aboutsummaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)AuthorFilesLines
2021-02-12bpf: Extract nullable reg type conversion into a helper functionDmitrii Banshchikov1-31/+52
Extract conversion from a register's nullable type to a type with a value. The helper will be used in mark_ptr_not_null_reg(). Signed-off-by: Dmitrii Banshchikov <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-12bpf: Rename bpf_reg_state variablesDmitrii Banshchikov1-8/+12
Using "reg" for an array of bpf_reg_state and "reg[i + 1]" for an individual bpf_reg_state is error-prone and verbose. Use "regs" for the former and "reg" for the latter as other code nearby does. Signed-off-by: Dmitrii Banshchikov <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-13bpf: Fix truncation handling for mod32 dst reg wrt zeroDaniel Borkmann1-4/+6
Recently noticed that when mod32 with a known src reg of 0 is performed, then the dst register is 32-bit truncated in verifier: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = 0 1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=inv0 R1_w=inv-1 R10=fp0 2: (b4) w2 = -1 3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0 3: (9c) w1 %= w0 4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 4: (b7) r0 = 1 5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 5: (1d) if r1 == r2 goto pc+1 R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: (b7) r0 = 2 7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 7: (95) exit 7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0 7: (95) exit However, as a runtime result, we get 2 instead of 1, meaning the dst register does not contain (u32)-1 in this case. The reason is fairly straight forward given the 0 test leaves the dst register as-is: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+1 4: (9c) w1 %= w0 5: (b7) r0 = 1 6: (1d) if r1 == r2 goto pc+1 7: (b7) r0 = 2 8: (95) exit This was originally not an issue given the dst register was marked as completely unknown (aka 64 bit unknown). However, after 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") the verifier casts the register output to 32 bit, and hence it becomes 32 bit unknown. Note that for the case where the src register is unknown, the dst register is marked 64 bit unknown. After the fix, the register is truncated by the runtime and the test passes: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+2 4: (9c) w1 %= w0 5: (05) goto pc+1 6: (bc) w1 = w1 7: (b7) r0 = 1 8: (1d) if r1 == r2 goto pc+1 9: (b7) r0 = 2 10: (95) exit Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows: mod32: mod64: (16) if w0 == 0x0 goto pc+2 (15) if r0 == 0x0 goto pc+1 (9c) w1 %= w0 (9f) r1 %= r0 (05) goto pc+1 (bc) w1 = w1 Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]>
2021-02-13bpf, devmap: Use GFP_KERNEL for xdp bulk queue allocationJun'ichi Nomura1-3/+1
The devmap bulk queue is allocated with GFP_ATOMIC and the allocation may fail if there is no available space in existing percpu pool. Since commit 75ccae62cb8d42 ("xdp: Move devmap bulk queue into struct net_device") moved the bulk queue allocation to NETDEV_REGISTER callback, whose context is allowed to sleep, use GFP_KERNEL instead of GFP_ATOMIC to let percpu allocator extend the pool when needed and avoid possible failure of netdev registration. As the required alignment is natural, we can simply use alloc_percpu(). Fixes: 75ccae62cb8d42 ("xdp: Move devmap bulk queue into struct net_device") Signed-off-by: Jun'ichi Nomura <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Cc: Toke Høiland-Jørgensen <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-12bpf: Fix an unitialized value in bpf_iterYonghong Song1-1/+1
Commit 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") cached btf_id in struct bpf_iter_target_info so later on if it can be checked cheaply compared to checking registered names. syzbot found a bug that uninitialized value may occur to bpf_iter_target_info->btf_id. This is because we allocated bpf_iter_target_info structure with kmalloc and never initialized field btf_id afterwards. This uninitialized btf_id is typically compared to a u32 bpf program func proto btf_id, and the chance of being equal is extremely slim. This patch fixed the issue by using kzalloc which will also prevent future likely instances due to adding new fields. Fixes: 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") Reported-by: [email protected] Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-12bpf: Introduce task_vma bpf_iterSong Liu1-1/+266
Introduce task_vma bpf_iter to print memory information of a process. It can be used to print customized information similar to /proc/<pid>/maps. Current /proc/<pid>/maps and /proc/<pid>/smaps provide information of vma's of a process. However, these information are not flexible enough to cover all use cases. For example, if a vma cover mixed 2MB pages and 4kB pages (x86_64), there is no easy way to tell which address ranges are backed by 2MB pages. task_vma solves the problem by enabling the user to generate customize information based on the vma (and vma->vm_mm, vma->vm_file, etc.). To access the vma safely in the BPF program, task_vma iterator holds target mmap_lock while calling the BPF program. If the mmap_lock is contended, task_vma unlocks mmap_lock between iterations to unblock the writer(s). This lock contention avoidance mechanism is similar to the one used in show_smaps_rollup(). Signed-off-by: Song Liu <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Yonghong Song <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Fix subreg optimization for BPF_FETCHIlya Leoshkevich1-2/+21
All 32-bit variants of BPF_FETCH (add, and, or, xor, xchg, cmpxchg) define a 32-bit subreg and thus have zext_dst set. Their encoding, however, uses dst_reg field as a base register, which causes opt_subreg_zext_lo32_rnd_hi32() to zero-extend said base register instead of the one the insn really defines (r0 or src_reg). Fix by properly choosing a register being defined, similar to how check_atomic() already does that. Signed-off-by: Ilya Leoshkevich <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Clear per_cpu pointers during bpf_prog_reallocAlexei Starovoitov1-0/+2
bpf_prog_realloc copies contents of struct bpf_prog. The pointers have to be cleared before freeing old struct. Reported-by: Ilya Leoshkevich <[email protected]> Fixes: 700d4796ef59 ("bpf: Optimize program stats") Fixes: ca06f55b9002 ("bpf: Add per-program recursion prevention mechanism") Signed-off-by: Alexei Starovoitov <[email protected]>
2021-02-11bpf: Allows per-cpu maps and map-in-map in sleepable programsAlexei Starovoitov2-3/+8
Since sleepable programs are now executing under migrate_disable the per-cpu maps are safe to use. The map-in-map were ok to use in sleepable from the time sleepable progs were introduced. Note that non-preallocated maps are still not safe, since there is no rcu_read_lock yet in sleepable programs and dynamically allocated map elements are relying on rcu protection. The sleepable programs have rcu_read_lock_trace instead. That limitation will be addresses in the future. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Acked-by: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Count the number of times recursion was preventedAlexei Starovoitov2-6/+26
Add per-program counter for number of times recursion prevention mechanism was triggered and expose it via show_fdinfo and bpf_prog_info. Teach bpftool to print it. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Add per-program recursion prevention mechanismAlexei Starovoitov2-4/+27
Since both sleepable and non-sleepable programs execute under migrate_disable add recursion prevention mechanism to both types of programs when they're executed via bpf trampoline. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Compute program stats for sleepable programsAlexei Starovoitov1-14/+28
Since sleepable programs don't migrate from the cpu the excution stats can be computed for them as well. Reuse the same infrastructure for both sleepable and non-sleepable programs. run_cnt -> the number of times the program was executed. run_time_ns -> the program execution time in nanoseconds including the off-cpu time when the program was sleeping. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Acked-by: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Run sleepable programs with migration disabledAlexei Starovoitov1-0/+2
In older non-RT kernels migrate_disable() was the same as preempt_disable(). Since commit 74d862b682f5 ("sched: Make migrate_disable/enable() independent of RT") migrate_disable() is real and doesn't prevent sleeping. Running sleepable programs with migration disabled allows to add support for program stats and per-cpu maps later. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-11bpf: Optimize program statsAlexei Starovoitov4-7/+7
Move bpf_prog_stats from prog->aux into prog to avoid one extra load in critical path of program execution. Signed-off-by: Alexei Starovoitov <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-10bpf_lru_list: Read double-checked variable once without lockMarco Elver1-3/+4
For double-checked locking in bpf_common_lru_push_free(), node->type is read outside the critical section and then re-checked under the lock. However, concurrent writes to node->type result in data races. For example, the following concurrent access was observed by KCSAN: write to 0xffff88801521bc22 of 1 bytes by task 10038 on cpu 1: __bpf_lru_node_move_in kernel/bpf/bpf_lru_list.c:91 __local_list_flush kernel/bpf/bpf_lru_list.c:298 ... read to 0xffff88801521bc22 of 1 bytes by task 10043 on cpu 0: bpf_common_lru_push_free kernel/bpf/bpf_lru_list.c:507 bpf_lru_push_free kernel/bpf/bpf_lru_list.c:555 ... Fix the data races where node->type is read outside the critical section (for double-checked locking) by marking the access with READ_ONCE() as well as ensuring the variable is only accessed once. Fixes: 3a08c2fd7634 ("bpf: LRU List") Reported-by: [email protected] Reported-by: [email protected] Signed-off-by: Marco Elver <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-10Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller2-18/+22
2021-02-10bpf: Allow variable-offset stack accessAndrei Matei1-146/+511
Before this patch, variable offset access to the stack was dissalowed for regular instructions, but was allowed for "indirect" accesses (i.e. helpers). This patch removes the restriction, allowing reading and writing to the stack through stack pointers with variable offsets. This makes stack-allocated buffers more usable in programs, and brings stack pointers closer to other types of pointers. The motivation is being able to use stack-allocated buffers for data manipulation. When the stack size limit is sufficient, allocating buffers on the stack is simpler than per-cpu arrays, or other alternatives. In unpriviledged programs, variable-offset reads and writes are disallowed (they were already disallowed for the indirect access case) because the speculative execution checking code doesn't support them. Additionally, when writing through a variable-offset stack pointer, if any pointers are in the accessible range, there's possilibities of later leaking pointers because the write cannot be tracked precisely. Writes with variable offset mark the whole range as initialized, even though we don't know which stack slots are actually written. This is in order to not reject future reads to these slots. Note that this doesn't affect writes done through helpers; like before, helpers need the whole stack range to be initialized to begin with. All the stack slots are in range are considered scalars after the write; variable-offset register spills are not tracked. For reads, all the stack slots in the variable range needs to be initialized (but see above about what writes do), otherwise the read is rejected. All register spilled in stack slots that might be read are marked as having been read, however reads through such pointers don't do register filling; the target register will always be either a scalar or a constant zero. Signed-off-by: Andrei Matei <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-10bpf: Fix 32 bit src register truncation on div/modDaniel Borkmann1-15/+13
While reviewing a different fix, John and I noticed an oddity in one of the BPF program dumps that stood out, for example: # bpftool p d x i 13 0: (b7) r0 = 808464450 1: (b4) w4 = 808464432 2: (bc) w0 = w0 3: (15) if r0 == 0x0 goto pc+1 4: (9c) w4 %= w0 [...] In line 2 we noticed that the mov32 would 32 bit truncate the original src register for the div/mod operation. While for the two operations the dst register is typically marked unknown e.g. from adjust_scalar_min_max_vals() the src register is not, and thus verifier keeps tracking original bounds, simplified: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = -1 1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=invP-1 R1_w=invP-1 R10=fp0 2: (3c) w0 /= w1 3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0 3: (77) r1 >>= 32 4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0 4: (bf) r0 = r1 5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0 5: (95) exit processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0 Runtime result of r0 at exit is 0 instead of expected -1. Remove the verifier mov32 src rewrite in div/mod and replace it with a jmp32 test instead. After the fix, we result in the following code generation when having dividend r1 and divisor r6: div, 64 bit: div, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (55) if r6 != 0x0 goto pc+2 2: (56) if w6 != 0x0 goto pc+2 3: (ac) w1 ^= w1 3: (ac) w1 ^= w1 4: (05) goto pc+1 4: (05) goto pc+1 5: (3f) r1 /= r6 5: (3c) w1 /= w6 6: (b7) r0 = 0 6: (b7) r0 = 0 7: (95) exit 7: (95) exit mod, 64 bit: mod, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (15) if r6 == 0x0 goto pc+1 2: (16) if w6 == 0x0 goto pc+1 3: (9f) r1 %= r6 3: (9c) w1 %= w6 4: (b7) r0 = 0 4: (b7) r0 = 0 5: (95) exit 5: (95) exit x86 in particular can throw a 'divide error' exception for div instruction not only for divisor being zero, but also for the case when the quotient is too large for the designated register. For the edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT since we always zero edx (rdx). Hence really the only protection needed is against divisor being zero. Fixes: 68fda450a7df ("bpf: fix 32-bit divide by zero") Co-developed-by: John Fastabend <[email protected]> Signed-off-by: John Fastabend <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Alexei Starovoitov <[email protected]>
2021-02-10bpf: Fix verifier jmp32 pruning decision logicDaniel Borkmann1-1/+5
Anatoly has been fuzzing with kBdysch harness and reported a hang in one of the outcomes: func#0 @0 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = 808464450 1: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b4) w4 = 808464432 2: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP808464432 R10=fp0 2: (9c) w4 %= w0 3: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0 3: (66) if w4 s> 0x30303030 goto pc+0 R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 4: (7f) r0 >>= r0 5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 5: (9c) w4 %= w0 6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 6: (66) if w0 s> 0x3030 goto pc+0 R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 7: (d6) if w0 s<= 0x303030 goto pc+1 9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 9: (95) exit propagating r0 from 6 to 7: safe 4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0 4: (7f) r0 >>= r0 5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0 5: (9c) w4 %= w0 6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 6: (66) if w0 s> 0x3030 goto pc+0 R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 propagating r0 7: safe propagating r0 from 6 to 7: safe processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1 The underlying program was xlated as follows: # bpftool p d x i 10 0: (b7) r0 = 808464450 1: (b4) w4 = 808464432 2: (bc) w0 = w0 3: (15) if r0 == 0x0 goto pc+1 4: (9c) w4 %= w0 5: (66) if w4 s> 0x30303030 goto pc+0 6: (7f) r0 >>= r0 7: (bc) w0 = w0 8: (15) if r0 == 0x0 goto pc+1 9: (9c) w4 %= w0 10: (66) if w0 s> 0x3030 goto pc+0 11: (d6) if w0 s<= 0x303030 goto pc+1 12: (05) goto pc-1 13: (95) exit The verifier rewrote original instructions it recognized as dead code with 'goto pc-1', but reality differs from verifier simulation in that we are actually able to trigger a hang due to hitting the 'goto pc-1' instructions. Taking a closer look at the verifier analysis, the reason is that it misjudges its pruning decision at the first 'from 6 to 7: safe' occasion. What happens is that while both old/cur registers are marked as precise, they get misjudged for the jmp32 case as range_within() yields true, meaning that the prior verification path with a wider register bound could be verified successfully and therefore the current path with a narrower register bound is deemed safe as well whereas in reality it's not. R0 old/cur path's bounds compare as follows: old: smin_value=0x8000000000000000,smax_value=0x7fffffffffffffff,umin_value=0x0,umax_value=0xffffffffffffffff,var_off=(0x0; 0xffffffffffffffff) cur: smin_value=0x8000000000000000,smax_value=0x7fffffff7fffffff,umin_value=0x0,umax_value=0xffffffff7fffffff,var_off=(0x0; 0xffffffff7fffffff) old: s32_min_value=0x80000000,s32_max_value=0x00003030,u32_min_value=0x00000000,u32_max_value=0xffffffff cur: s32_min_value=0x00003031,s32_max_value=0x7fffffff,u32_min_value=0x00003031,u32_max_value=0x7fffffff The 64 bit bounds generally look okay and while the information that got propagated from 32 to 64 bit looks correct as well, it's not precise enough for judging a conditional jmp32. Given the latter only operates on subregisters we also need to take these into account as well for a range_within() probe in order to be able to prune paths. Extending the range_within() constraint to both bounds will be able to tell us that the old signed 32 bit bounds are not wider than the cur signed 32 bit bounds. With the fix in place, the program will now verify the 'goto' branch case as it should have been: [...] 6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 6: (66) if w0 s> 0x3030 goto pc+0 R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 7: (d6) if w0 s<= 0x303030 goto pc+1 9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 9: (95) exit 7: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=12337,u32_min_value=12337,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 7: (d6) if w0 s<= 0x303030 goto pc+1 R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 8: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 8: (30) r0 = *(u8 *)skb[808464432] BPF_LD_[ABS|IND] uses reserved fields processed 11 insns (limit 1000000) max_states_per_insn 1 total_states 1 peak_states 1 mark_read 1 The bug is quite subtle in the sense that when verifier would determine that a given branch is dead code, it would (here: wrongly) remove these instructions from the program and hard-wire the taken branch for privileged programs instead of the 'goto pc-1' rewrites which will cause hard to debug problems. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: Anatoly Trosinenko <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]>
2021-02-10bpf: Fix verifier jsgt branch analysis on max boundDaniel Borkmann1-2/+2
Fix incorrect is_branch{32,64}_taken() analysis for the jsgt case. The return code for both will tell the caller whether a given conditional jump is taken or not, e.g. 1 means branch will be taken [for the involved registers] and the goto target will be executed, 0 means branch will not be taken and instead we fall-through to the next insn, and last but not least a -1 denotes that it is not known at verification time whether a branch will be taken or not. Now while the jsgt has the branch-taken case correct with reg->s32_min_value > sval, the branch-not-taken case is off-by-one when testing for reg->s32_max_value < sval since the branch will also be taken for reg->s32_max_value == sval. The jgt branch analysis, for example, gets this right. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 4f7b3e82589e ("bpf: improve verifier branch analysis") Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]>
2021-02-04bpf: Refactor BPF_PSEUDO_CALL checking as a helper functionYonghong Song1-16/+13
There is no functionality change. This refactoring intends to facilitate next patch change with BPF_PSEUDO_FUNC. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-04bpf: Allow usage of BPF ringbuffer in sleepable programsKP Singh1-1/+3
The BPF ringbuffer map is pre-allocated and the implementation logic does not rely on disabling preemption or per-cpu data structures. Using the BPF ringbuffer sleepable LSM and tracing programs does not trigger any warnings with DEBUG_ATOMIC_SLEEP, DEBUG_PREEMPT, PROVE_RCU and PROVE_LOCKING and LOCKDEP enabled. This allows helpers like bpf_copy_from_user and bpf_ima_inode_hash to write to the BPF ring buffer from sleepable BPF programs. Signed-off-by: KP Singh <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-03bpf: Check for integer overflow when using roundup_pow_of_two()Bui Quang Minh1-0/+2
On 32-bit architecture, roundup_pow_of_two() can return 0 when the argument has upper most bit set due to resulting 1UL << 32. Add a check for this case. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Bui Quang Minh <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-02bpf: Propagate stack bounds to registers in atomics w/ BPF_FETCHBrendan Jackman1-14/+18
When BPF_FETCH is set, atomic instructions load a value from memory into a register. The current verifier code first checks via check_mem_access whether we can access the memory, and then checks via check_reg_arg whether we can write into the register. For loads, check_reg_arg has the side-effect of marking the register's value as unkonwn, and check_mem_access has the side effect of propagating bounds from memory to the register. This currently only takes effect for stack memory. Therefore with the current order, bounds information is thrown away, but by simply reversing the order of check_reg_arg vs. check_mem_access, we can instead propagate bounds smartly. A simple test is added with an infinite loop that can only be proved unreachable if this propagation is present. This is implemented both with C and directly in test_verifier using assembly. Suggested-by: John Fastabend <[email protected]> Signed-off-by: Brendan Jackman <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-02-02Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski4-3/+27
Signed-off-by: Jakub Kicinski <[email protected]>
2021-01-29bpf: Simplify cases in bpf_base_func_protoTobias Klauser1-8/+4
!perfmon_capable() is checked before the last switch(func_id) in bpf_base_func_proto. Thus, the cases BPF_FUNC_trace_printk and BPF_FUNC_snprintf_btf can be moved to that last switch(func_id) to omit the inline !perfmon_capable() checks. Signed-off-by: Tobias Klauser <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-27bpf: Allow rewriting to ports under ip_unprivileged_port_startStanislav Fomichev2-2/+9
At the moment, BPF_CGROUP_INET{4,6}_BIND hooks can rewrite user_port to the privileged ones (< ip_unprivileged_port_start), but it will be rejected later on in the __inet_bind or __inet6_bind. Let's add another return value to indicate that CAP_NET_BIND_SERVICE check should be ignored. Use the same idea as we currently use in cgroup/egress where bit #1 indicates CN. Instead, for cgroup/bind{4,6}, bit #1 indicates that CAP_NET_BIND_SERVICE should be bypassed. v5: - rename flags to be less confusing (Andrey Ignatov) - rework BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY to work on flags and accept BPF_RET_SET_CN (no behavioral changes) v4: - Add missing IPv6 support (Martin KaFai Lau) v3: - Update description (Martin KaFai Lau) - Fix capability restore in selftest (Martin KaFai Lau) v2: - Switch to explicit return code (Martin KaFai Lau) Signed-off-by: Stanislav Fomichev <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Reviewed-by: Martin KaFai Lau <[email protected]> Acked-by: Andrey Ignatov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-27bpf: Change 'BPF_ADD' to 'BPF_AND' in print_bpf_insn()Menglong Dong1-1/+1
This 'BPF_ADD' is duplicated, and I belive it should be 'BPF_AND'. Fixes: 981f94c3e921 ("bpf: Add bitwise atomic instructions") Signed-off-by: Menglong Dong <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Brendan Jackman <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-26bpf, preload: Fix build when $(O) points to a relative pathQuentin Monnet1-1/+4
Building the kernel with CONFIG_BPF_PRELOAD, and by providing a relative path for the output directory, may fail with the following error: $ make O=build bindeb-pkg ... /.../linux/tools/scripts/Makefile.include:5: *** O=build does not exist. Stop. make[7]: *** [/.../linux/kernel/bpf/preload/Makefile:9: kernel/bpf/preload/libbpf.a] Error 2 make[6]: *** [/.../linux/scripts/Makefile.build:500: kernel/bpf/preload] Error 2 make[5]: *** [/.../linux/scripts/Makefile.build:500: kernel/bpf] Error 2 make[4]: *** [/.../linux/Makefile:1799: kernel] Error 2 make[4]: *** Waiting for unfinished jobs.... In the case above, for the "bindeb-pkg" target, the error is produced by the "dummy" check in Makefile.include, called from libbpf's Makefile. This check changes directory to $(PWD) before checking for the existence of $(O). But at this step we have $(PWD) pointing to "/.../linux/build", and $(O) pointing to "build". So the Makefile.include tries in fact to assert the existence of a directory named "/.../linux/build/build", which does not exist. Note that the error does not occur for all make targets and architectures combinations. This was observed on x86 for "bindeb-pkg", or for a regular build for UML [0]. Here are some details. The root Makefile recursively calls itself once, after changing directory to $(O). The content for the variable $(PWD) is preserved across recursive calls to make, so it is unchanged at this step. For "bindeb-pkg", $(PWD) is eventually updated because the target writes a new Makefile (as debian/rules) and calls it indirectly through dpkg-buildpackage. This script does not preserve $(PWD), which is reset to the current working directory when the target in debian/rules is called. Although not investigated, it seems likely that something similar causes UML to change its value for $(PWD). Non-trivial fixes could be to remove the use of $(PWD) from the "dummy" check, or to make sure that $(PWD) and $(O) are preserved or updated to always play well and form a valid $(PWD)/$(O) path across the different targets and architectures. Instead, we take a simpler approach and just update $(O) when calling libbpf's Makefile, so it points to an absolute path which should always resolve for the "dummy" check run (through includes) by that Makefile. David Gow previously posted a slightly different version of this patch as a RFC [0], two months ago or so. [0] https://lore.kernel.org/bpf/[email protected]/t/#u Fixes: d71fa5c9763c ("bpf: Add kernel module with user mode driver that populates bpffs.") Reported-by: David Gow <[email protected]> Signed-off-by: Quentin Monnet <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Andrii Nakryiko <[email protected]> Cc: Brendan Higgins <[email protected]> Cc: Masahiro Yamada <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-26bpf: Drop disabled LSM hooks from the sleepable setMikko Ylinen1-0/+12
Some networking and keys LSM hooks are conditionally enabled and when building the new sleepable BPF LSM hooks with those LSM hooks disabled, the following build error occurs: BTFIDS vmlinux FAILED unresolved symbol bpf_lsm_socket_socketpair To fix the error, conditionally add the relevant networking/keys LSM hooks to the sleepable set. Fixes: 423f16108c9d8 ("bpf: Augment the set of sleepable LSM hooks") Signed-off-by: Mikko Ylinen <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-24fs: make helpers idmap mount awareChristian Brauner1-3/+4
Extend some inode methods with an additional user namespace argument. A filesystem that is aware of idmapped mounts will receive the user namespace the mount has been marked with. This can be used for additional permission checking and also to enable filesystems to translate between uids and gids if they need to. We have implemented all relevant helpers in earlier patches. As requested we simply extend the exisiting inode method instead of introducing new ones. This is a little more code churn but it's mostly mechanical and doesnt't leave us with additional inode methods. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24inode: make init and permission helpers idmapped mount awareChristian Brauner1-1/+1
The inode_owner_or_capable() helper determines whether the caller is the owner of the inode or is capable with respect to that inode. Allow it to handle idmapped mounts. If the inode is accessed through an idmapped mount it according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Similarly, allow the inode_init_owner() helper to handle idmapped mounts. It initializes a new inode on idmapped mounts by mapping the fsuid and fsgid of the caller from the mount's user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24namei: make permission helpers idmapped mount awareChristian Brauner1-1/+1
The two helpers inode_permission() and generic_permission() are used by the vfs to perform basic permission checking by verifying that the caller is privileged over an inode. In order to handle idmapped mounts we extend the two helpers with an additional user namespace argument. On idmapped mounts the two helpers will make sure to map the inode according to the mount's user namespace and then peform identical permission checks to inode_permission() and generic_permission(). If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Acked-by: Serge Hallyn <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24fs: add file and path permissions helpersChristian Brauner1-1/+1
Add two simple helpers to check permissions on a file and path respectively and convert over some callers. It simplifies quite a few codepaths and also reduces the churn in later patches quite a bit. Christoph also correctly points out that this makes codepaths (e.g. ioctls) way easier to follow that would otherwise have to do more complex argument passing than necessary. Link: https://lore.kernel.org/r/[email protected] Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Suggested-by: Christoph Hellwig <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-23bpf: Fix typo in scalar{,32}_min_max_rsh commentsTobias Klauser1-2/+2
s/bounts/bounds/ Signed-off-by: Tobias Klauser <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-22bpf, inode_storage: Put file handler if no storage was foundPan Bian1-1/+5
Put file f if inode_storage_ptr() returns NULL. Fixes: 8ea636848aca ("bpf: Implement bpf_local_storage for inodes") Signed-off-by: Pan Bian <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: KP Singh <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-22bpf, cgroup: Fix problematic bounds checkLoris Reiff1-1/+1
Since ctx.optlen is signed, a larger value than max_value could be passed, as it is later on used as unsigned, which causes a WARN_ON_ONCE in the copy_to_user. Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks") Signed-off-by: Loris Reiff <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: Stanislav Fomichev <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-22bpf, cgroup: Fix optlen WARN_ON_ONCE toctouLoris Reiff1-0/+5
A toctou issue in `__cgroup_bpf_run_filter_getsockopt` can trigger a WARN_ON_ONCE in a check of `copy_from_user`. `*optlen` is checked to be non-negative in the individual getsockopt functions beforehand. Changing `*optlen` in a race to a negative value will result in a `copy_from_user(ctx.optval, optval, ctx.optlen)` with `ctx.optlen` being a negative integer. Fixes: 0d01da6afc54 ("bpf: implement getsockopt and setsockopt hooks") Signed-off-by: Loris Reiff <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: Stanislav Fomichev <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-20bpf: Split cgroup_bpf_enabled per attach typeStanislav Fomichev1-8/+6
When we attach any cgroup hook, the rest (even if unused/unattached) start to contribute small overhead. In particular, the one we want to avoid is __cgroup_bpf_run_filter_skb which does two redirections to get to the cgroup and pushes/pulls skb. Let's split cgroup_bpf_enabled to be per-attach to make sure only used attach types trigger. I've dropped some existing high-level cgroup_bpf_enabled in some places because BPF_PROG_CGROUP_XXX_RUN macros usually have another cgroup_bpf_enabled check. I also had to copy-paste BPF_CGROUP_RUN_SA_PROG_LOCK for GETPEERNAME/GETSOCKNAME because type for cgroup_bpf_enabled[type] has to be constant and known at compile time. Signed-off-by: Stanislav Fomichev <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Song Liu <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-20bpf: Try to avoid kzalloc in cgroup/{s,g}etsockoptStanislav Fomichev1-7/+45
When we attach a bpf program to cgroup/getsockopt any other getsockopt() syscall starts incurring kzalloc/kfree cost. Let add a small buffer on the stack and use it for small (majority) {s,g}etsockopt values. The buffer is small enough to fit into the cache line and cover the majority of simple options (most of them are 4 byte ints). It seems natural to do the same for setsockopt, but it's a bit more involved when the BPF program modifies the data (where we have to kmalloc). The assumption is that for the majority of setsockopt calls (which are doing pure BPF options or apply policy) this will bring some benefit as well. Without this patch (we remove about 1% __kmalloc): 3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt | --3.30%--__cgroup_bpf_run_filter_getsockopt | --0.81%--__kmalloc Signed-off-by: Stanislav Fomichev <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-20bpf: Remove extra lock_sock for TCP_ZEROCOPY_RECEIVEStanislav Fomichev1-0/+46
Add custom implementation of getsockopt hook for TCP_ZEROCOPY_RECEIVE. We skip generic hooks for TCP_ZEROCOPY_RECEIVE and have a custom call in do_tcp_getsockopt using the on-stack data. This removes 3% overhead for locking/unlocking the socket. Without this patch: 3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt | --3.30%--__cgroup_bpf_run_filter_getsockopt | --0.81%--__kmalloc With the patch applied: 0.52% 0.12% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt_kern Note, exporting uapi/tcp.h requires removing netinet/tcp.h from test_progs.h because those headers have confliciting definitions. Signed-off-by: Stanislav Fomichev <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-20bpf: Permit size-0 datasecYonghong Song1-5/+0
llvm patch https://reviews.llvm.org/D84002 permitted to emit empty rodata datasec if the elf .rodata section contains read-only data from local variables. These local variables will be not emitted as BTF_KIND_VARs since llvm converted these local variables as static variables with private linkage without debuginfo types. Such an empty rodata datasec will make skeleton code generation easy since for skeleton a rodata struct will be generated if there is a .rodata elf section. The existence of a rodata btf datasec is also consistent with the existence of a rodata map created by libbpf. The btf with such an empty rodata datasec will fail in the kernel though as kernel will reject a datasec with zero vlen and zero size. For example, for the below code, int sys_enter(void *ctx) { int fmt[6] = {1, 2, 3, 4, 5, 6}; int dst[6]; bpf_probe_read(dst, sizeof(dst), fmt); return 0; } We got the below btf (bpftool btf dump ./test.o): [1] PTR '(anon)' type_id=0 [2] FUNC_PROTO '(anon)' ret_type_id=3 vlen=1 'ctx' type_id=1 [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED [4] FUNC 'sys_enter' type_id=2 linkage=global [5] INT 'char' size=1 bits_offset=0 nr_bits=8 encoding=SIGNED [6] ARRAY '(anon)' type_id=5 index_type_id=7 nr_elems=4 [7] INT '__ARRAY_SIZE_TYPE__' size=4 bits_offset=0 nr_bits=32 encoding=(none) [8] VAR '_license' type_id=6, linkage=global-alloc [9] DATASEC '.rodata' size=0 vlen=0 [10] DATASEC 'license' size=0 vlen=1 type_id=8 offset=0 size=4 When loading the ./test.o to the kernel with bpftool, we see the following error: libbpf: Error loading BTF: Invalid argument(22) libbpf: magic: 0xeb9f ... [6] ARRAY (anon) type_id=5 index_type_id=7 nr_elems=4 [7] INT __ARRAY_SIZE_TYPE__ size=4 bits_offset=0 nr_bits=32 encoding=(none) [8] VAR _license type_id=6 linkage=1 [9] DATASEC .rodata size=24 vlen=0 vlen == 0 libbpf: Error loading .BTF into kernel: -22. BTF is optional, ignoring. Basically, libbpf changed .rodata datasec size to 24 since elf .rodata section size is 24. The kernel then rejected the BTF since vlen = 0. Note that the above kernel verifier failure can be worked around with changing local variable "fmt" to a static or global, optionally const, variable. This patch permits a datasec with vlen = 0 in kernel. Signed-off-by: Yonghong Song <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-20net, xdp: Introduce __xdp_build_skb_from_frame utility routineLorenzo Bianconi1-44/+2
Introduce __xdp_build_skb_from_frame utility routine to build the skb from xdp_frame. Rely on __xdp_build_skb_from_frame in cpumap code. Signed-off-by: Lorenzo Bianconi <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Jesper Dangaard Brouer <[email protected]> Link: https://lore.kernel.org/bpf/4f9f4c6b3dd3933770c617eb6689dbc0c6e25863.1610475660.git.lorenzo@kernel.org Signed-off-by: Alexei Starovoitov <[email protected]>
2021-01-20Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski7-13/+24
Conflicts: drivers/net/can/dev.c commit 03f16c5075b2 ("can: dev: can_restart: fix use after free bug") commit 3e77f70e7345 ("can: dev: move driver related infrastructure into separate subdir") Code move. drivers/net/dsa/b53/b53_common.c commit 8e4052c32d6b ("net: dsa: b53: fix an off by one in checking "vlan->vid"") commit b7a9e0da2d1c ("net: switchdev: remove vid_begin -> vid_end range from VLAN objects") Field rename. Signed-off-by: Jakub Kicinski <[email protected]>
2021-01-20bpf: Fix signed_{sub,add32}_overflows type handlingDaniel Borkmann1-3/+3
Fix incorrect signed_{sub,add32}_overflows() input types (and a related buggy comment). It looks like this might have slipped in via copy/paste issue, also given prior to 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") the signature of signed_sub_overflows() had s64 a and s64 b as its input args whereas now they are truncated to s32. Thus restore proper types. Also, the case of signed_add32_overflows() is not consistent to signed_sub32_overflows(). Both have s32 as inputs, therefore align the former. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: De4dCr0w <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Reviewed-by: John Fastabend <[email protected]> Acked-by: Alexei Starovoitov <[email protected]>
2021-01-19bpf: Fix helper bpf_map_peek_elem_proto pointing to wrong callbackMircea Cirjaliu1-1/+1
I assume this was obtained by copy/paste. Point it to bpf_map_peek_elem() instead of bpf_map_pop_elem(). In practice it may have been less likely hit when under JIT given shielded via 84430d4232c3 ("bpf, verifier: avoid retpoline for map push/pop/peek operation"). Fixes: f1a2e44a3aec ("bpf: add queue and stack maps") Signed-off-by: Mircea Cirjaliu <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Cc: Mauricio Vasquez <[email protected]> Link: https://lore.kernel.org/bpf/AM7PR02MB6082663DFDCCE8DA7A6DD6B1BBA30@AM7PR02MB6082.eurprd02.prod.outlook.com
2021-01-14bpf: Add size arg to build_id_parse functionJiri Olsa1-1/+1
It's possible to have other build id types (other than default SHA1). Currently there's also ld support for MD5 build id. Adding size argument to build_id_parse function, that returns (if defined) size of the parsed build id, so we can recognize the build id type. Signed-off-by: Jiri Olsa <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-14bpf: Move stack_map_get_build_id into libJiri Olsa1-139/+4
Moving stack_map_get_build_id into lib with declaration in linux/buildid.h header: int build_id_parse(struct vm_area_struct *vma, unsigned char *build_id); This function returns build id for given struct vm_area_struct. There is no functional change to stack_map_get_build_id function. Signed-off-by: Jiri Olsa <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Song Liu <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-14bpf: Add bitwise atomic instructionsBrendan Jackman3-4/+26
This adds instructions for atomic[64]_[fetch_]and atomic[64]_[fetch_]or atomic[64]_[fetch_]xor All these operations are isomorphic enough to implement with the same verifier, interpreter, and x86 JIT code, hence being a single commit. The main interesting thing here is that x86 doesn't directly support the fetch_ version these operations, so we need to generate a CMPXCHG loop in the JIT. This requires the use of two temporary registers, IIUC it's safe to use BPF_REG_AX and x86's AUX_REG for this purpose. Signed-off-by: Brendan Jackman <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Yonghong Song <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
2021-01-14bpf: Pull out a macro for interpreting atomic ALU operationsBrendan Jackman1-41/+39
Since the atomic operations that are added in subsequent commits are all isomorphic with BPF_ADD, pull out a macro to avoid the interpreter becoming dominated by lines of atomic-related code. Note that this sacrificies interpreter performance (combining STX_ATOMIC_W and STX_ATOMIC_DW into single switch case means that we need an extra conditional branch to differentiate them) in favour of compact and (relatively!) simple C code. Signed-off-by: Brendan Jackman <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Yonghong Song <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]