446744071562067966 and 18446744071562067967, as one
particular example.
Small values representing small pointer offsets or application
constants, on the other hand, are way more useful to be represented in
decimal notation.
Adjust reg_bounds register state parsing logic to take into account this
change.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Simplify BPF verifier log further by omitting default (and frequently
irrelevant) off=0 and imm=0 parts for non-SCALAR_VALUE registers. As can
be seen from fixed tests, this is often a visual noise for PTR_TO_CTX
register and even for PTR_TO_PACKET registers.
Omitting default values follows the rest of register state logic: we
omit default values to keep verifier log succinct and to highlight
interesting state that deviates from default one. E.g., we do the same
for var_off, when it's unknown, which gives no additional information.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
In complicated real-world applications, whenever debugging some
verification error through verifier log, it often would be very useful
to see map name for PTR_TO_MAP_VALUE register. Usually this needs to be
inferred from key/value sizes and maybe trying to guess C code location,
but it's not always clear.
Given verifier has the name, and it's never too long, let's just emit it
for ptr_to_map_key, ptr_to_map_value, and const_ptr_to_map registers. We
reshuffle the order a bit, so that map name, key size, and value size
appear before offset and immediate values, which seems like a more
logical order.
Current output:
R1_w=map_ptr(map=array_map,ks=4,vs=8,off=0,imm=0)
But we'll get rid of useless off=0 and imm=0 parts in the next patch.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Print the same register state representation when printing stack state,
as we do for normal registers. Note that if stack slot contains
subregister spill (1, 2, or 4 byte long), we'll still emit "m0?" mask
for those bytes that are not part of spilled register.
While means we can get something like fp-8=0000scalar() for a 4-byte
spill with other 4 bytes still being STACK_ZERO.
Some example before and after, taken from the log of
pyperf_subprogs.bpf.o:
49: (7b) *(u64 *)(r10 -256) = r1 ; frame1: R1_w=ctx(off=0,imm=0) R10=fp0 fp-256_w=ctx
49: (7b) *(u64 *)(r10 -256) = r1 ; frame1: R1_w=ctx(off=0,imm=0) R10=fp0 fp-256_w=ctx(off=0,imm=0)
150: (7b) *(u64 *)(r10 -264) = r0 ; frame1: R0_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0) R10=fp0 fp-264_w=map_value_or_null
150: (7b) *(u64 *)(r10 -264) = r0 ; frame1: R0_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0) R10=fp0 fp-264_w=map_value_or_null(id=6,off=0,ks=192,vs=4,imm=0)
5192: (61) r1 = *(u32 *)(r10 -272) ; frame1: R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf)) R10=fp0 fp-272=
5192: (61) r1 = *(u32 *)(r10 -272) ; frame1: R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf)) R10=fp0 fp-272=????scalar(smin=smin32=0,smax=umax=smax32=umax32=15,var_off=(0x0; 0xf))
While at it, do a few other simple clean ups:
- skip slot if it's not scratched before detecting whether it's valid;
- move taking spilled_reg pointer outside of switch (only DYNPTR has
to adjust that to get to the "main" slot);
- don't recalculate types_buf second time for MISC/ZERO/default case.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Extract printing register state representation logic into a separate
helper, as we are going to reuse it for spilled register state printing
in the next patch. This also nicely reduces code nestedness.
No functional changes.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Move a good chunk of code from verifier.c to log.c: verifier state
verbose printing logic. This is an important and very much
logging/debugging oriented code. It fits the overlall log.c's focus on
verifier logging, and moving it allows to keep growing it without
unnecessarily adding to verifier.c code that otherwise contains a core
verification logic.
There are not many shared dependencies between this code and the rest of
verifier.c code, except a few single-line helpers for various register
type checks and a bit of state "scratching" helpers. We move all such
trivial helpers into include/bpf/bpf_verifier.h as static inlines.
No functional changes in this patch.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
verifier.c is huge. Let's try to move out parts that are logging-related
into log.c, as we previously did with bpf_log() and other related stuff.
This patch moves line info verbose output routines: it's pretty
self-contained and isolated code, so there is no problem with this.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Stanislav Fomichev <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Rename verifier internal flag BPF_F_TEST_SANITY_STRICT to more neutral
BPF_F_TEST_REG_INVARIANTS. This is a follow up to [0].
A few selftests and veristat need to be adjusted in the same patch as
well.
[0] https://patchwork.kernel.org/project/netdevbpf/patch/[email protected]/
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
This change doesn't seem to have any effect on selftests and production
BPF object files, but we preemptively try to make it more robust.
First, "learn sign from signed bounds" comment is misleading, as we are
learning not just sign, but also values.
Second, we simplify the check for determining whether entire range is
positive or negative similarly to other checks added earlier, using
appropriate u32/u64 cast and single comparisons. As explain in comments
in __reg64_deduce_bounds(), the checks are equivalent.
Last but not least, smin/smax and s32_min/s32_max reassignment based on
min/max of both umin/umax and smin/smax (and 32-bit equivalents) is hard
to explain and justify. We are updating unsigned bounds from signed
bounds, why would we update signed bounds at the same time? This might
be correct, but it's far from obvious why and the code or comments don't
try to justify this. Given we've added a separate deduction of signed
bounds from unsigned bounds earlier, this seems at least redundant, if
not just wrong.
In short, we remove doubtful pieces, and streamline the rest to follow
the logic and approach of the rest of reg_bounds_sync() checks.
Acked-by: Shung-Hsi Yu <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Equivalent checks were recently added in more succinct and, arguably,
safer form in:
- f188765f23a5 ("bpf: derive smin32/smax32 from umin32/umax32 bounds");
- 2e74aef782d3 ("bpf: derive smin/smax from umin/max bounds").
The checks we are removing in this patch set do similar checks to detect
if entire u32/u64 range has signed bit set or not set, but does it with
two separate checks.
Further, we forcefully overwrite either smin or smax (and 32-bit equvalents)
without applying normal min/max intersection logic. It's not clear why
that would be correct in all cases and seems to work by accident. This
logic is also "gated" by previous signed -> unsigned derivation, which
returns early.
All this is quite confusing and seems error-prone, while we already have
at least equivalent checks happening earlier. So remove this duplicate
and error-prone logic to simplify things a bit.
Acked-by: Shung-Hsi Yu <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Add simple sanity checks that validate well-formed ranges (min <= max)
across u64, s64, u32, and s32 ranges. Also for cases when the value is
constant (either 64-bit or 32-bit), we validate that ranges and tnums
are in agreement.
These bounds checks are performed at the end of BPF_ALU/BPF_ALU64
operations, on conditional jumps, and for LDX instructions (where subreg
zero/sign extension is probably the most important to check). This
covers most of the interesting cases.
Also, we validate the sanity of the return register when manually
adjusting it for some special helpers.
By default, sanity violation will trigger a warning in verifier log and
resetting register bounds to "unbounded" ones. But to aid development
and debugging, BPF_F_TEST_SANITY_STRICT flag is added, which will
trigger hard failure of verification with -EFAULT on register bounds
violations. This allows selftests to catch such issues. veristat will
also gain a CLI option to enable this behavior.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Use 32-bit subranges to prune some 64-bit BPF_JEQ/BPF_JNE conditions
that otherwise would be "inconclusive" (i.e., is_branch_taken() would
return -1). This can happen, for example, when registers are initialized
as 64-bit u64/s64, then compared for inequality as 32-bit subregisters,
and then followed by 64-bit equality/inequality check. That 32-bit
inequality can establish some pattern for lower 32 bits of a register
(e.g., s< 0 condition determines whether the bit #31 is zero or not),
while overall 64-bit value could be anything (according to a value range
representation).
This is not a fancy quirky special case, but actually a handling that's
necessary to prevent correctness issue with BPF verifier's range
tracking: set_range_min_max() assumes that register ranges are
non-overlapping, and if that condition is not guaranteed by
is_branch_taken() we can end up with invalid ranges, where min > max.
[0] https://lore.kernel.org/bpf/CACkBjsY2q1_fUohD7hRmKGqv1MV=eP2f6XK8kjkYNw7BaiF8iQ@mail.gmail.com/
Acked-by: Shung-Hsi Yu <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Generalize is_branch_taken logic for SCALAR_VALUE register to handle
cases when both registers are not constants. Previously supported
<range> vs <scalar> cases are a natural subset of more generic <range>
vs <range> set of cases.
Generalized logic relies on straightforward segment intersection checks.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Generalize bounds adjustment logic of reg_set_min_max() to handle not
just register vs constant case, but in general any register vs any
register cases. For most of the operations it's trivial extension based
on range vs range comparison logic, we just need to properly pick
min/max of a range to compare against min/max of the other range.
For BPF_JSET we keep the original capabilities, just make sure JSET is
integrated in the common framework. This is manifested in the
internal-only BPF_JSET + BPF_X "opcode" to allow for simpler and more
uniform rev_opcode() handling. See the code for details. This allows to
reuse the same code exactly both for TRUE and FALSE branches without
explicitly handling both conditions with custom code.
Note also that now we don't need a special handling of BPF_JEQ/BPF_JNE
case none of the registers are constants. This is now just a normal
generic case handled by reg_set_min_max().
To make tnum handling cleaner, tnum_with_subreg() helper is added, as
that's a common operator when dealing with 32-bit subregister bounds.
This keeps the overall logic much less noisy when it comes to tnums.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Kirill Shutemov reported significant percpu memory consumption increase after
booting in 288-cpu VM ([1]) due to commit 41a5db8d8161 ("bpf: Add support for
non-fix-size percpu mem allocation"). The percpu memory consumption is
increased from 111MB to 969MB. The number is from /proc/meminfo.
I tried to reproduce the issue with my local VM which at most supports upto
255 cpus. With 252 cpus, without the above commit, the percpu memory
consumption immediately after boot is 57MB while with the above commit the
percpu memory consumption is 231MB.
This is not good since so far percpu memory from bpf memory allocator is not
widely used yet. Let us change pre-allocation in init stage to on-demand
allocation when verifier detects there is a need of percpu memory for bpf
program. With this change, percpu memory consumption after boot can be reduced
signicantly.
[1] https://lore.kernel.org/lkml/[email protected]/
Fixes: 41a5db8d8161 ("bpf: Add support for non-fix-size percpu mem allocation")
Reported-and-tested-by: Kirill A. Shutemov <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
Acked-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
A new kfunc is added to acquire cgroup1 of a task:
- bpf_task_get_cgroup1
Acquires the associated cgroup of a task whithin a specific cgroup1
hierarchy. The cgroup1 hierarchy is identified by its hierarchy ID.
This new kfunc enables the tracing of tasks within a designated
container or cgroup directory in BPF programs.
Suggested-by: Tejun Heo <[email protected]>
Signed-off-by: Yafang Shao <[email protected]>
Acked-by: Tejun Heo <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Currently get_perf_callchain only supports user stack walking for
the current task. Passing the correct *crosstask* param will return
0 frames if the task passed to __bpf_get_stack isn't the current
one instead of a single incorrect frame/address. This change
passes the correct *crosstask* param but also does a preemptive
check in __bpf_get_stack if the task is current and returns
-EOPNOTSUPP if it is not.
This issue was found using bpf_get_task_stack inside a BPF
iterator ("iter/task"), which iterates over all tasks.
bpf_get_task_stack works fine for fetching kernel stacks
but because get_perf_callchain relies on the caller to know
if the requested *task* is the current one (via *crosstask*)
it was failing in a confusing way.
It might be possible to get user stacks for all tasks utilizing
something like access_process_vm but that requires the bpf
program calling bpf_get_task_stack to be sleepable and would
therefore be a breaking change.
Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Jordan Rome <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
|
|
When BPF program is verified in privileged mode, BPF verifier allows
bounded loops. This means that from CFG point of view there are
definitely some back-edges. Original commit adjusted check_cfg() logic
to not detect back-edges in control flow graph if they are resulting
from conditional jumps, which the idea that subsequent full BPF
verification process will determine whether such loops are bounded or
not, and either accept or reject the BPF program. At least that's my
reading of the intent.
Unfortunately, the implementation of this idea doesn't work correctly in
all possible situations. Conditional jump might not result in immediate
back-edge, but just a few unconditional instructions later we can arrive
at back-edge. In such situations check_cfg() would reject BPF program
even in privileged mode, despite it might be bounded loop. Next patch
adds one simple program demonstrating such scenario.
To keep things simple, instead of trying to detect back edges in
privileged mode, just assume every back edge is valid and let subsequent
BPF verification prove or reject bounded loops.
Note a few test changes. For unknown reason, we have a few tests that
are specified to detect a back-edge in a privileged mode, but looking at
their code it seems like the right outcome is passing check_cfg() and
letting subsequent verification to make a decision about bounded or not
bounded looping.
Bounded recursion case is also interesting. The example should pass, as
recursion is limited to just a few levels and so we never reach maximum
number of nested frames and never exhaust maximum stack depth. But the
way that max stack depth logic works today it falsely detects this as
exceeding max nested frame count. This patch series doesn't attempt to
fix this orthogonal problem, so we just adjust expected verifier failure.
Suggested-by: Alexei Starovoitov <[email protected]>
Fixes: 2589726d12a1 ("bpf: introduce bounded loops")
Reported-by: Hao Sun <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking instructions in a state if it happens that state's first
and last instruction indexes are the same. This situations doesn't
necessarily mean that there were no instructions simulated in a state,
but rather that we starting from the instruction, jumped around a bit,
and then ended up at the same instruction before checkpointing or
marking precision.
To distinguish between these two possible situations, we need to consult
jump history. If it's empty or contain a single record "bridging" parent
state and first instruction of processed state, then we indeed
backtracked all instructions in this state. But if history is not empty,
we are definitely not done yet.
Move this logic inside get_prev_insn_idx() to contain it more nicely.
Use -ENOENT return code to denote "we are out of instructions"
situation.
This bug was exposed by verifier_loop1.c's bounded_recursion subtest, once
the next fix in this patch set is applied.
Acked-by: Eduard Zingerman <[email protected]>
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(), just like the rest of BPF verifier does.
This has implications in three places:
- when determining next instruction for non-jump instructions;
- when determining next instruction for callback address ldimm64
instructions (in visit_func_call_insn());
- when checking for unreachable instructions, where second half of
ldimm64 is expected to be unreachable;
We take this also as an opportunity to report jump into the middle of
ldimm64. And adjust few test_verifier tests accordingly.
Acked-by: Eduard Zingerman <[email protected]>
Reported-by: Hao Sun <[email protected]>
Fixes: 475fb78fbf48 ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
This patch enables the following pattern:
/* mapval contains a __kptr pointing to refcounted local kptr */
mapval = bpf_map_lookup_elem(&map, &idx);
if (!mapval || !mapval->some_kptr) { /* omitted */ }
p = bpf_refcount_acquire(&mapval->some_kptr);
Currently this doesn't work because bpf_refcount_acquire expects an
owning or non-owning ref. The verifier defines non-owning ref as a type:
PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF
while mapval->some_kptr is PTR_TO_BTF_ID | PTR_UNTRUSTED. It's possible
to do the refcount_acquire by first bpf_kptr_xchg'ing mapval->some_kptr
into a temp kptr, refcount_acquiring that, and xchg'ing back into
mapval, but this is unwieldy and shouldn't be necessary.
This patch modifies btf_ld_kptr_type such that user-allocated types are
marked MEM_ALLOC and if those types have a bpf_{rb,list}_node they're
marked NON_OWN_REF as well. Additionally, due to changes to
bpf_obj_drop_impl earlier in this series, rcu_protected_object now
returns true for all user-allocated types, resulting in
mapval->some_kptr being marked MEM_RCU.
After this patch's changes, mapval->some_kptr is now:
PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU
which results in it passing the non-owning ref test, and the motivating
example passing verification.
Future work will likely get rid of special non-owning ref lifetime logic
in the verifier, at which point we'll be able to delete the NON_OWN_REF
flag entirely.
Signed-off-by: Dave Marchevsky <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
This refactoring patch removes the unused BPF_GRAPH_NODE_OR_ROOT
btf_field_type and moves BPF_GRAPH_{NODE,ROOT} macros into the
btf_field_type enum. Further patches in the series will use
BPF_GRAPH_NODE, so let's move this useful definition out of btf.c.
Signed-off-by: Dave Marchevsky <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
The use of bpf_mem_free_rcu to free refcounted local kptrs was added
in commit 7e26cd12ad1c ("bpf: Use bpf_mem_free_rcu when
bpf_obj_dropping refcounted nodes"). In the cover letter for the
series containing that patch [0] I commented:
Perhaps it makes sense to move to mem_free_rcu for _all_
non-owning refs in the future, not just refcounted. This might
allow custom non-owning ref lifetime + invalidation logic to be
entirely subsumed by MEM_RCU handling. IMO this needs a bit more
thought and should be tackled outside of a fix series, so it's not
attempted here.
It's time to start moving in the "non-owning refs have MEM_RCU
lifetime" direction. As mentioned in that comment, using
bpf_mem_free_rcu for all local kptrs - not just refcounted - is
necessarily the first step towards that goal. This patch does so.
After this patch the memory pointed to by all local kptrs will not be
reused until RCU grace period elapses. The verifier's understanding of
non-owning ref validity and the clobbering logic it uses to enforce
that understanding are not changed here, that'll happen gradually in
future work, including further patches in the series.
[0]: https://lore.kernel.org/all/[email protected]/
Signed-off-by: Dave Marchevsky <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Refcounted local kptrs are kptrs to user-defined types with a
bpf_refcount field. Recent commits ([0], [1]) modified the lifetime of
refcounted local kptrs such that the underlying memory is not reused
until RCU grace period has elapsed.
Separately, verification of bpf_refcount_acquire calls currently
succeeds for MAYBE_NULL non-owning reference input, which is a problem
as bpf_refcount_acquire_impl has no handling for this case.
This patch takes advantage of aforementioned lifetime changes to tag
bpf_refcount_acquire_impl kfunc KF_RCU, thereby preventing MAYBE_NULL
input to the kfunc. The KF_RCU flag applies to all kfunc params; it's
fine for it to apply to the void *meta__ign param as that's populated by
the verifier and is tagged __ign regardless.
[0]: commit 7e26cd12ad1c ("bpf: Use bpf_mem_free_rcu when
bpf_obj_dropping refcounted nodes") is the actual change to
allocation behaivor
[1]: commit 0816b8c6bf7f ("bpf: Consider non-owning refs to refcounted
nodes RCU protected") modified verifier understanding of
refcounted local kptrs to match [0]'s changes
Signed-off-by: Dave Marchevsky <[email protected]>
Fixes: 7c50b1cb76ac ("bpf: Add bpf_refcount_acquire kfunc")
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
The addition of is_reg_const() in commit 171de12646d2 ("bpf: generalize
is_branch_taken to handle all conditional jumps in one place") has made the
register_is_const() redundant. Give the former has more feature, plus the
fact the latter is only used in one place, replace register_is_const() with
is_reg_const(), and remove the definition of register_is_const.
This requires moving the definition of is_reg_const() further up. And since
the comment of reg_const_value() reference is_reg_const(), move it up as
well.
Signed-off-by: Shung-Hsi Yu <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Similar to ARG_PTR_TO_CONST_STR for BPF helpers, KF_ARG_PTR_TO_CONST_STR
specifies kfunc args that point to const strings. Annotation "__str" is
used to specify kfunc arg of type KF_ARG_PTR_TO_CONST_STR. Also, add
documentation for the "__str" annotation.
bpf_get_file_xattr() will be the first kfunc that uses this type.
Signed-off-by: Song Liu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Acked-by: Vadim Fedorenko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
ARG_PTR_TO_CONST_STR is used to specify constant string args for BPF
helpers. The logic that verifies a reg is ARG_PTR_TO_CONST_STR is
implemented in check_func_arg().
As we introduce kfuncs with constant string args, it is necessary to
do the same check for kfuncs (in check_kfunc_args). Factor out the logic
for ARG_PTR_TO_CONST_STR to a new check_reg_const_str() so that it can be
reused.
check_func_arg() ensures check_reg_const_str() is only called with reg of
type PTR_TO_MAP_VALUE. Add a redundent type check in check_reg_const_str()
to avoid misuse in the future. Other than this redundent check, there is
no change in behavior.
Signed-off-by: Song Liu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Acked-by: Vadim Fedorenko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Different types of bpf dynptr have different internal data storage.
Specifically, SKB and XDP type of dynptr may have non-continuous data.
Therefore, it is not always safe to directly access dynptr->data.
Add __bpf_dynptr_data and __bpf_dynptr_data_rw to replace direct access to
dynptr->data.
Update bpf_verify_pkcs7_signature to use __bpf_dynptr_data instead of
dynptr->data.
Signed-off-by: Song Liu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Vadim Fedorenko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When looking up an element in LPM trie, the condition 'matchlen ==
trie->max_prefixlen' will never return true, if key->prefixlen is larger
than trie->max_prefixlen. Consequently all elements in the LPM trie will
be visited and no element is returned in the end.
To resolve this, check key->prefixlen first before walking the LPM trie.
Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation")
Signed-off-by: Florian Lehner <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Change reg_set_min_max() to take FALSE/TRUE sets of two registers each,
instead of assuming that we are always comparing to a constant. For now
we still assume that right-hand side registers are constants (and make
sure that's the case by swapping src/dst regs, if necessary), but
subsequent patches will remove this limitation.
reg_set_min_max() is now called unconditionally for any register
comparison, so that might include pointer vs pointer. This makes it
consistent with is_branch_taken() generality. But we currently only
support adjustments based on SCALAR vs SCALAR comparisons, so
reg_set_min_max() has to guard itself againts pointers.
Taking two by two registers allows to further unify and simplify
check_cond_jmp_op() logic. We utilize fake register for BPF_K
conditional jump case, just like with is_branch_taken() part.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Similarly to is_branch_taken()-related refactorings, start preparing
reg_set_min_max() to handle more generic case of two non-const
registers. Start with renaming arguments to accommodate later addition
of second register as an input argument.
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Combine 32-bit and 64-bit is_branch_taken logic for SCALAR_VALUE
registers. It makes it easier to see parallels between two domains
(32-bit and 64-bit), and makes subsequent refactoring more
straightforward.
No functional changes.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Make is_branch_taken() a single entry point for branch pruning decision
making, handling both pointer vs pointer, pointer vs scalar, and scalar
vs scalar cases in one place. This also nicely cleans up check_cond_jmp_op().
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Move is_branch_taken() slightly down. In subsequent patched we'll need
both flip_opcode() and is_pkt_ptr_branch_taken() for is_branch_taken(),
but instead of sprinkling forward declarations around, it makes more
sense to move is_branch_taken() lower below is_pkt_ptr_branch_taken(),
and also keep it closer to very tightly related reg_set_min_max(), as
they are two critical parts of the same SCALAR range tracking logic.
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
While still assuming that second register is a constant, generalize
is_branch_taken-related code to accept two registers instead of register
plus explicit constant value. This also, as a side effect, allows to
simplify check_cond_jmp_op() by unifying BPF_K case with BPF_X case, for
which we use a fake register to represent BPF_K's imm constant as
a register.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Just taking mundane refactoring bits out into a separate patch. No
functional changes.
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When performing 32-bit conditional operation operating on lower 32 bits
of a full 64-bit register, register full value isn't changed. We just
potentially gain new knowledge about that register's lower 32 bits.
Unfortunately, __reg_combine_{32,64}_into_{64,32} logic that
reg_set_min_max() performs as a last step, can lose information in some
cases due to __mark_reg64_unbounded() and __reg_assign_32_into_64().
That's bad and completely unnecessary. Especially __reg_assign_32_into_64()
looks completely out of place here, because we are not performing
zero-extending subregister assignment during conditional jump.
So this patch replaced __reg_combine_* with just a normal
reg_bounds_sync() which will do a proper job of deriving u64/s64 bounds
from u32/s32, and vice versa (among all other combinations).
__reg_combine_64_into_32() is also used in one more place,
coerce_reg_to_size(), while handling 1- and 2-byte register loads.
Looking into this, it seems like besides marking subregister as
unbounded before performing reg_bounds_sync(), we were also performing
deduction of smin32/smax32 and umin32/umax32 bounds from respective
smin/smax and umin/umax bounds. It's now redundant as reg_bounds_sync()
performs all the same logic more generically (e.g., without unnecessary
assumption that upper 32 bits of full register should be zero).
Long story short, we remove __reg_combine_64_into_32() completely, and
coerce_reg_to_size() now only does resetting subreg to unbounded and then
performing reg_bounds_sync() to recover as much information as possible
from 64-bit umin/umax and smin/smax bounds, set explicitly in
coerce_reg_to_size() earlier.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
There are cases (caught by subsequent reg_bounds tests in selftests/bpf)
where performing one round of __reg_deduce_bounds() doesn't propagate
all the information from, say, s32 to u32 bounds and than from newly
learned u32 bounds back to u64 and s64. So perform __reg_deduce_bounds()
twice to make sure such derivations are propagated fully after
reg_bounds_sync().
One such example is test `(s64)[0xffffffff00000001; 0] (u64)<
0xffffffff00000000` from selftest patch from this patch set. It demonstrates an
intricate dance of u64 -> s64 -> u64 -> u32 bounds adjustments, which requires
two rounds of __reg_deduce_bounds(). Here are corresponding refinement log from
selftest, showing evolution of knowledge.
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (u64)DST_OLD=[0; U64_MAX] (u64)DST_NEW=[0xffffffff00000000; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (s64)DST_OLD=[0xffffffff00000001; 0] (s64)DST_NEW=[0xffffffff00000001; -1]
REFINING (FALSE R1) (s64)SRC=[0xffffffff00000001; -1] (u64)DST_OLD=[0xffffffff00000000; U64_MAX] (u64)DST_NEW=[0xffffffff00000001; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000001; U64_MAX] (u32)DST_OLD=[0; U32_MAX] (u32)DST_NEW=[1; U32_MAX]
R1 initially has smin/smax set to [0xffffffff00000001; -1], while umin/umax is
unknown. After (u64)< comparison, in FALSE branch we gain knowledge that
umin/umax is [0xffffffff00000000; U64_MAX]. That causes smin/smax to learn that
zero can't happen and upper bound is -1. Then smin/smax is adjusted from
umin/umax improving lower bound from 0xffffffff00000000 to 0xffffffff00000001.
And then eventually umin32/umax32 bounds are drived from umin/umax and become
[1; U32_MAX].
Selftest in the last patch is actually implementing a multi-round fixed-point
convergence logic, but so far all the tests are handled by two rounds of
reg_bounds_sync() on the verifier state, so we keep it simple for now.
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Add a few interesting cases in which we can tighten 64-bit bounds based
on newly learnt information about 32-bit bounds. E.g., when full u64/s64
registers are used in BPF program, and then eventually compared as
u32/s32. The latter comparison doesn't change the value of full
register, but it does impose new restrictions on possible lower 32 bits
of such full registers. And we can use that to derive additional full
register bounds information.
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Add a special case where we can derive valid s32 bounds from umin/umax
or smin/smax by stitching together negative s32 subrange and
non-negative s32 subrange. That requires upper 32 bits to form a [N, N+1]
range in u32 domain (taking into account wrap around, so 0xffffffff
to 0x00000000 is a valid [N, N+1] range in this sense). See code comment
for concrete examples.
Eduard Zingerman also provided an alternative explanation ([0]) for more
mathematically inclined readers:
Suppose:
. there are numbers a, b, c
. 2**31 <= b < 2**32
. 0 <= c < 2**31
. umin = 2**32 * a + b
. umax = 2**32 * (a + 1) + c
The number of values in the range represented by [umin; umax] is:
. N = umax - umin + 1 = 2**32 + c - b + 1
. min(N) = 2**32 + 0 - (2**32-1) + 1 = 2, with b = 2**32-1, c = 0
. max(N) = 2**32 + (2**31 - 1) - 2**31 + 1 = 2**32, with b = 2**31, c = 2**31-1
Hence [(s32)b; (s32)c] forms a valid range.
[0] https://lore.kernel.org/bpf/[email protected]/
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Comments in code try to explain the idea behind why this is correct.
Please check the code and comments.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
All the logic that applies to u64 vs s64, equally applies for u32 vs s32
relationships (just taken in a smaller 32-bit numeric space). So do the
same deduction of smin32/smax32 from umin32/umax32, if we can.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Add smin/smax derivation from appropriate umin/umax values. Previously the
logic was surprisingly asymmetric, trying to derive umin/umax from smin/smax
(if possible), but not trying to do the same in the other direction. A simple
addition to __reg64_deduce_bounds() fixes this.
Added also generic comment about u64/s64 ranges and their relationship.
Hopefully that helps readers to understand all the bounds deductions
a bit better.
Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) in verifier.c wanted to
teach BPF verifier that bpf_iter__task -> task is a trusted ptr. But it
doesn't work well.
The reason is, bpf_iter__task -> task would go through btf_ctx_access()
which enforces the reg_type of 'task' is ctx_arg_info->reg_type, and in
task_iter.c, we actually explicitly declare that the
ctx_arg_info->reg_type is PTR_TO_BTF_ID_OR_NULL.
Actually we have a previous case like this[1] where PTR_TRUSTED is added to
the arg flag for map_iter.
This patch sets ctx_arg_info->reg_type is PTR_TO_BTF_ID_OR_NULL |
PTR_TRUSTED in task_reg_info.
Similarly, bpf_cgroup_reg_info -> cgroup is also PTR_TRUSTED since we are
under the protection of cgroup_mutex and we would check cgroup_is_dead()
in __cgroup_iter_seq_show().
This patch is to improve the user experience of the newly introduced
bpf_iter_css_task kfunc before hitting the mainline. The Fixes tag is
pointing to the commit introduced the bpf_iter_css_task kfunc.
Link[1]:https://lore.kernel.org/all/[email protected]/
Fixes: 9c66dc94b62a ("bpf: Introduce css_task open-coded iterator kfuncs")
Signed-off-by: Chuyi Zhou <[email protected]>
Acked-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Martin KaFai Lau <[email protected]>
|
|
BPF_END and BPF_NEG has a different specification for the source bit in
the opcode compared to other ALU/ALU64 instructions, and is either
reserved or use to specify the byte swap endianness. In both cases the
source bit does not encode source operand location, and src_reg is a
reserved field.
backtrack_insn() currently does not differentiate BPF_END and BPF_NEG
from other ALU/ALU64 instructions, which leads to r0 being incorrectly
marked as precise when processing BPF_ALU | BPF_TO_BE | BPF_END
instructions. This commit teaches backtrack_insn() to correctly mark
precision for such case.
While precise tracking of BPF_NEG and other BPF_END instructions are
correct and does not need fixing, this commit opt to process all BPF_NEG
and BPF_END instructions within the same if-clause to better align with
current convention used in the verifier (e.g. check_alu_op).
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Cc: [email protected]
Reported-by: Mohamed Mahmoud <[email protected]>
Closes: https://lore.kernel.org/r/[email protected]
Tested-by: Toke Høiland-Jørgensen <[email protected]>
Tested-by: Tao Lyu <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Signed-off-by: Shung-Hsi Yu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
The newly added open-coded css_task iter would try to hold the global
css_set_lock in bpf_iter_css_task_new, so the bpf side has to be careful in
where it allows to use this iter. The mainly concern is dead locking on
css_set_lock. check_css_task_iter_allowlist() in verifier enforced css_task
can only be used in bpf_lsm hooks and sleepable bpf_iter.
This patch relax the allowlist for css_task iter. Any lsm and any iter
(even non-sleepable) and any sleepable are safe since they would not hold
the css_set_lock before entering BPF progs context.
This patch also fixes the misused BPF_TRACE_ITER in
check_css_task_iter_allowlist which compared bpf_prog_type with
bpf_attach_type.
Fixes: 9c66dc94b62ae ("bpf: Introduce css_task open-coded iterator kfuncs")
Signed-off-by: Chuyi Zhou <[email protected]>
Acked-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
When there are concurrent uref release and bpf timer init operations,
the following sequence diagram is possible. It will break the guarantee
provided by bpf_timer: bpf_timer will still be alive after userspace
application releases or unpins the map. It also will lead to kmemleak
for old kernel version which doesn't release bpf_timer when map is
released.
bpf program X:
bpf_timer_init()
lock timer->lock
read timer->timer as NULL
read map->usercnt != 0
process Y:
close(map_fd)
// put last uref
bpf_map_put_uref()
atomic_dec_and_test(map->usercnt)
array_map_free_timers()
bpf_timer_cancel_and_free()
// just return
read timer->timer is NULL
t = bpf_map_kmalloc_node()
timer->timer = t
unlock timer->lock
Fix the problem by checking map->usercnt after timer->timer is assigned,
so when there are concurrent uref release and bpf timer init, either
bpf_timer_cancel_and_free() from uref release reads a no-NULL timer
or the newly-added atomic64_read() returns a zero usercnt.
Because atomic_dec_and_test(map->usercnt) and READ_ONCE(timer->timer)
in bpf_timer_cancel_and_free() are not protected by a lock, so add
a memory barrier to guarantee the order between map->usercnt and
timer->timer. Also use WRITE_ONCE(timer->timer, x) to match the lockless
read of timer->timer in bpf_timer_cancel_and_free().
Reported-by: Hsin-Wei Hung <[email protected]>
Closes: https://lore.kernel.org/bpf/CABcoxUaT2k9hWsS1tNgXyoU3E-=PuOgMn737qK984fbFmfYixQ@mail.gmail.com
Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.")
Signed-off-by: Hou Tao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
BPF kfuncs are meant to be called from BPF programs. Accordingly, most
kfuncs are not called from anywhere in the kernel, which the
-Wmissing-prototypes warning is unhappy about. We've peppered
__diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are
defined in the codebase to suppress this warning.
This patch adds two macros meant to bound one or many kfunc definitions.
All existing kfunc definitions which use these __diag calls to suppress
-Wmissing-prototypes are migrated to use the newly-introduced macros.
A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the
__bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier
version of this patch [0] and another recent mailing list thread [1].
In the future we might need to ignore different warnings or do other
kfunc-specific things. This change will make it easier to make such
modifications for all kfunc defs.
[0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/
[1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/
Signed-off-by: Dave Marchevsky <[email protected]>
Suggested-by: Andrii Nakryiko <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Cc: Jiri Olsa <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Acked-by: David Vernet <[email protected]>
Acked-by: Yafang Shao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
In check_stack_write_fixed_off(), imm value is cast to u32 before being
spilled to the stack. Therefore, the sign information is lost, and the
range information is incorrect when load from the stack again.
For the following prog:
0: r2 = r10
1: *(u64*)(r2 -40) = -44
2: r0 = *(u64*)(r2 - 40)
3: if r0 s<= 0xa goto +2
4: r0 = 1
5: exit
6: r0 = 0
7: exit
The verifier gives:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
1: (7a) *(u64 *)(r2 -40) = -44 ; R2_w=fp0 fp-40_w=4294967252
2: (79) r0 = *(u64 *)(r2 -40) ; R0_w=4294967252 R2_w=fp0
fp-40_w=4294967252
3: (c5) if r0 s< 0xa goto pc+2
mark_precise: frame0: last_idx 3 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (79) r0 = *(u64 *)(r2 -40)
3: R0_w=4294967252
4: (b7) r0 = 1 ; R0_w=1
5: (95) exit
verification time 7971 usec
stack depth 40
processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0
peak_states 0 mark_read 0
So remove the incorrect cast, since imm field is declared as s32, and
__mark_reg_known() takes u64, so imm would be correctly sign extended
by compiler.
Fixes: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Cc: [email protected]
Signed-off-by: Hao Sun <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|
|
Our MPTCP CI complained [1] -- and KBuild too -- that it was no longer
possible to build the kernel without CONFIG_CGROUPS:
kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_new':
kernel/bpf/task_iter.c:919:14: error: 'CSS_TASK_ITER_PROCS' undeclared (first use in this function)
919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
| ^~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c:919:14: note: each undeclared identifier is reported only once for each function it appears in
kernel/bpf/task_iter.c:919:36: error: 'CSS_TASK_ITER_THREADED' undeclared (first use in this function)
919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
| ^~~~~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c:927:60: error: invalid application of 'sizeof' to incomplete type 'struct css_task_iter'
927 | kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter));
| ^~~~~~
kernel/bpf/task_iter.c:930:9: error: implicit declaration of function 'css_task_iter_start'; did you mean 'task_seq_start'? [-Werror=implicit-function-declaration]
930 | css_task_iter_start(css, flags, kit->css_it);
| ^~~~~~~~~~~~~~~~~~~
| task_seq_start
kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_next':
kernel/bpf/task_iter.c:940:16: error: implicit declaration of function 'css_task_iter_next'; did you mean 'class_dev_iter_next'? [-Werror=implicit-function-declaration]
940 | return css_task_iter_next(kit->css_it);
| ^~~~~~~~~~~~~~~~~~
| class_dev_iter_next
kernel/bpf/task_iter.c:940:16: error: returning 'int' from a function with return type 'struct task_struct *' makes pointer from integer without a cast [-Werror=int-conversion]
940 | return css_task_iter_next(kit->css_it);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_destroy':
kernel/bpf/task_iter.c:949:9: error: implicit declaration of function 'css_task_iter_end' [-Werror=implicit-function-declaration]
949 | css_task_iter_end(kit->css_it);
| ^~~~~~~~~~~~~~~~~
This patch simply surrounds with a #ifdef the new code requiring CGroups
support. It seems enough for the compiler and this is similar to
bpf_iter_css_{new,next,destroy}() functions where no other #ifdef have
been added in kernel/bpf/helpers.c and in the selftests.
Fixes: 9c66dc94b62a ("bpf: Introduce css_task open-coded iterator kfuncs")
Link: https://github.com/multipath-tcp/mptcp_net-next/actions/runs/6665206927
Reported-by: kernel test robot <[email protected]>
Closes: https://lore.kernel.org/oe-kbuild-all/[email protected]/
Signed-off-by: Matthieu Baerts <[email protected]>
[ added missing ifdefs for BTF_ID cgroup definitions ]
Signed-off-by: Jiri Olsa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
|