aboutsummaryrefslogtreecommitdiff
path: root/include
AgeCommit message (Collapse)AuthorFilesLines
2018-12-28include/linux/memory_hotplug.h: remove duplicate declaration of offline_pages()Wei Yang1-1/+0
offline_pages() is already declared in this file. Just remove the duplicated one. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/mmu_notifier: use structure for invalidate_range_start/end calls v2Jérôme Glisse2-31/+62
To avoid having to change many call sites everytime we want to add a parameter use a structure to group all parameters for the mmu_notifier invalidate_range_start/end cakks. No functional changes with this patch. [[email protected]: coding style fixes] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Jérôme Glisse <[email protected]> Acked-by: Christian König <[email protected]> Acked-by: Jan Kara <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Ross Zwisler <[email protected]> Cc: Dan Williams <[email protected]> Cc: Paolo Bonzini <[email protected]> Cc: Radim Krcmar <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Felix Kuehling <[email protected]> Cc: Ralph Campbell <[email protected]> Cc: John Hubbard <[email protected]> From: Jérôme Glisse <[email protected]> Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3 fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Jérôme Glisse <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/mmu_notifier: use structure for invalidate_range_start/end callbackJérôme Glisse1-5/+9
Patch series "mmu notifier contextual informations", v2. This patchset adds contextual information, why an invalidation is happening, to mmu notifier callback. This is necessary for user of mmu notifier that wish to maintains their own data structure without having to add new fields to struct vm_area_struct (vma). For instance device can have they own page table that mirror the process address space. When a vma is unmap (munmap() syscall) the device driver can free the device page table for the range. Today we do not have any information on why a mmu notifier call back is happening and thus device driver have to assume that it is always an munmap(). This is inefficient at it means that it needs to re-allocate device page table on next page fault and rebuild the whole device driver data structure for the range. Other use case beside munmap() also exist, for instance it is pointless for device driver to invalidate the device page table when the invalidation is for the soft dirtyness tracking. Or device driver can optimize away mprotect() that change the page table permission access for the range. This patchset enables all this optimizations for device drivers. I do not include any of those in this series but another patchset I am posting will leverage this. The patchset is pretty simple from a code point of view. The first two patches consolidate all mmu notifier arguments into a struct so that it is easier to add/change arguments. The last patch adds the contextual information (munmap, protection, soft dirty, clear, ...). This patch (of 3): To avoid having to change many callback definition everytime we want to add a parameter use a structure to group all parameters for the mmu_notifier invalidate_range_start/end callback. No functional changes with this patch. [[email protected]: fix drivers/gpu/drm/amd/amdgpu/amdgpu_mn.c kerneldoc] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Jérôme Glisse <[email protected]> Acked-by: Jan Kara <[email protected]> Acked-by: Jason Gunthorpe <[email protected]> [infiniband] Cc: Matthew Wilcox <[email protected]> Cc: Ross Zwisler <[email protected]> Cc: Dan Williams <[email protected]> Cc: Paolo Bonzini <[email protected]> Cc: Radim Krcmar <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Christian Koenig <[email protected]> Cc: Felix Kuehling <[email protected]> Cc: Ralph Campbell <[email protected]> Cc: John Hubbard <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28lib/ioremap: ensure break-before-make is used for huge p4d mappingsWill Deacon1-0/+5
Whilst no architectures actually enable support for huge p4d mappings in the vmap area, the code that is implemented should be using break-before-make, as we do for pud and pmd huge entries. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Will Deacon <[email protected]> Reviewed-by: Toshi Kani <[email protected]> Cc: Chintan Pandya <[email protected]> Cc: Toshi Kani <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Sean Christopherson <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28/proc/kpagecount: return 0 for special pages that are never mappedAnthony Yznaga1-0/+6
Certain pages that are never mapped to userspace have a type indicated in the page_type field of their struct pages (e.g. PG_buddy). page_type overlaps with _mapcount so set the count to 0 and avoid calling page_mapcount() for these pages. [[email protected]: incorporate feedback from Matthew Wilcox] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Anthony Yznaga <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Acked-by: Matthew Wilcox <[email protected]> Reviewed-by: Naoya Horiguchi <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: David Rientjes <[email protected]> Cc: Alexey Dobriyan <[email protected]> Cc: Kirill A. Shutemov <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Alexander Duyck <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Miles Chen <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, hotplug: move init_currently_empty_zone() under zone_span_lock protectionWei Yang1-2/+2
During online_pages phase, pgdat->nr_zones will be updated in case this zone is empty. Currently the online_pages phase is protected by the global locks (device_device_hotplug_lock and mem_hotplug_lock), which ensures there is no contention during the update of nr_zones. These global locks introduces scalability issues (especially the second one), which slow down code relying on get_online_mems(). This is also a preparation for not having to rely on get_online_mems() but instead some more fine grained locks. The patch moves init_currently_empty_zone under both zone_span_writelock and pgdat_resize_lock because both the pgdat state is changed (nr_zones) and the zone's start_pfn. Also this patch changes the documentation of node_size_lock to include the protection of nr_zones. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Oscar Salvador <[email protected]> Cc: David Hildenbrand <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, sparse: pass nid instead of pgdat to sparse_add_one_section()Wei Yang1-2/+2
Since the information needed in sparse_add_one_section() is node id to allocate proper memory, it is not necessary to pass its pgdat. This patch changes the prototype of sparse_add_one_section() to pass node id directly. This is intended to reduce misleading that sparse_add_one_section() would touch pgdat. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Oscar Salvador <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, sparse: drop pgdat_resize_lock in sparse_add/remove_one_section()Wei Yang1-2/+1
pgdat_resize_lock is used to protect pgdat's memory region information like: node_start_pfn, node_present_pages, etc. While in function sparse_add/remove_one_section(), pgdat_resize_lock is used to protect initialization/release of one mem_section. This looks not proper. These code paths are currently protected by mem_hotplug_lock currently but should there ever be any reason for locking at the sparse layer a dedicated lock should be introduced. Following is the current call trace of sparse_add/remove_one_section() mem_hotplug_begin() arch_add_memory() add_pages() __add_pages() __add_section() sparse_add_one_section() mem_hotplug_done() mem_hotplug_begin() arch_remove_memory() __remove_pages() __remove_section() sparse_remove_one_section() mem_hotplug_done() The comment above the pgdat_resize_lock also mentions "Holding this will also guarantee that any pfn_valid() stays that way.", which is true with the current implementation and false after this patch. But current implementation doesn't meet this comment. There isn't any pfn walkers to take the lock so this looks like a relict from the past. This patch also removes this comment. [[email protected]: v4] Link: http://lkml.kernel.org/r/[email protected] [[email protected]: changelog suggestion] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Oscar Salvador <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: remove pte_lock_deinit()Yu Zhao1-9/+2
Pagetable page doesn't touch page->mapping or have any used field that overlaps with it. No need to clear mapping in dtor. In fact, doing so might mask problems that otherwise would be detected by bad_page(). Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yu Zhao <[email protected]> Reviewed-by: Matthew Wilcox <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Dan Williams <[email protected]> Cc: Pavel Tatashin <[email protected]> Cc: Souptick Joarder <[email protected]> Cc: Logan Gunthorpe <[email protected]> Cc: Keith Busch <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/memblock.c: skip kmemleak for kasan_init()Qian Cai1-0/+1
Kmemleak does not play well with KASAN (tested on both HPE Apollo 70 and Huawei TaiShan 2280 aarch64 servers). After calling start_kernel()->setup_arch()->kasan_init(), kmemleak early log buffer went from something like 280 to 260000 which caused kmemleak disabled and crash dump memory reservation failed. The multitude of kmemleak_alloc() calls is from nested loops while KASAN is setting up full memory mappings, so let early kmemleak allocations skip those memblock_alloc_internal() calls came from kasan_init() given that those early KASAN memory mappings should not reference to other memory. Hence, no kmemleak false positives. kasan_init kasan_map_populate [1] kasan_pgd_populate [2] kasan_pud_populate [3] kasan_pmd_populate [4] kasan_pte_populate [5] kasan_alloc_zeroed_page memblock_alloc_try_nid memblock_alloc_internal kmemleak_alloc [1] for_each_memblock(memory, reg) [2] while (pgdp++, addr = next, addr != end) [3] while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp))) [4] while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp))) [5] while (ptep++, addr = next, addr != end && pte_none(READ_ONCE(*ptep))) Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Qian Cai <[email protected]> Acked-by: Catalin Marinas <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Alexander Potapenko <[email protected]> Cc: Dmitry Vyukov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, memory_hotplug: add nid parameter to arch_remove_memoryOscar Salvador1-2/+2
Patch series "Do not touch pages in hot-remove path", v2. This patchset aims for two things: 1) A better definition about offline and hot-remove stage 2) Solving bugs where we can access non-initialized pages during hot-remove operations [2] [3]. This is achieved by moving all page/zone handling to the offline stage, so we do not need to access pages when hot-removing memory. [1] https://patchwork.kernel.org/cover/10691415/ [2] https://patchwork.kernel.org/patch/10547445/ [3] https://www.spinics.net/lists/linux-mm/msg161316.html This patch (of 5): This is a preparation for the following-up patches. The idea of passing the nid is that it will allow us to get rid of the zone parameter afterwards. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Oscar Salvador <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Reviewed-by: Pavel Tatashin <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Dan Williams <[email protected]> Cc: Jerome Glisse <[email protected]> Cc: Jonathan Cameron <[email protected]> Cc: "Rafael J. Wysocki" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: check nr_initialised with PAGES_PER_SECTION directly in defer_init()Wei Yang1-2/+0
When DEFERRED_STRUCT_PAGE_INIT is configured, only the first section of each node's highest zone is initialized before defer stage. static_init_pgcnt is used to store the number of pages like this: pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, pgdat->node_spanned_pages); because we don't want to overflow zone's range. But this is not necessary, since defer_init() is called like this: memmap_init_zone() for pfn in [start_pfn, end_pfn) defer_init(pfn, end_pfn) In case (pgdat->node_spanned_pages < PAGES_PER_SECTION), the loop would stop before calling defer_init(). BTW, comparing PAGES_PER_SECTION with node_spanned_pages is not correct, since nr_initialised is zone based instead of node based. Even node_spanned_pages is bigger than PAGES_PER_SECTION, its highest zone would have pages less than PAGES_PER_SECTION. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Reviewed-by: Alexander Duyck <[email protected]> Cc: Pavel Tatashin <[email protected]> Cc: Oscar Salvador <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: put_and_wait_on_page_locked() while page is migratedHugh Dickins1-0/+2
Waiting on a page migration entry has used wait_on_page_locked() all along since 2006: but you cannot safely wait_on_page_locked() without holding a reference to the page, and that extra reference is enough to make migrate_page_move_mapping() fail with -EAGAIN, when a racing task faults on the entry before migrate_page_move_mapping() gets there. And that failure is retried nine times, amplifying the pain when trying to migrate a popular page. With a single persistent faulter, migration sometimes succeeds; with two or three concurrent faulters, success becomes much less likely (and the more the page was mapped, the worse the overhead of unmapping and remapping it on each try). This is especially a problem for memory offlining, where the outer level retries forever (or until terminated from userspace), because a heavy refault workload can trigger an endless loop of migration failures. wait_on_page_locked() is the wrong tool for the job. David Herrmann (but was he the first?) noticed this issue in 2014: https://marc.info/?l=linux-mm&m=140110465608116&w=2 Tim Chen started a thread in August 2017 which appears relevant: https://marc.info/?l=linux-mm&m=150275941014915&w=2 where Kan Liang went on to implicate __migration_entry_wait(): https://marc.info/?l=linux-mm&m=150300268411980&w=2 and the thread ended up with the v4.14 commits: 2554db916586 ("sched/wait: Break up long wake list walk") 11a19c7b099f ("sched/wait: Introduce wakeup boomark in wake_up_page_bit") Baoquan He reported "Memory hotplug softlock issue" 14 November 2018: https://marc.info/?l=linux-mm&m=154217936431300&w=2 We have all assumed that it is essential to hold a page reference while waiting on a page lock: partly to guarantee that there is still a struct page when MEMORY_HOTREMOVE is configured, but also to protect against reuse of the struct page going to someone who then holds the page locked indefinitely, when the waiter can reasonably expect timely unlocking. But in fact, so long as wait_on_page_bit_common() does the put_page(), and is careful not to rely on struct page contents thereafter, there is no need to hold a reference to the page while waiting on it. That does mean that this case cannot go back through the loop: but that's fine for the page migration case, and even if used more widely, is limited by the "Stop walking if it's locked" optimization in wake_page_function(). Add interface put_and_wait_on_page_locked() to do this, using "behavior" enum in place of "lock" arg to wait_on_page_bit_common() to implement it. No interruptible or killable variant needed yet, but they might follow: I have a vague notion that reporting -EINTR should take precedence over return from wait_on_page_bit_common() without knowing the page state, so arrange it accordingly - but that may be nothing but pedantic. __migration_entry_wait() still has to take a brief reference to the page, prior to calling put_and_wait_on_page_locked(): but now that it is dropped before waiting, the chance of impeding page migration is very much reduced. Should we perhaps disable preemption across this? shrink_page_list()'s __ClearPageLocked(): that was a surprise! This survived a lot of testing before that showed up. PageWaiters may have been set by wait_on_page_bit_common(), and the reference dropped, just before shrink_page_list() succeeds in freezing its last page reference: in such a case, unlock_page() must be used. Follow the suggestion from Michal Hocko, just revert a978d6f52106 ("mm: unlockless reclaim") now: that optimization predates PageWaiters, and won't buy much these days; but we can reinstate it for the !PageWaiters case if anyone notices. It does raise the question: should vmscan.c's is_page_cache_freeable() and __remove_mapping() now treat a PageWaiters page as if an extra reference were held? Perhaps, but I don't think it matters much, since shrink_page_list() already had to win its trylock_page(), so waiters are not very common there: I noticed no difference when trying the bigger change, and it's surely not needed while put_and_wait_on_page_locked() is only used for page migration. [[email protected]: add put_and_wait_on_page_locked() kerneldoc] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Hugh Dickins <[email protected]> Reported-by: Baoquan He <[email protected]> Tested-by: Baoquan He <[email protected]> Reviewed-by: Andrea Arcangeli <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Linus Torvalds <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Baoquan He <[email protected]> Cc: David Hildenbrand <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Herrmann <[email protected]> Cc: Tim Chen <[email protected]> Cc: Kan Liang <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Nick Piggin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, oom: add oom victim's memcg to the oom context informationyuzhoujian1-2/+9
The current oom report doesn't display victim's memcg context during the global OOM situation. While this information is not strictly needed, it can be really helpful for containerized environments to locate which container has lost a process. Now that we have a single line for the oom context, we can trivially add both the oom memcg (this can be either global_oom or a specific memcg which hits its hard limits) and task_memcg which is the victim's memcg. Below is the single line output in the oom report after this patch. - global oom context information: oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid> - memcg oom context information: oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid> [[email protected]: use pr_cont() in mem_cgroup_print_oom_context()] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: yuzhoujian <[email protected]> Signed-off-by: Tetsuo Handa <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: David Rientjes <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Tetsuo Handa <[email protected]> Cc: Roman Gushchin <[email protected]> Cc: Yang Shi <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, oom: reorganize the oom report in dump_headeryuzhoujian1-0/+10
OOM report contains several sections. The first one is the allocation context that has triggered the OOM. Then we have cpuset context followed by the stack trace of the OOM path. The tird one is the OOM memory information. Followed by the current memory state of all system tasks. At last, we will show oom eligible tasks and the information about the chosen oom victim. One thing that makes parsing more awkward than necessary is that we do not have a single and easily parsable line about the oom context. This patch is reorganizing the oom report to 1) who invoked oom and what was the allocation request [ 515.902945] tuned invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0 2) OOM stack trace [ 515.904273] CPU: 24 PID: 1809 Comm: tuned Not tainted 4.20.0-rc3+ #3 [ 515.905518] Hardware name: Inspur SA5212M4/YZMB-00370-107, BIOS 4.1.10 11/14/2016 [ 515.906821] Call Trace: [ 515.908062] dump_stack+0x5a/0x73 [ 515.909311] dump_header+0x55/0x28c [ 515.914260] oom_kill_process+0x2d8/0x300 [ 515.916708] out_of_memory+0x145/0x4a0 [ 515.917932] __alloc_pages_slowpath+0x7d2/0xa16 [ 515.919157] __alloc_pages_nodemask+0x277/0x290 [ 515.920367] filemap_fault+0x3d0/0x6c0 [ 515.921529] ? filemap_map_pages+0x2b8/0x420 [ 515.922709] ext4_filemap_fault+0x2c/0x40 [ext4] [ 515.923884] __do_fault+0x20/0x80 [ 515.925032] __handle_mm_fault+0xbc0/0xe80 [ 515.926195] handle_mm_fault+0xfa/0x210 [ 515.927357] __do_page_fault+0x233/0x4c0 [ 515.928506] do_page_fault+0x32/0x140 [ 515.929646] ? page_fault+0x8/0x30 [ 515.930770] page_fault+0x1e/0x30 3) OOM memory information [ 515.958093] Mem-Info: [ 515.959647] active_anon:26501758 inactive_anon:1179809 isolated_anon:0 active_file:4402672 inactive_file:483963 isolated_file:1344 unevictable:0 dirty:4886753 writeback:0 unstable:0 slab_reclaimable:148442 slab_unreclaimable:18741 mapped:1347 shmem:1347 pagetables:58669 bounce:0 free:88663 free_pcp:0 free_cma:0 ... 4) current memory state of all system tasks [ 516.079544] [ 744] 0 744 9211 1345 114688 82 0 systemd-journal [ 516.082034] [ 787] 0 787 31764 0 143360 92 0 lvmetad [ 516.084465] [ 792] 0 792 10930 1 110592 208 -1000 systemd-udevd [ 516.086865] [ 1199] 0 1199 13866 0 131072 112 -1000 auditd [ 516.089190] [ 1222] 0 1222 31990 1 110592 157 0 smartd [ 516.091477] [ 1225] 0 1225 4864 85 81920 43 0 irqbalance [ 516.093712] [ 1226] 0 1226 52612 0 258048 426 0 abrtd [ 516.112128] [ 1280] 0 1280 109774 55 299008 400 0 NetworkManager [ 516.113998] [ 1295] 0 1295 28817 37 69632 24 0 ksmtuned [ 516.144596] [ 10718] 0 10718 2622484 1721372 15998976 267219 0 panic [ 516.145792] [ 10719] 0 10719 2622484 1164767 9818112 53576 0 panic [ 516.146977] [ 10720] 0 10720 2622484 1174361 9904128 53709 0 panic [ 516.148163] [ 10721] 0 10721 2622484 1209070 10194944 54824 0 panic [ 516.149329] [ 10722] 0 10722 2622484 1745799 14774272 91138 0 panic 5) oom context (contrains and the chosen victim). oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0-1,task=panic,pid=10737,uid=0 An admin can easily get the full oom context at a single line which makes parsing much easier. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: yuzhoujian <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: David Rientjes <[email protected]> Cc: "Kirill A . Shutemov" <[email protected]> Cc: Roman Gushchin <[email protected]> Cc: Tetsuo Handa <[email protected]> Cc: Yang Shi <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: make free_reserved_area() return "const char *"Alexey Dobriyan1-1/+1
and propagate through down the call stack. Link: http://lkml.kernel.org/r/20181124091411.GC10969@avx2 Signed-off-by: Alexey Dobriyan <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/debug.c: make "migrate_reason_names[]" const char *Alexey Dobriyan1-1/+1
Those strings are immutable as well. Link: http://lkml.kernel.org/r/20181124090508.GB10877@avx2 Signed-off-by: Alexey Dobriyan <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/mmzone.c: make "migratetype_names" const char *Alexey Dobriyan1-1/+1
Those strings are immutable in fact. Link: http://lkml.kernel.org/r/20181124090327.GA10877@avx2 Signed-off-by: Alexey Dobriyan <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: reclaim small amounts of memory when an external fragmentation event occursMel Gorman2-4/+8
An external fragmentation event was previously described as When the page allocator fragments memory, it records the event using the mm_page_alloc_extfrag event. If the fallback_order is smaller than a pageblock order (order-9 on 64-bit x86) then it's considered an event that will cause external fragmentation issues in the future. The kernel reduces the probability of such events by increasing the watermark sizes by calling set_recommended_min_free_kbytes early in the lifetime of the system. This works reasonably well in general but if there are enough sparsely populated pageblocks then the problem can still occur as enough memory is free overall and kswapd stays asleep. This patch introduces a watermark_boost_factor sysctl that allows a zone watermark to be temporarily boosted when an external fragmentation causing events occurs. The boosting will stall allocations that would decrease free memory below the boosted low watermark and kswapd is woken if the calling context allows to reclaim an amount of memory relative to the size of the high watermark and the watermark_boost_factor until the boost is cleared. When kswapd finishes, it wakes kcompactd at the pageblock order to clean some of the pageblocks that may have been affected by the fragmentation event. kswapd avoids any writeback, slab shrinkage and swap from reclaim context during this operation to avoid excessive system disruption in the name of fragmentation avoidance. Care is taken so that kswapd will do normal reclaim work if the system is really low on memory. This was evaluated using the same workloads as "mm, page_alloc: Spread allocations across zones before introducing fragmentation". 1-socket Skylake machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 1 THP allocating thread -------------------------------------- 4.20-rc3 extfrag events < order 9: 804694 4.20-rc3+patch: 408912 (49% reduction) 4.20-rc3+patch1-4: 18421 (98% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%) Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%) Note that external fragmentation causing events are massively reduced by this path whether in comparison to the previous kernel or the vanilla kernel. The fault latency for huge pages appears to be increased but that is only because THP allocations were successful with the patch applied. 1-socket Skylake machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 291392 4.20-rc3+patch: 191187 (34% reduction) 4.20-rc3+patch1-4: 13464 (95% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%) Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%) Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%) Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%) As before, massive reduction in external fragmentation events, some jitter on latencies and an increase in THP allocation success rates. 2-socket Haswell machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 5 THP allocating threads ---------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 215698 4.20-rc3+patch: 200210 (7% reduction) 4.20-rc3+patch1-4: 14263 (93% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%) Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%) There is a 93% reduction in fragmentation causing events, there is a big reduction in the huge page fault latency and allocation success rate is higher. 2-socket Haswell machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 166352 4.20-rc3+patch: 147463 (11% reduction) 4.20-rc3+patch1-4: 11095 (93% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%* Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%) There is a large reduction in fragmentation events with some jitter around the latencies and success rates. As before, the high THP allocation success rate does mean the system is under a lot of pressure. However, as the fragmentation events are reduced, it would be expected that the long-term allocation success rate would be higher. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mel Gorman <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: David Rientjes <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Zi Yan <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: move zone watermark accesses behind an accessorMel Gorman1-4/+5
This is a preparation patch only, no functional change. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mel Gorman <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: David Rientjes <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Zi Yan <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/memory_hotplug: drop "online" parameter from add_memory_resource()David Hildenbrand1-1/+1
Userspace should always be in charge of how to online memory and if memory should be onlined automatically in the kernel. Let's drop the parameter to overwrite this - XEN passes memhp_auto_online, just like add_memory(), so we can directly use that instead internally. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Oscar Salvador <[email protected]> Acked-by: Juergen Gross <[email protected]> Cc: Boris Ostrovsky <[email protected]> Cc: Stefano Stabellini <[email protected]> Cc: Dan Williams <[email protected]> Cc: Pavel Tatashin <[email protected]> Cc: David Hildenbrand <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Arun KS <[email protected]> Cc: Mathieu Malaterre <[email protected]> Cc: Stephen Rothwell <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28memblock: replace usage of __memblock_free_early() with memblock_free()Mike Rapoport1-3/+2
__memblock_free_early() is only used by the convenience wrappers, so essentially we wrap a call to memblock_free() twice. Replace calls of __memblock_free_early() with calls to memblock_free() and drop the former. Link: http://lkml.kernel.org/r/20181125102940.GE28634@rapoport-lnx Signed-off-by: Mike Rapoport <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Wentao Wang <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, hmm: use devm semantics for hmm_devmem_{add, remove}Dan Williams1-3/+1
devm semantics arrange for resources to be torn down when device-driver-probe fails or when device-driver-release completes. Similar to devm_memremap_pages() there is no need to support an explicit remove operation when the users properly adhere to devm semantics. Note that devm_kzalloc() automatically handles allocating node-local memory. Link: http://lkml.kernel.org/r/154275559545.76910.9186690723515469051.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: Jérôme Glisse <[email protected]> Cc: "Jérôme Glisse" <[email protected]> Cc: Logan Gunthorpe <[email protected]> Cc: Balbir Singh <[email protected]> Cc: Michal Hocko <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm, devm_memremap_pages: fix shutdown handlingDan Williams1-0/+2
The last step before devm_memremap_pages() returns success is to allocate a release action, devm_memremap_pages_release(), to tear the entire setup down. However, the result from devm_add_action() is not checked. Checking the error from devm_add_action() is not enough. The api currently relies on the fact that the percpu_ref it is using is killed by the time the devm_memremap_pages_release() is run. Rather than continue this awkward situation, offload the responsibility of killing the percpu_ref to devm_memremap_pages_release() directly. This allows devm_memremap_pages() to do the right thing relative to init failures and shutdown. Without this change we could fail to register the teardown of devm_memremap_pages(). The likelihood of hitting this failure is tiny as small memory allocations almost always succeed. However, the impact of the failure is large given any future reconfiguration, or disable/enable, of an nvdimm namespace will fail forever as subsequent calls to devm_memremap_pages() will fail to setup the pgmap_radix since there will be stale entries for the physical address range. An argument could be made to require that the ->kill() operation be set in the @pgmap arg rather than passed in separately. However, it helps code readability, tracking the lifetime of a given instance, to be able to grep the kill routine directly at the devm_memremap_pages() call site. Link: http://lkml.kernel.org/r/154275558526.76910.7535251937849268605.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <[email protected]> Fixes: e8d513483300 ("memremap: change devm_memremap_pages interface...") Reviewed-by: "Jérôme Glisse" <[email protected]> Reported-by: Logan Gunthorpe <[email protected]> Reviewed-by: Logan Gunthorpe <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Cc: Balbir Singh <[email protected]> Cc: Michal Hocko <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/swap: use nr_node_ids for avail_lists in swap_info_structAaron Lu1-1/+10
Since a2468cc9bfdf ("swap: choose swap device according to numa node"), avail_lists field of swap_info_struct is changed to an array with MAX_NUMNODES elements. This made swap_info_struct size increased to 40KiB and needs an order-4 page to hold it. This is not optimal in that: 1 Most systems have way less than MAX_NUMNODES(1024) nodes so it is a waste of memory; 2 It could cause swapon failure if the swap device is swapped on after system has been running for a while, due to no order-4 page is available as pointed out by Vasily Averin. Solve the above two issues by using nr_node_ids(which is the actual possible node number the running system has) for avail_lists instead of MAX_NUMNODES. nr_node_ids is unknown at compile time so can't be directly used when declaring this array. What I did here is to declare avail_lists as zero element array and allocate space for it when allocating space for swap_info_struct. The reason why keep using array but not pointer is plist_for_each_entry needs the field to be part of the struct, so pointer will not work. This patch is on top of Vasily Averin's fix commit. I think the use of kvzalloc for swap_info_struct is still needed in case nr_node_ids is really big on some systems. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Aaron Lu <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Vasily Averin <[email protected]> Cc: Huang Ying <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28vmscan: return NODE_RECLAIM_NOSCAN in node_reclaim() when CONFIG_NUMA is nWei Yang1-6/+0
Commit fa5e084e43eb ("vmscan: do not unconditionally treat zones that fail zone_reclaim() as full") changed the return value of node_reclaim(). The original return value 0 means NODE_RECLAIM_SOME after this commit. While the return value of node_reclaim() when CONFIG_NUMA is n is not changed. This will leads to call zone_watermark_ok() again. This patch fixes the return value by adjusting to NODE_RECLAIM_NOSCAN. Since node_reclaim() is only called in page_alloc.c, move it to mm/internal.h. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Wei Yang <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: Matthew Wilcox <[email protected]> Cc: Mel Gorman <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: remove managed_page_count_lock spinlockArun KS1-6/+0
Now that totalram_pages and managed_pages are atomic varibles, no need of managed_page_count spinlock. The lock had really a weak consistency guarantee. It hasn't been used for anything but the update but no reader actually cares about all the values being updated to be in sync. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arun KS <[email protected]> Reviewed-by: Konstantin Khlebnikov <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: David Hildenbrand <[email protected]> Reviewed-by: Pavel Tatashin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: convert totalram_pages and totalhigh_pages variables to atomicArun KS3-4/+52
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [[email protected]: coding style fixes] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arun KS <[email protected]> Suggested-by: Michal Hocko <[email protected]> Suggested-by: Vlastimil Babka <[email protected]> Reviewed-by: Konstantin Khlebnikov <[email protected]> Reviewed-by: Pavel Tatashin <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Cc: David Hildenbrand <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: convert zone->managed_pages to atomic variableArun KS1-2/+7
totalram_pages, zone->managed_pages and totalhigh_pages updates are protected by managed_page_count_lock, but readers never care about it. Convert these variables to atomic to avoid readers potentially seeing a store tear. This patch converts zone->managed_pages. Subsequent patches will convert totalram_panges, totalhigh_pages and eventually managed_page_count_lock will be removed. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arun KS <[email protected]> Suggested-by: Michal Hocko <[email protected]> Suggested-by: Vlastimil Babka <[email protected]> Reviewed-by: Konstantin Khlebnikov <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Vlastimil Babka <[email protected]> Reviewed-by: Pavel Tatashin <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28xxHash: create arch dependent 32/64-bit xxhash()Timofey Titovets1-0/+23
Patch series "Currently used jhash are slow enough and replace it allow as to make KSM", v8. Apeed (in kernel): ksm: crc32c hash() 12081 MB/s ksm: xxh64 hash() 8770 MB/s ksm: xxh32 hash() 4529 MB/s ksm: jhash2 hash() 1569 MB/s Sioh Lee's testing (copy from other mail): Test platform: openstack cloud platform (NEWTON version) Experiment node: openstack based cloud compute node (CPU: xeon E5-2620 v3, memory 64gb) VM: (2 VCPU, RAM 4GB, DISK 20GB) * 4 Linux kernel: 4.14 (latest version) KSM setup - sleep_millisecs: 200ms, pages_to_scan: 200 Experiment process: Firstly, we turn off KSM and launch 4 VMs. Then we turn on the KSM and measure the checksum computation time until full_scans become two. The experimental results (the experimental value is the average of the measured values) crc32c_intel: 1084.10ns crc32c (no hardware acceleration): 7012.51ns xxhash32: 2227.75ns xxhash64: 1413.16ns jhash2: 5128.30ns In summary, the result shows that crc32c_intel has advantages over all of the hash function used in the experiment. (decreased by 84.54% compared to crc32c, 78.86% compared to jhash2, 51.33% xxhash32, 23.28% compared to xxhash64) the results are similar to those of Timofey. But, use only xxhash for now, because for using crc32c, cryptoapi must be initialized first - that require some tricky solution to work good in all situations. So: - First patch implement compile time pickup of fastest implementation of xxhash for target platform. - The second patch replaces jhash2 with xxhash This patch (of 2): xxh32() - fast on both 32/64-bit platforms xxh64() - fast only on 64-bit platform Create xxhash() which will pick up the fastest version at compile time. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Timofey Titovets <[email protected]> Reviewed-by: Pavel Tatashin <[email protected]> Reviewed-by: Mike Rapoport <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: leesioh <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: only report isolation failures when offlining memoryMichal Hocko1-2/+9
Heiko has complained that his log is swamped by warnings from has_unmovable_pages [ 20.536664] page dumped because: has_unmovable_pages [ 20.536792] page:000003d081ff4080 count:1 mapcount:0 mapping:000000008ff88600 index:0x0 compound_mapcount: 0 [ 20.536794] flags: 0x3fffe0000010200(slab|head) [ 20.536795] raw: 03fffe0000010200 0000000000000100 0000000000000200 000000008ff88600 [ 20.536796] raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000 [ 20.536797] page dumped because: has_unmovable_pages [ 20.536814] page:000003d0823b0000 count:1 mapcount:0 mapping:0000000000000000 index:0x0 [ 20.536815] flags: 0x7fffe0000000000() [ 20.536817] raw: 07fffe0000000000 0000000000000100 0000000000000200 0000000000000000 [ 20.536818] raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000 which are not triggered by the memory hotplug but rather CMA allocator. The original idea behind dumping the page state for all call paths was that these messages will be helpful debugging failures. From the above it seems that this is not the case for the CMA path because we are lacking much more context. E.g the second reported page might be a CMA allocated page. It is still interesting to see a slab page in the CMA area but it is hard to tell whether this is bug from the above output alone. Address this issue by dumping the page state only on request. Both start_isolate_page_range and has_unmovable_pages already have an argument to ignore hwpoison pages so make this argument more generic and turn it into flags and allow callers to combine non-default modes into a mask. While we are at it, has_unmovable_pages call from is_pageblock_removable_nolock (sysfs removable file) is questionable to report the failure so drop it from there as well. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Reported-by: Heiko Carstens <[email protected]> Reviewed-by: Oscar Salvador <[email protected]> Cc: Anshuman Khandual <[email protected]> Cc: Stephen Rothwell <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28writeback: don't decrement wb->refcnt if !wb->bdiAnders Roxell1-0/+8
This happened while running in qemu-system-aarch64, the AMBA PL011 UART driver when enabling CONFIG_DEBUG_TEST_DRIVER_REMOVE. arch_initcall(pl011_init) came before subsys_initcall(default_bdi_init), devtmpfs' handle_remove() crashes because the reference count is a NULL pointer only because wb->bdi hasn't been initialized yet. Rework so that wb_put have an extra check if wb->bdi before decrement wb->refcnt and also add a WARN_ON_ONCE to get a warning if it happens again in other drivers. Link: http://lkml.kernel.org/r/[email protected] Fixes: 52ebea749aae ("writeback: make backing_dev_info host cgroup-specific bdi_writebacks") Signed-off-by: Arnd Bergmann <[email protected]> Signed-off-by: Anders Roxell <[email protected]> Co-developed-by: Arnd Bergmann <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm/mmu_notifier.c: remove mmu_notifier_synchronize()Sean Christopherson1-1/+0
Contrary to its name, mmu_notifier_synchronize() does not synchronize the notifier's SRCU instance, but rather waits for RCU callbacks to finish. i.e. it invokes rcu_barrier(). The RCU documentation is quite clear on this matter, explicitly calling out that rcu_barrier() does not imply synchronize_rcu(). As there are no callers of mmu_notifier_synchronize() and it's unclear whether any user of mmu_notifier_call_srcu() will ever want to barrier on their callbacks, simply remove the function. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Jérôme Glisse <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28include/linux/slab.h: fix sparse warning in kmalloc_type()Vlastimil Babka1-12/+12
Multiple people have reported the following sparse warning: ./include/linux/slab.h:332:43: warning: dubious: x & !y The minimal fix would be to change the logical & to boolean &&, which emits the same code, but Andrew has suggested that the branch-avoiding tricks are maybe not worthwile. David Laight provided a nice comparison of disassembly of multiple variants, which shows that the current version produces a 4 deep dependency chain, and fixing the sparse warning by changing logical and to multiplication emits an IMUL, making it even more expensive. The code as rewritten by this patch yielded the best disassembly, with a single predictable branch for the most common case, and a ternary operator for the rest, which gcc seems to compile without a branch or cmov by itself. The result should be more readable, without a sparse warning and probably also faster for the common case. Link: http://lkml.kernel.org/r/[email protected] Fixes: 1291523f2c1d ("mm, slab/slub: introduce kmalloc-reclaimable caches") Reviewed-by: Andrew Morton <[email protected]> Signed-off-by: Vlastimil Babka <[email protected]> Reported-by: Bart Van Assche <[email protected]> Reported-by: Darryl T. Agostinelli <[email protected]> Reported-by: Masahiro Yamada <[email protected]> Suggested-by: Andrew Morton <[email protected]> Suggested-by: David Laight <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan: add __must_check annotations to kasan hooksAndrey Konovalov1-6/+10
This patch adds __must_check annotations to kasan hooks that return a pointer to make sure that a tagged pointer always gets propagated. Link: http://lkml.kernel.org/r/03b269c5e453945f724bfca3159d4e1333a8fb1c.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Suggested-by: Andrey Ryabinin <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Dmitry Vyukov <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan, mm, arm64: tag non slab memory allocated via pageallocAndrey Konovalov2-0/+39
Tag-based KASAN doesn't check memory accesses through pointers tagged with 0xff. When page_address is used to get pointer to memory that corresponds to some page, the tag of the resulting pointer gets set to 0xff, even though the allocated memory might have been tagged differently. For slab pages it's impossible to recover the correct tag to return from page_address, since the page might contain multiple slab objects tagged with different values, and we can't know in advance which one of them is going to get accessed. For non slab pages however, we can recover the tag in page_address, since the whole page was marked with the same tag. This patch adds tagging to non slab memory allocated with pagealloc. To set the tag of the pointer returned from page_address, the tag gets stored to page->flags when the memory gets allocated. Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Acked-by: Will Deacon <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan, arm64: add brk handler for inline instrumentationAndrey Konovalov1-0/+3
Tag-based KASAN inline instrumentation mode (which embeds checks of shadow memory into the generated code, instead of inserting a callback) generates a brk instruction when a tag mismatch is detected. This commit adds a tag-based KASAN specific brk handler, that decodes the immediate value passed to the brk instructions (to extract information about the memory access that triggered the mismatch), reads the register values (x0 contains the guilty address) and reports the bug. Link: http://lkml.kernel.org/r/c91fe7684070e34dc34b419e6b69498f4dcacc2d.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Acked-by: Will Deacon <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28mm: move obj_to_index to include/linux/slab_def.hAndrey Konovalov1-0/+13
While with SLUB we can actually preassign tags for caches with contructors and store them in pointers in the freelist, SLAB doesn't allow that since the freelist is stored as an array of indexes, so there are no pointers to store the tags. Instead we compute the tag twice, once when a slab is created before calling the constructor and then again each time when an object is allocated with kmalloc. Tag is computed simply by taking the lowest byte of the index that corresponds to the object. However in kasan_kmalloc we only have access to the objects pointer, so we need a way to find out which index this object corresponds to. This patch moves obj_to_index from slab.c to include/linux/slab_def.h to be reused by KASAN. Link: http://lkml.kernel.org/r/c02cd9e574cfd93858e43ac94b05e38f891fef64.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Acked-by: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan: add tag related helper functionsAndrey Konovalov1-0/+13
This commit adds a few helper functions, that are meant to be used to work with tags embedded in the top byte of kernel pointers: to set, to get or to reset the top byte. Link: http://lkml.kernel.org/r/f6c6437bb8e143bc44f42c3c259c62e734be7935.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Cc: Andrey Ryabinin <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Dmitry Vyukov <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan: initialize shadow to 0xff for tag-based modeAndrey Konovalov1-0/+8
A tag-based KASAN shadow memory cell contains a memory tag, that corresponds to the tag in the top byte of the pointer, that points to that memory. The native top byte value of kernel pointers is 0xff, so with tag-based KASAN we need to initialize shadow memory to 0xff. [[email protected]: arm64: skip kmemleak for KASAN again\ Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/5cc1b789aad7c99cf4f3ec5b328b147ad53edb40.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan: rename kasan_zero_page to kasan_early_shadow_pageAndrey Konovalov1-6/+6
With tag based KASAN mode the early shadow value is 0xff and not 0x00, so this patch renames kasan_zero_(page|pte|pmd|pud|p4d) to kasan_early_shadow_(page|pte|pmd|pud|p4d) to avoid confusion. Link: http://lkml.kernel.org/r/3fed313280ebf4f88645f5b89ccbc066d320e177.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Suggested-by: Mark Rutland <[email protected]> Cc: Andrey Ryabinin <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Dmitry Vyukov <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan: add CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGSAndrey Konovalov4-18/+23
This commit splits the current CONFIG_KASAN config option into two: 1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one that exists now); 2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode. The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have another hardware tag-based KASAN mode, that will rely on hardware memory tagging support in arm64. With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to instrument kernel files with -fsantize=kernel-hwaddress (except the ones for which KASAN_SANITIZE := n is set). Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes. This commit also adds empty placeholder (for now) implementation of tag-based KASAN specific hooks inserted by the compiler and adjusts common hooks implementation. While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will enable once all the infrastracture code has been added. Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-28kasan, mm: change hooks signaturesAndrey Konovalov2-16/+31
Patch series "kasan: add software tag-based mode for arm64", v13. This patchset adds a new software tag-based mode to KASAN [1]. (Initially this mode was called KHWASAN, but it got renamed, see the naming rationale at the end of this section). The plan is to implement HWASan [2] for the kernel with the incentive, that it's going to have comparable to KASAN performance, but in the same time consume much less memory, trading that off for somewhat imprecise bug detection and being supported only for arm64. The underlying ideas of the approach used by software tag-based KASAN are: 1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store pointer tags in the top byte of each kernel pointer. 2. Using shadow memory, we can store memory tags for each chunk of kernel memory. 3. On each memory allocation, we can generate a random tag, embed it into the returned pointer and set the memory tags that correspond to this chunk of memory to the same value. 4. By using compiler instrumentation, before each memory access we can add a check that the pointer tag matches the tag of the memory that is being accessed. 5. On a tag mismatch we report an error. With this patchset the existing KASAN mode gets renamed to generic KASAN, with the word "generic" meaning that the implementation can be supported by any architecture as it is purely software. The new mode this patchset adds is called software tag-based KASAN. The word "tag-based" refers to the fact that this mode uses tags embedded into the top byte of kernel pointers and the TBI arm64 CPU feature that allows to dereference such pointers. The word "software" here means that shadow memory manipulation and tag checking on pointer dereference is done in software. As it is the only tag-based implementation right now, "software tag-based" KASAN is sometimes referred to as simply "tag-based" in this patchset. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support (announced by Arm [3]) instead of compiler instrumentation and manual shadow memory manipulation. Same as generic KASAN, software tag-based KASAN is strictly a debugging feature. [1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html [2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html [3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a ====== Rationale On mobile devices generic KASAN's memory usage is significant problem. One of the main reasons to have tag-based KASAN is to be able to perform a similar set of checks as the generic one does, but with lower memory requirements. Comment from Vishwath Mohan <[email protected]>: I don't have data on-hand, but anecdotally both ASAN and KASAN have proven problematic to enable for environments that don't tolerate the increased memory pressure well. This includes (a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go, (c) Connected components like Pixel's visual core [1]. These are both places I'd love to have a low(er) memory footprint option at my disposal. Comment from Evgenii Stepanov <[email protected]>: Looking at a live Android device under load, slab (according to /proc/meminfo) + kernel stack take 8-10% available RAM (~350MB). KASAN's overhead of 2x - 3x on top of it is not insignificant. Not having this overhead enables near-production use - ex. running KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do not reproduce in test configuration. These are the ones that often cost the most engineering time to track down. CPU overhead is bad, but generally tolerable. RAM is critical, in our experience. Once it gets low enough, OOM-killer makes your life miserable. [1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/ ====== Technical details Software tag-based KASAN mode is implemented in a very similar way to the generic one. This patchset essentially does the following: 1. TCR_TBI1 is set to enable Top Byte Ignore. 2. Shadow memory is used (with a different scale, 1:16, so each shadow byte corresponds to 16 bytes of kernel memory) to store memory tags. 3. All slab objects are aligned to shadow scale, which is 16 bytes. 4. All pointers returned from the slab allocator are tagged with a random tag and the corresponding shadow memory is poisoned with the same value. 5. Compiler instrumentation is used to insert tag checks. Either by calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE flags are reused). 6. When a tag mismatch is detected in callback instrumentation mode KASAN simply prints a bug report. In case of inline instrumentation, clang inserts a brk instruction, and KASAN has it's own brk handler, which reports the bug. 7. The memory in between slab objects is marked with a reserved tag, and acts as a redzone. 8. When a slab object is freed it's marked with a reserved tag. Bug detection is imprecise for two reasons: 1. We won't catch some small out-of-bounds accesses, that fall into the same shadow cell, as the last byte of a slab object. 2. We only have 1 byte to store tags, which means we have a 1/256 probability of a tag match for an incorrect access (actually even slightly less due to reserved tag values). Despite that there's a particular type of bugs that tag-based KASAN can detect compared to generic KASAN: use-after-free after the object has been allocated by someone else. ====== Testing Some kernel developers voiced a concern that changing the top byte of kernel pointers may lead to subtle bugs that are difficult to discover. To address this concern deliberate testing has been performed. It doesn't seem feasible to do some kind of static checking to find potential issues with pointer tagging, so a dynamic approach was taken. All pointer comparisons/subtractions have been instrumented in an LLVM compiler pass and a kernel module that would print a bug report whenever two pointers with different tags are being compared/subtracted (ignoring comparisons with NULL pointers and with pointers obtained by casting an error code to a pointer type) has been used. Then the kernel has been booted in QEMU and on an Odroid C2 board and syzkaller has been run. This yielded the following results. The two places that look interesting are: is_vmalloc_addr in include/linux/mm.h is_kernel_rodata in mm/util.c Here we compare a pointer with some fixed untagged values to make sure that the pointer lies in a particular part of the kernel address space. Since tag-based KASAN doesn't add tags to pointers that belong to rodata or vmalloc regions, this should work as is. To make sure debug checks to those two functions that check that the result doesn't change whether we operate on pointers with or without untagging has been added. A few other cases that don't look that interesting: Comparing pointers to achieve unique sorting order of pointee objects (e.g. sorting locks addresses before performing a double lock): tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c pipe_double_lock in fs/pipe.c unix_state_double_lock in net/unix/af_unix.c lock_two_nondirectories in fs/inode.c mutex_lock_double in kernel/events/core.c ep_cmp_ffd in fs/eventpoll.c fsnotify_compare_groups fs/notify/mark.c Nothing needs to be done here, since the tags embedded into pointers don't change, so the sorting order would still be unique. Checks that a pointer belongs to some particular allocation: is_sibling_entry in lib/radix-tree.c object_is_on_stack in include/linux/sched/task_stack.h Nothing needs to be done here either, since two pointers can only belong to the same allocation if they have the same tag. Overall, since the kernel boots and works, there are no critical bugs. As for the rest, the traditional kernel testing way (use until fails) is the only one that looks feasible. Another point here is that tag-based KASAN is available under a separate config option that needs to be deliberately enabled. Even though it might be used in a "near-production" environment to find bugs that are not found during fuzzing or running tests, it is still a debug tool. ====== Benchmarks The following numbers were collected on Odroid C2 board. Both generic and tag-based KASAN were used in inline instrumentation mode. Boot time [1]: * ~1.7 sec for clean kernel * ~5.0 sec for generic KASAN * ~5.0 sec for tag-based KASAN Network performance [2]: * 8.33 Gbits/sec for clean kernel * 3.17 Gbits/sec for generic KASAN * 2.85 Gbits/sec for tag-based KASAN Slab memory usage after boot [3]: * ~40 kb for clean kernel * ~105 kb (~260% overhead) for generic KASAN * ~47 kb (~20% overhead) for tag-based KASAN KASAN memory overhead consists of three main parts: 1. Increased slab memory usage due to redzones. 2. Shadow memory (the whole reserved once during boot). 3. Quaratine (grows gradually until some preset limit; the more the limit, the more the chance to detect a use-after-free). Comparing tag-based vs generic KASAN for each of these points: 1. 20% vs 260% overhead. 2. 1/16th vs 1/8th of physical memory. 3. Tag-based KASAN doesn't require quarantine. [1] Time before the ext4 driver is initialized. [2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`. [3] Measured as `cat /proc/meminfo | grep Slab`. ====== Some notes A few notes: 1. The patchset can be found here: https://github.com/xairy/kasan-prototype/tree/khwasan 2. Building requires a recent Clang version (7.0.0 or later). 3. Stack instrumentation is not supported yet and will be added later. This patch (of 25): Tag-based KASAN changes the value of the top byte of pointers returned from the kernel allocation functions (such as kmalloc). This patch updates KASAN hooks signatures and their usage in SLAB and SLUB code to reflect that. Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <[email protected]> Reviewed-by: Andrey Ryabinin <[email protected]> Reviewed-by: Dmitry Vyukov <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-27Merge tag 'locks-v4.21-1' of ↵Linus Torvalds2-12/+17
git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux Pull file locking updates from Jeff Layton: "The main change in this set is Neil Brown's work to reduce the thundering herd problem when a heavily-contended file lock is released. Previously we'd always wake up all waiters when this occurred. With this set, we'll now we only wake up waiters that were blocked on the range being released" * tag 'locks-v4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux: locks: Use inode_is_open_for_write fs/locks: remove unnecessary white space. fs/locks: merge posix_unblock_lock() and locks_delete_block() fs/locks: create a tree of dependent requests. fs/locks: change all *_conflict() functions to return bool. fs/locks: always delete_block after waiting. fs/locks: allow a lock request to block other requests. fs/locks: use properly initialized file_lock when unlocking. ocfs2: properly initial file_lock used for unlock. gfs2: properly initial file_lock used for unlock. NFS: use locks_copy_lock() to copy locks. fs/locks: split out __locks_wake_up_blocks(). fs/locks: rename some lists and pointers.
2018-12-27Merge tag 'ext4_for_linus' of ↵Linus Torvalds2-3/+24
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4 Pull ext4 updates from Ted Ts'o: "All cleanups and bug fixes; most notably, fix some problems discovered in ext4's NFS support, and fix an ioctl (EXT4_IOC_GROUP_ADD) used by old versions of e2fsprogs which we accidentally broke a while back. Also fixed some error paths in ext4's quota and inline data support. Finally, improve tail latency in jbd2's commit code" * tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: ext4: check for shutdown and r/o file system in ext4_write_inode() ext4: force inode writes when nfsd calls commit_metadata() ext4: avoid declaring fs inconsistent due to invalid file handles ext4: include terminating u32 in size of xattr entries when expanding inodes ext4: compare old and new mode before setting update_mode flag ext4: fix EXT4_IOC_GROUP_ADD ioctl ext4: hard fail dax mount on unsupported devices jbd2: update locking documentation for transaction_t ext4: remove redundant condition check jbd2: clean up indentation issue, replace spaces with tab ext4: clean up indentation issues, remove extraneous tabs ext4: missing unlock/put_page() in ext4_try_to_write_inline_data() ext4: fix possible use after free in ext4_quota_enable jbd2: avoid long hold times of j_state_lock while committing a transaction ext4: add ext4_sb_bread() to disambiguate ENOMEM cases
2018-12-27Merge tag 'fsnotify_for_v4.21-rc1' of ↵Linus Torvalds4-30/+49
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs Pull fsnotify updates from Jan Kara: "Support for new FAN_OPEN_EXEC event and couple of cleanups around fsnotify" * tag 'fsnotify_for_v4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: fanotify: Use inode_is_open_for_write fanotify: Make sure to check event_len when copying fsnotify/fdinfo: include fdinfo.h for inotify_show_fdinfo() fanotify: introduce new event mask FAN_OPEN_EXEC_PERM fsnotify: refactor fsnotify_parent()/fsnotify() paired calls when event is on path fanotify: introduce new event mask FAN_OPEN_EXEC fanotify: return only user requested event types in event mask
2018-12-27Merge tag 'for-4.21-tag' of ↵Linus Torvalds3-1/+5
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "New features: - swapfile support - after a long time it's here, with some limitations where COW design does not work well with the swap implementation (nodatacow file, no compression, cannot be snapshotted, not possible on multiple devices, ...), as this is the most restricted but working setup, we'll try to improve that in the future - metadata uuid - an optional incompat feature to assign a new filesystem UUID without overwriting all metadata blocks, stored only in superblock - more balance messages are printed to system log, initial is in the format of the command line that would be used to start it Fixes: - tag pages of a snapshot to better separate pages that are involved in the snapshot (and need to get synced) from newly dirtied pages that could slow down or even livelock the snapshot operation - improved check of filesystem id associated with a device during scan to detect duplicate devices that could be mixed up during mount - fix device replace state transitions, eg. when it ends up interrupted and reboot tries to restart balance too, or when start/cancel ioctls race - fix a crash due to a race when quotas are enabled during snapshot creation - GFP_NOFS/memalloc_nofs_* fixes due to GFP_KERNEL allocations in transaction context - fix fsync of files with multiple hard links in new directories - fix race of send with transaction commits that create snapshots Core changes: - cleanups: * further removals of now-dead fsync code * core function for finding free extent has been split and provides a base for further cleanups to make the logic more understandable * removed lot of indirect callbacks for data and metadata inodes * simplified refcounting and locking for cloned extent buffers * removed redundant function arguments * defines converted to enums where appropriate - separate reserve for delayed refs from global reserve, update logic to do less trickery and ad-hoc heuristics, move out some related expensive operations from transaction commit or file truncate - dev-replace switched from custom locking scheme to semaphore - remove first phase of balance that tried to make some space for the relocation by calling shrink and grow, this did not work as expected and only introduced more error states due to potential resize failures, slightly improves the runtime as the chunks on all devices are not needlessly enumerated - clone and deduplication now use generic helper that adds a few more checks that were missing from the original btrfs implementation of the ioctls" * tag 'for-4.21-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (125 commits) btrfs: Fix typos in comments and strings btrfs: improve error handling of btrfs_add_link Btrfs: use generic_remap_file_range_prep() for cloning and deduplication btrfs: Refactor main loop in extent_readpages btrfs: Remove 1st shrink/grow phase from balance Btrfs: send, fix race with transaction commits that create snapshots Btrfs: use nofs context when initializing security xattrs to avoid deadlock btrfs: run delayed items before dropping the snapshot btrfs: catch cow on deleting snapshots btrfs: extent-tree: cleanup one-shot usage of @blocksize in do_walk_down Btrfs: scrub, move setup of nofs contexts higher in the stack btrfs: scrub: move scrub_setup_ctx allocation out of device_list_mutex btrfs: scrub: pass fs_info to scrub_setup_ctx btrfs: fix truncate throttling btrfs: don't run delayed refs in the end transaction logic btrfs: rework btrfs_check_space_for_delayed_refs btrfs: add new flushing states for the delayed refs rsv btrfs: update may_commit_transaction to use the delayed refs rsv btrfs: introduce delayed_refs_rsv btrfs: only track ref_heads in delayed_ref_updates ...
2018-12-27Merge branch 'linus' of ↵Linus Torvalds18-452/+521
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 Pull crypto updates from Herbert Xu: "API: - Add 1472-byte test to tcrypt for IPsec - Reintroduced crypto stats interface with numerous changes - Support incremental algorithm dumps Algorithms: - Add xchacha12/20 - Add nhpoly1305 - Add adiantum - Add streebog hash - Mark cts(cbc(aes)) as FIPS allowed Drivers: - Improve performance of arm64/chacha20 - Improve performance of x86/chacha20 - Add NEON-accelerated nhpoly1305 - Add SSE2 accelerated nhpoly1305 - Add AVX2 accelerated nhpoly1305 - Add support for 192/256-bit keys in gcmaes AVX - Add SG support in gcmaes AVX - ESN for inline IPsec tx in chcr - Add support for CryptoCell 703 in ccree - Add support for CryptoCell 713 in ccree - Add SM4 support in ccree - Add SM3 support in ccree - Add support for chacha20 in caam/qi2 - Add support for chacha20 + poly1305 in caam/jr - Add support for chacha20 + poly1305 in caam/qi2 - Add AEAD cipher support in cavium/nitrox" * 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (130 commits) crypto: skcipher - remove remnants of internal IV generators crypto: cavium/nitrox - Fix build with !CONFIG_DEBUG_FS crypto: salsa20-generic - don't unnecessarily use atomic walk crypto: skcipher - add might_sleep() to skcipher_walk_virt() crypto: x86/chacha - avoid sleeping under kernel_fpu_begin() crypto: cavium/nitrox - Added AEAD cipher support crypto: mxc-scc - fix build warnings on ARM64 crypto: api - document missing stats member crypto: user - remove unused dump functions crypto: chelsio - Fix wrong error counter increments crypto: chelsio - Reset counters on cxgb4 Detach crypto: chelsio - Handle PCI shutdown event crypto: chelsio - cleanup:send addr as value in function argument crypto: chelsio - Use same value for both channel in single WR crypto: chelsio - Swap location of AAD and IV sent in WR crypto: chelsio - remove set but not used variable 'kctx_len' crypto: ux500 - Use proper enum in hash_set_dma_transfer crypto: ux500 - Use proper enum in cryp_set_dma_transfer crypto: aesni - Add scatter/gather avx stubs, and use them in C crypto: aesni - Introduce partial block macro ..
2018-12-27Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds128-1054/+3093
Pull networking updates from David Miller: 1) New ipset extensions for matching on destination MAC addresses, from Stefano Brivio. 2) Add ipv4 ttl and tos, plus ipv6 flow label and hop limit offloads to nfp driver. From Stefano Brivio. 3) Implement GRO for plain UDP sockets, from Paolo Abeni. 4) Lots of work from Michał Mirosław to eliminate the VLAN_TAG_PRESENT bit so that we could support the entire vlan_tci value. 5) Rework the IPSEC policy lookups to better optimize more usecases, from Florian Westphal. 6) Infrastructure changes eliminating direct manipulation of SKB lists wherever possible, and to always use the appropriate SKB list helpers. This work is still ongoing... 7) Lots of PHY driver and state machine improvements and simplifications, from Heiner Kallweit. 8) Various TSO deferral refinements, from Eric Dumazet. 9) Add ntuple filter support to aquantia driver, from Dmitry Bogdanov. 10) Batch dropping of XDP packets in tuntap, from Jason Wang. 11) Lots of cleanups and improvements to the r8169 driver from Heiner Kallweit, including support for ->xmit_more. This driver has been getting some much needed love since he started working on it. 12) Lots of new forwarding selftests from Petr Machata. 13) Enable VXLAN learning in mlxsw driver, from Ido Schimmel. 14) Packed ring support for virtio, from Tiwei Bie. 15) Add new Aquantia AQtion USB driver, from Dmitry Bezrukov. 16) Add XDP support to dpaa2-eth driver, from Ioana Ciocoi Radulescu. 17) Implement coalescing on TCP backlog queue, from Eric Dumazet. 18) Implement carrier change in tun driver, from Nicolas Dichtel. 19) Support msg_zerocopy in UDP, from Willem de Bruijn. 20) Significantly improve garbage collection of neighbor objects when the table has many PERMANENT entries, from David Ahern. 21) Remove egdev usage from nfp and mlx5, and remove the facility completely from the tree as it no longer has any users. From Oz Shlomo and others. 22) Add a NETDEV_PRE_CHANGEADDR so that drivers can veto the change and therefore abort the operation before the commit phase (which is the NETDEV_CHANGEADDR event). From Petr Machata. 23) Add indirect call wrappers to avoid retpoline overhead, and use them in the GRO code paths. From Paolo Abeni. 24) Add support for netlink FDB get operations, from Roopa Prabhu. 25) Support bloom filter in mlxsw driver, from Nir Dotan. 26) Add SKB extension infrastructure. This consolidates the handling of the auxiliary SKB data used by IPSEC and bridge netfilter, and is designed to support the needs to MPTCP which could be integrated in the future. 27) Lots of XDP TX optimizations in mlx5 from Tariq Toukan. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1845 commits) net: dccp: fix kernel crash on module load drivers/net: appletalk/cops: remove redundant if statement and mask bnx2x: Fix NULL pointer dereference in bnx2x_del_all_vlans() on some hw net/net_namespace: Check the return value of register_pernet_subsys() net/netlink_compat: Fix a missing check of nla_parse_nested ieee802154: lowpan_header_create check must check daddr net/mlx4_core: drop useless LIST_HEAD mlxsw: spectrum: drop useless LIST_HEAD net/mlx5e: drop useless LIST_HEAD iptunnel: Set tun_flags in the iptunnel_metadata_reply from src net/mlx5e: fix semicolon.cocci warnings staging: octeon: fix build failure with XFRM enabled net: Revert recent Spectre-v1 patches. can: af_can: Fix Spectre v1 vulnerability packet: validate address length if non-zero nfc: af_nfc: Fix Spectre v1 vulnerability phonet: af_phonet: Fix Spectre v1 vulnerability net: core: Fix Spectre v1 vulnerability net: minor cleanup in skb_ext_add() net: drop the unused helper skb_ext_get() ...
2018-12-27Merge tag 'modules-for-v4.21' of ↵Linus Torvalds1-0/+7
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux Pull modules updates from Jessica Yu: - Some modules-related kallsyms cleanups and a kallsyms fix for ARM. - Include keys from the secondary keyring in module signature verification. * tag 'modules-for-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux: ARM: module: Fix function kallsyms on Thumb-2 module: Overwrite st_size instead of st_info module: make it clearer when we're handling kallsyms symbols vs exported symbols modsign: use all trusted keys to verify module signature