Age | Commit message (Collapse) | Author | Files | Lines |
|
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <[email protected]>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux
Pull DeviceTree updates from Rob Herring:
"Pretty standard stuff with dtc upstream sync being the biggest piece.
- Sync dtc to upstream commit 0931cea3ba20. This picks up overlay
support in dtc.
- Set dma_ops for reserved memory users.
- Make references to IOMMU consistent in DT bindings.
- Cleanup references to pm_power_off in bindings.
- Move some display bindings that snuck into the old bindings/video/
path.
- Fix some wrong documentation paths caused from binding
restructuring.
- Vendor prefixes for Faraday and Fujitsu.
- Fix an of_node ref counting leak in of_find_node_opts_by_path
- Introduce new graph helper of_graph_get_remote_node() which will be
used by DRM drivers in 4.12"
* tag 'devicetree-for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (27 commits)
DT: add Faraday Tec. as vendor
of: introduce of_graph_get_remote_node
of: Add missing space at end of pr_fmt().
of: make of_device_make_bus_id() static
of: fix of_node leak caused in of_find_node_opts_by_path
dt-bindings: net: remove reference to fixed link support
dt-bindings: power: reset: qnap-poweroff: Drop reference to pm_power_off
dt-bindings: power: reset: gpio-poweroff: Drop reference to pm_power_off
dt-bindings: mfd: as3722: Drop reference to pm_power_off
dt-bindings: display: move ANX7814 and SiI8620 bridge bindings
of/unittest: Swap arguments of of_unittest_apply_overlay()
Documentation: usb: fix wrong documentation paths
serial: fsl-imx-uart.txt: Remove generic property
devicetree: Add Fujitsu Ltd. vendor prefix
Documentation: display: fix wrong documentation paths
of: remove redundant memset in overlay
bus:qcom : Fix typo in qcom,ebi2.txt
dt-bindings: qman: Remove pool channel node
Documentation: panel-dpi: fix path to display-timing.txt
devicetree: bindings: clk: mvebu: fix description for sata1 on Armada XP
...
|
|
Pull documentation updates from Jonathan Corbet:
"A slightly quieter cycle for documentation this time around.
Three more DocBook template files have been converted to RST; only 21
to go. There are various build improvements and the usual array of
documentation improvements and fixes"
* tag 'docs-4.11' of git://git.lwn.net/linux: (44 commits)
docs / driver-api: Fix structure references in device_link.rst
PM / docs: Fix structure references in device.rst
Add a target to check broken external links in the Documentation
Documentation: Fix linux-api list typo
Documentation: DocBook/Makefile comment typo
Improve sparse documentation
Documentation: make Makefile.sphinx no-ops quieter
Documentation: DMA-ISA-LPC.txt
Documentation: input: fix path to input code definitions
docs: Remove the copyright year from conf.py
docs: Fix a warning in the Korean HOWTO.rst translation
PM / sleep / docs: Convert PM notifiers document to reST
PM / core / docs: Convert sleep states API document to reST
PM / core: Update kerneldoc comments in pm.h
doc-rst: Fix recursive make invocation from macros
doc-rst: Delete output of failed dot-SVG conversion
doc-rst: Break shell command sequences on failure
Documentation/sphinx: make targets independent of Sphinx work for HAVE_SPHINX=0
doc-rst: fixed cleandoc target when used with O=dir
Documentation/sphinx: prevent generation of .pyc files in the source tree
...
|
|
Pull KVM updates from Paolo Bonzini:
"4.11 is going to be a relatively large release for KVM, with a little
over 200 commits and noteworthy changes for most architectures.
ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU
notifiers to support copy-on-write, KSM, idle page tracking,
swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
also supported, so that writes to some memory regions can be
treated as MMIO. The new MMU also paves the way for hardware
virtualization support.
PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
s390:
- expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown
in and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
generic:
- alternative signaling mechanism that doesn't pound on
tsk->sighand->siglock"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
x86/paravirt: Change vcp_is_preempted() arg type to long
KVM: VMX: use correct vmcs_read/write for guest segment selector/base
x86/kvm/vmx: Defer TR reload after VM exit
x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
x86/kvm/vmx: Simplify segment_base()
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
x86/kvm/vmx: Don't fetch the TSS base from the GDT
x86/asm: Define the kernel TSS limit in a macro
kvm: fix page struct leak in handle_vmon
KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
KVM: Return an error code only as a constant in kvm_get_dirty_log()
KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
KVM: x86: remove code for lazy FPU handling
KVM: race-free exit from KVM_RUN without POSIX signals
KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
KVM: Support vCPU-based gfn->hva cache
KVM: use separate generations for each address space
...
|
|
Linux 4.10-rc8
Backmerge Linus rc8 to fix some conflicts, but also
to avoid pulling it in via a fixes pull from someone.
|
|
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.11. We aren't introducing any major
features in this release cycle except for this being the first merge
window I've managed on my own. :)
Changes since last update:
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes"
* tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (39 commits)
xfs: remove XFS_ALLOCTYPE_ANY_AG and XFS_ALLOCTYPE_START_AG
xfs: simplify xfs_rtallocate_extent
xfs: tune down agno asserts in the bmap code
xfs: Use xfs_icluster_size_fsb() to calculate inode chunk alignment
xfs: don't reserve blocks for right shift transactions
xfs: fix len comparison in xfs_extent_busy_trim
xfs: fix uninitialized variable in _reflink_convert_cow
xfs: split indlen reservations fairly when under reserved
xfs: handle indlen shortage on delalloc extent merge
xfs: resurrect debug mode drop buffered writes mechanism
xfs: clear delalloc and cache on buffered write failure
xfs: don't block the log commit handler for discards
xfs: improve busy extent sorting
xfs: improve handling of busy extents in the low-level allocator
xfs: don't fail xfs_extent_busy allocation
xfs: correct null checks and error processing in xfs_initialize_perag
xfs: update ctime and mtime on clone destinatation inodes
xfs: allocate direct I/O COW blocks in iomap_begin
xfs: go straight to real allocations for direct I/O COW writes
xfs: return the converted extent in __xfs_reflink_convert_cow
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Add Petr Mladek, Sergey Senozhatsky as printk maintainers, and Steven
Rostedt as the printk reviewer. This idea came up after the
discussion about printk issues at Kernel Summit. It was formulated
and discussed at lkml[1].
- Extend a lock-less NMI per-cpu buffers idea to handle recursive
printk() calls by Sergey Senozhatsky[2]. It is the first step in
sanitizing printk as discussed at Kernel Summit.
The change allows to see messages that would normally get ignored or
would cause a deadlock.
Also it allows to enable lockdep in printk(). This already paid off.
The testing in linux-next helped to discover two old problems that
were hidden before[3][4].
- Remove unused parameter by Sergey Senozhatsky. Clean up after a past
change.
[1] http://lkml.kernel.org/r/[email protected]
[2] http://lkml.kernel.org/r/[email protected]
[3] http://lkml.kernel.org/r/[email protected]
[4] http://lkml.kernel.org/r/[email protected]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
printk: drop call_console_drivers() unused param
printk: convert the rest to printk-safe
printk: remove zap_locks() function
printk: use printk_safe buffers in printk
printk: report lost messages in printk safe/nmi contexts
printk: always use deferred printk when flush printk_safe lines
printk: introduce per-cpu safe_print seq buffer
printk: rename nmi.c and exported api
printk: use vprintk_func in vprintk()
MAINTAINERS: Add printk maintainers
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull modules updates from Jessica Yu:
"Summary of modules changes for the 4.11 merge window:
- A few small code cleanups
- Add modules git tree url to MAINTAINERS"
* tag 'modules-for-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
MAINTAINERS: add tree for modules
module: fix memory leak on early load_module() failures
module: Optimize search_module_extables()
modules: mark __inittest/__exittest as __maybe_unused
livepatch/module: print notice of TAINT_LIVEPATCH
module: Drop redundant declaration of struct module
|
|
Delete stray (second) function description in find_lock_page()
kernel-doc notation.
Note: scripts/kernel-doc just ignores the second function description.
Fixes: 2457aec63745e ("mm: non-atomically mark page accessed during page cache allocation where possible")
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Randy Dunlap <[email protected]>
Reported-by: Matthew Wilcox <[email protected]>
Cc: Mel Gorman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There's no users of zap_page_range() who wants non-NULL 'details'.
Let's drop it.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Kirill A. Shutemov <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Tetsuo Handa <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Rik van Riel <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
detail == NULL would give the same functionality as
.check_swap_entries==true.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Kirill A. Shutemov <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Tetsuo Handa <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Rik van Riel <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The only user of ignore_dirty is oom-reaper. But it doesn't really use
it.
ignore_dirty only has effect on file pages mapped with dirty pte. But
oom-repear skips shared VMAs, so there's no way we can dirty file pte in
them.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Kirill A. Shutemov <[email protected]>
Acked-by: Michal Hocko <[email protected]>
Cc: Tetsuo Handa <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Rik van Riel <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES. The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process. This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions. E.g. memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).
Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed. NULL
nodemask is interpreted as cpuset_current_mems_allowed.
[[email protected]: coding-style fixes]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Michal Hocko <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: David Rientjes <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
warn_alloc is currently used for to report an allocation failure or an
allocation stall. We print some details of the allocation request like
the gfp mask and the request order. We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well. We alreaddy print the nodemask in the OOM report.
Add nodemask to warn_alloc and print it in warn_alloc as well.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Michal Hocko <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Acked-by: Hillf Danton <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: David Rientjes <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
lruvec_lru_size returns the full size of the LRU list while we sometimes
need a value reduced only to eligible zones (e.g. for lowmem requests).
inactive_list_is_low is one such user. Later patches will add more of
them. Add a new parameter to lruvec_lru_size and allow it filter out
zones which are not eligible for the given context.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Michal Hocko <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Acked-by: Hillf Danton <[email protected]>
Acked-by: Minchan Kim <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
There is no thp defrag option that currently allows MADV_HUGEPAGE
regions to do direct compaction and reclaim while all other thp
allocations simply trigger kswapd and kcompactd in the background and
fail immediately.
The "defer" setting simply triggers background reclaim and compaction
for all regions, regardless of MADV_HUGEPAGE, which makes it unusable
for our userspace where MADV_HUGEPAGE is being used to indicate the
application is willing to wait for work for thp memory to be available.
The "madvise" setting will do direct compaction and reclaim for these
MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the
background for anybody else.
For reasonable usage, there needs to be a mesh between the two options.
This patch introduces a fifth mode, "defer+madvise", that will do direct
reclaim and compaction for MADV_HUGEPAGE regions and trigger background
reclaim and compaction for everybody else so that hugepages may be
available in the near future.
A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE
regions as part of the "defer" mode, making it a very powerful setting
and avoids breaking userspace, was offered:
http://marc.info/?t=148236612700003
This additional mode is a compromise.
A second proposal to allow both "defer" and "madvise" to be selected at
the same time was also offered:
http://marc.info/?t=148357345300001.
This is possible, but there was a concern that it might break existing
userspaces the parse the output of the defrag mode, so the fifth option
was introduced instead.
This patch also cleans up the helper function for storing to "enabled"
and "defrag" since the former supports three modes while the latter
supports five and triple_flag_store() was getting unnecessarily messy.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: David Rientjes <[email protected]>
Acked-by: Mel Gorman <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Jonathan Corbet <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Because during swap off, a swap entry may have swap_map[] ==
SWAP_HAS_CACHE (for example, just allocated). If we return NULL in
__read_swap_cache_async(), the swap off will abort. So when swap slot
cache is disabled, (for swap off), we will wait for page to be put into
swap cache in such race condition. This should not be a problem for swap
slot cache, because swap slot cache should be drained after clearing
swap_slot_cache_enabled.
[[email protected]: fix memory leak in __read_swap_cache_async()]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/5e2c5f6abe8e6eb0797408897b1bba80938e9b9d.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <[email protected]>
Signed-off-by: Tim Chen <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
We add per cpu caches for swap slots that can be allocated and freed
quickly without the need to touch the swap info lock.
Two separate caches are maintained for swap slots allocated and swap
slots returned. This is to allow the swap slots to be returned to the
global pool in a batch so they will have a chance to be coaelesced with
other slots in a cluster. We do not reuse the slots that are returned
right away, as it may increase fragmentation of the slots.
The swap allocation cache is protected by a mutex as we may sleep when
searching for empty slots in cache. The swap free cache is protected by
a spin lock as we cannot sleep in the free path.
We refill the swap slots cache when we run out of slots, and we disable
the swap slots cache and drain the slots if the global number of slots
fall below a low watermark threshold. We re-enable the cache agian when
the slots available are above a high watermark.
[[email protected]: use raw_cpu_ptr over this_cpu_ptr for swap slots access]
[[email protected]: add comments on locks in swap_slots.h]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <[email protected]>
Signed-off-by: "Huang, Ying" <[email protected]>
Reviewed-by: Michal Hocko <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Add new functions that free unused swap slots in batches without the
need to reacquire swap info lock. This improves scalability and reduce
lock contention.
Link: http://lkml.kernel.org/r/c25e0fcdfd237ec4ca7db91631d3b9f6ed23824e.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <[email protected]>
Signed-off-by: "Huang, Ying" <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Currently, the swap slots are allocated one page at a time, causing
contention to the swap_info lock protecting the swap partition on every
page being swapped.
This patch adds new functions get_swap_pages and scan_swap_map_slots to
request multiple swap slots at once. This will reduces the lock
contention on the swap_info lock. Also scan_swap_map_slots can operate
more efficiently as swap slots often occurs in clusters close to each
other on a swap device and it is quicker to allocate them together.
Link: http://lkml.kernel.org/r/9fec2845544371f62c3763d43510045e33d286a6.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <[email protected]>
Signed-off-by: "Huang, Ying" <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
We can avoid needlessly allocating page for swap slots that are not used
by anyone. No pages have to be read in for these slots.
Link: http://lkml.kernel.org/r/0784b3f20b9bd3aa5552219624cb78dc4ae710c9.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <[email protected]>
Signed-off-by: "Huang, Ying" <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The patch is to improve the scalability of the swap out/in via using
fine grained locks for the swap cache. In current kernel, one address
space will be used for each swap device. And in the common
configuration, the number of the swap device is very small (one is
typical). This causes the heavy lock contention on the radix tree of
the address space if multiple tasks swap out/in concurrently.
But in fact, there is no dependency between pages in the swap cache. So
that, we can split the one shared address space for each swap device
into several address spaces to reduce the lock contention. In the
patch, the shared address space is split into 64MB trunks. 64MB is
chosen to balance the memory space usage and effect of lock contention
reduction.
The size of struct address_space on x86_64 architecture is 408B, so with
the patch, 6528B more memory will be used for every 1GB swap space on
x86_64 architecture.
One address space is still shared for the swap entries in the same 64M
trunks. To avoid lock contention for the first round of swap space
allocation, the order of the swap clusters in the initial free clusters
list is changed. The swap space distance between the consecutive swap
clusters in the free cluster list is at least 64M. After the first
round of allocation, the swap clusters are expected to be freed
randomly, so the lock contention should be reduced effectively.
Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <[email protected]>
Signed-off-by: Tim Chen <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This patch is to reduce the lock contention of swap_info_struct->lock
via using a more fine grained lock in swap_cluster_info for some swap
operations. swap_info_struct->lock is heavily contended if multiple
processes reclaim pages simultaneously. Because there is only one lock
for each swap device. While in common configuration, there is only one
or several swap devices in the system. The lock protects almost all
swap related operations.
In fact, many swap operations only access one element of
swap_info_struct->swap_map array. And there is no dependency between
different elements of swap_info_struct->swap_map. So a fine grained
lock can be used to allow parallel access to the different elements of
swap_info_struct->swap_map.
In this patch, a spinlock is added to swap_cluster_info to protect the
elements of swap_info_struct->swap_map in the swap cluster and the
fields of swap_cluster_info. This reduced locking contention for
swap_info_struct->swap_map access greatly.
Because of the added spinlock, the size of swap_cluster_info increases
from 4 bytes to 8 bytes on the 64 bit and 32 bit system. This will use
additional 4k RAM for every 1G swap space.
Because the size of swap_cluster_info is much smaller than the size of
the cache line (8 vs 64 on x86_64 architecture), there may be false
cache line sharing between spinlocks in swap_cluster_info. To avoid the
false sharing in the first round of the swap cluster allocation, the
order of the swap clusters in the free clusters list is changed. So
that, the swap_cluster_info sharing the same cache line will be placed
as far as possible. After the first round of allocation, the order of
the clusters in free clusters list is expected to be random. So the
false sharing should be not serious.
Compared with a previous implementation using bit_spin_lock, the
sequential swap out throughput improved about 3.2%. Test was done on a
Xeon E5 v3 system. The swap device used is a RAM simulated PMEM
(persistent memory) device. To test the sequential swapping out, the
test case created 32 processes, which sequentially allocate and write to
the anonymous pages until the RAM and part of the swap device is used.
[[email protected]: v5]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: initialize spinlock for swap_cluster_info]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: annotate nested locking for cluster lock]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/dbb860bbd825b1aaba18988015e8963f263c3f0d.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <[email protected]>
Signed-off-by: Tim Chen <[email protected]>
Signed-off-by: Minchan Kim <[email protected]>
Signed-off-by: Hugh Dickins <[email protected]>
Cc: Aaron Lu <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Christian Borntraeger <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Huang Ying <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Jonathan Corbet <[email protected]> escreveu:
Cc: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Shaohua Li <[email protected]>
Cc: Vladimir Davydov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
On 32-bit powerpc the ELF PLT sections of binaries (built with
--bss-plt, or with a toolchain which defaults to it) look like this:
[17] .sbss NOBITS 0002aff8 01aff8 000014 00 WA 0 0 4
[18] .plt NOBITS 0002b00c 01aff8 000084 00 WAX 0 0 4
[19] .bss NOBITS 0002b090 01aff8 0000a4 00 WA 0 0 4
Which results in an ELF load header:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x019c70 0x00029c70 0x00029c70 0x01388 0x014c4 RWE 0x10000
This is all correct, the load region containing the PLT is marked as
executable. Note that the PLT starts at 0002b00c but the file mapping
ends at 0002aff8, so the PLT falls in the 0 fill section described by
the load header, and after a page boundary.
Unfortunately the generic ELF loader ignores the X bit in the load
headers when it creates the 0 filled non-file backed mappings. It
assumes all of these mappings are RW BSS sections, which is not the case
for PPC.
gcc/ld has an option (--secure-plt) to not do this, this is said to
incur a small performance penalty.
Currently, to support 32-bit binaries with PLT in BSS kernel maps
*entire brk area* with executable rights for all binaries, even
--secure-plt ones.
Stop doing that.
Teach the ELF loader to check the X bit in the relevant load header and
create 0 filled anonymous mappings that are executable if the load
header requests that.
Test program showing the difference in /proc/$PID/maps:
int main() {
char buf[16*1024];
char *p = malloc(123); /* make "[heap]" mapping appear */
int fd = open("/proc/self/maps", O_RDONLY);
int len = read(fd, buf, sizeof(buf));
write(1, buf, len);
printf("%p\n", p);
return 0;
}
Compiled using: gcc -mbss-plt -m32 -Os test.c -otest
Unpatched ppc64 kernel:
00100000-00120000 r-xp 00000000 00:00 0 [vdso]
0fe10000-0ffd0000 r-xp 00000000 fd:00 67898094 /usr/lib/libc-2.17.so
0ffd0000-0ffe0000 r--p 001b0000 fd:00 67898094 /usr/lib/libc-2.17.so
0ffe0000-0fff0000 rw-p 001c0000 fd:00 67898094 /usr/lib/libc-2.17.so
10000000-10010000 r-xp 00000000 fd:00 100674505 /home/user/test
10010000-10020000 r--p 00000000 fd:00 100674505 /home/user/test
10020000-10030000 rw-p 00010000 fd:00 100674505 /home/user/test
10690000-106c0000 rwxp 00000000 00:00 0 [heap]
f7f70000-f7fa0000 r-xp 00000000 fd:00 67898089 /usr/lib/ld-2.17.so
f7fa0000-f7fb0000 r--p 00020000 fd:00 67898089 /usr/lib/ld-2.17.so
f7fb0000-f7fc0000 rw-p 00030000 fd:00 67898089 /usr/lib/ld-2.17.so
ffa90000-ffac0000 rw-p 00000000 00:00 0 [stack]
0x10690008
Patched ppc64 kernel:
00100000-00120000 r-xp 00000000 00:00 0 [vdso]
0fe10000-0ffd0000 r-xp 00000000 fd:00 67898094 /usr/lib/libc-2.17.so
0ffd0000-0ffe0000 r--p 001b0000 fd:00 67898094 /usr/lib/libc-2.17.so
0ffe0000-0fff0000 rw-p 001c0000 fd:00 67898094 /usr/lib/libc-2.17.so
10000000-10010000 r-xp 00000000 fd:00 100674505 /home/user/test
10010000-10020000 r--p 00000000 fd:00 100674505 /home/user/test
10020000-10030000 rw-p 00010000 fd:00 100674505 /home/user/test
10180000-101b0000 rw-p 00000000 00:00 0 [heap]
^^^^ this has changed
f7c60000-f7c90000 r-xp 00000000 fd:00 67898089 /usr/lib/ld-2.17.so
f7c90000-f7ca0000 r--p 00020000 fd:00 67898089 /usr/lib/ld-2.17.so
f7ca0000-f7cb0000 rw-p 00030000 fd:00 67898089 /usr/lib/ld-2.17.so
ff860000-ff890000 rw-p 00000000 00:00 0 [stack]
0x10180008
The patch was originally posted in 2012 by Jason Gunthorpe
and apparently ignored:
https://lkml.org/lkml/2012/9/30/138
Lightly run-tested.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Jason Gunthorpe <[email protected]>
Signed-off-by: Denys Vlasenko <[email protected]>
Acked-by: Kees Cook <[email protected]>
Acked-by: Michael Ellerman <[email protected]>
Tested-by: Jason Gunthorpe <[email protected]>
Cc: Benjamin Herrenschmidt <[email protected]>
Cc: Paul Mackerras <[email protected]>
Cc: "Aneesh Kumar K.V" <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Florian Weimer <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When using a sparse memory model memmap_init_zone() when invoked with
the MEMMAP_EARLY context will skip over pages which aren't valid - ie.
which aren't in a populated region of the sparse memory map. However if
the memory map is extremely sparse then it can spend a long time
linearly checking each PFN in a large non-populated region of the memory
map & skipping it in turn.
When CONFIG_HAVE_MEMBLOCK_NODE_MAP is enabled, we have sufficient
information to quickly discover the next valid PFN given an invalid one
by searching through the list of memory regions & skipping forwards to
the first PFN covered by the memory region to the right of the
non-populated region. Implement this in order to speed up
memmap_init_zone() for systems with extremely sparse memory maps.
James said "I have tested this patch on a virtual model of a Samurai CPU
with a sparse memory map. The kernel boot time drops from 109 to
62 seconds. "
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Paul Burton <[email protected]>
Tested-by: James Hartley <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
A "compact_daemon_wake" vmstat exists that represents the number of
times kcompactd has woken up. This doesn't represent how much work it
actually did, though.
It's useful to understand how much compaction work is being done by
kcompactd versus other methods such as direct compaction and explicitly
triggered per-node (or system) compaction.
This adds two new vmstats: "compact_daemon_migrate_scanned" and
"compact_daemon_free_scanned" to represent the number of pages kcompactd
has scanned as part of its migration scanner and freeing scanner,
respectively.
These values are still accounted for in the general
"compact_migrate_scanned" and "compact_free_scanned" for compatibility.
It could be argued that explicitly triggered compaction could also be
tracked separately, and that could be added if others find it useful.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: David Rientjes <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
These are no longer used outside mm/filemap.c, so un-export them and
make them static where possible. These were exported specifically for
NFS use in commit a4796e37c12e ("MM: export page_wakeup functions").
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Nicholas Piggin <[email protected]>
Cc: Trond Myklebust <[email protected]>
Cc: Anna Schumaker <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Currently userfault relies on vma_is_anonymous and vma_is_hugetlb to
ensure compatibility of a VMA with userfault. Introduction of
vma_is_shmem allows detection if tmpfs backed VMAs, so that they may be
used with userfaultfd. Current implementation presumes usage of
vma_is_shmem only by slow path routines in userfaultfd, therefore the
vma_is_shmem is not made inline to leave the few remaining free bits in
vm_flags.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
shmem_mcopy_atomic_pte is the low level routine that implements the
userfaultfd UFFDIO_COPY command. It is based on the existing
mcopy_atomic_pte routine with modifications for shared memory pages.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Add support for VM_FAULT_RETRY to follow_hugetlb_page() so that
get_user_pages_unlocked/locked and "nonblocking/FOLL_NOWAIT" features
will work on hugetlbfs.
This is required for fully functional userfaultfd non-present support on
hugetlbfs.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Andrea Arcangeli <[email protected]>
Reviewed-by: Mike Kravetz <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The new routine copy_huge_page_from_user() uses kmap_atomic() to map
PAGE_SIZE pages. However, this prevents page faults in the subsequent
call to copy_from_user(). This is OK in the case where the routine is
copied with mmap_sema held. However, in another case we want to allow
page faults. So, add a new argument allow_pagefault to indicate if the
routine should allow page faults.
[[email protected]: unmap the correct pointer]
Link: http://lkml.kernel.org/r/20170113082608.GA3548@mwanda
[[email protected]: kunmap() takes a page*, per Hugh]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Kravetz <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Signed-off-by: Dan Carpenter <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
hugetlb_mcopy_atomic_pte is the low level routine that implements the
userfaultfd UFFDIO_COPY command. It is based on the existing
mcopy_atomic_pte routine with modifications for huge pages.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Kravetz <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
support
userfaultfd UFFDIO_COPY allows user level code to copy data to a page at
fault time. The data is copied from user space to a newly allocated
huge page. The new routine copy_huge_page_from_user performs this copy.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Mike Kravetz <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
If the page is punched out of the address space the uffd reader should
know this and zeromap the respective area in case of the #PF event.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Pavel Emelyanov <[email protected]>
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Optimize the mremap_userfaultfd_complete() interface to pass only the
vm_userfaultfd_ctx pointer through the stack as a microoptimization.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Andrea Arcangeli <[email protected]>
Reported-by: Hillf Danton <[email protected]>
Acked-by: Mike Rapoport <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Pavel Emelyanov <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The event denotes that an area [start:end] moves to different location.
Length change isn't reported as "new" addresses, if they appear on the
uffd reader side they will not contain any data and the latter can just
zeromap them.
Waiting for the event ACK is also done outside of mmap sem, as for fork
event.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Pavel Emelyanov <[email protected]>
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When the mm with uffd-ed vmas fork()-s the respective vmas notify their
uffds with the event which contains a descriptor with new uffd. This
new descriptor can then be used to get events from the child and
populate its mm with data. Note, that there can be different uffd-s
controlling different vmas within one mm, so first we should collect all
those uffds (and ctx-s) in a list and then notify them all one by one
but only once per fork().
The context is created at fork() time but the descriptor, file struct
and anon inode object is created at event read time. So some trickery
is added to the userfaultfd_ctx_read() to handle the ctx queues' locking
vs file creation.
Another thing worth noticing is that the task that fork()-s waits for
the uffd event to get processed WITHOUT the mmap sem.
[[email protected]: build warning fix]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Pavel Emelyanov <[email protected]>
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrea Arcangeli <[email protected]>
Cc: "Dr. David Alan Gilbert" <[email protected]>
Cc: Hillf Danton <[email protected]>
Cc: Michael Rapoport <[email protected]>
Cc: Mike Kravetz <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
If there's contention on slab_mutex, queueing the per-cache destruction
work item on the system_wq can unnecessarily create and tie up a lot of
kworkers.
Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it
global and use that workqueue for the destruction work items too. While
at it, convert the workqueue from an unbound workqueue to a per-cpu one
with concurrency limited to 1. It's generally preferable to use per-cpu
workqueues and concurrency limit of 1 is safe enough.
This is suggested by Joonsoo Kim.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Jay Vana <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
slub uses synchronize_sched() to deactivate a memcg cache.
synchronize_sched() is an expensive and slow operation and doesn't scale
when a huge number of caches are destroyed back-to-back. While there
used to be a simple batching mechanism, the batching was too restricted
to be helpful.
This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub
can use to schedule sched RCU callback instead of performing
synchronize_sched() synchronously while holding cgroup_mutex. While
this adds online cpus, mems and slab_mutex operations, operating on
these locks back-to-back from the same kworker, which is what's gonna
happen when there are many to deactivate, isn't expensive at all and
this gets rid of the scalability problem completely.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Jay Vana <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
slab_caches currently lists all caches including root and memcg ones.
This is the only data structure which lists the root caches and
iterating root caches can only be done by walking the list while
skipping over memcg caches. As there can be a huge number of memcg
caches, this can become very expensive.
This also can make /proc/slabinfo behave very badly. seq_file processes
reads in 4k chunks and seeks to the previous Nth position on slab_caches
list to resume after each chunk. With a lot of memcg cache churns on
the list, reading /proc/slabinfo can become very slow and its content
often ends up with duplicate and/or missing entries.
This patch adds a new list slab_root_caches which lists only the root
caches. When memcg is not enabled, it becomes just an alias of
slab_caches. memcg specific list operations are collected into
memcg_[un]link_cache().
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Jay Vana <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup. The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.
This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge. This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.
This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg. All memcg specific iterations, including
stat file access, are updated to use the new list instead.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Reported-by: Jay Vana <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
We're going to change how memcg caches are iterated. In preparation,
clean up and reorganize memcg_cache_params.
* The shared ->list is replaced by ->children in root and
->children_node in children.
* ->is_root_cache is removed. Instead ->root_cache is moved out of
the child union and now used by both root and children. NULL
indicates root cache. Non-NULL a memcg one.
This patch doesn't cause any observable behavior changes.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Separate out slub sysfs removal and release, and call the former earlier
from __kmem_cache_shutdown(). There's no reason to defer sysfs removal
through RCU and this will later allow us to remove sysfs files way
earlier during memory cgroup offline instead of release.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Tejun Heo <[email protected]>
Acked-by: Vladimir Davydov <[email protected]>
Cc: Christoph Lameter <[email protected]>
Cc: Pekka Enberg <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Joonsoo Kim <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Dave Jiang <[email protected]>
Reviewed-by: Ross Zwisler <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
Cc: Dave Chinner <[email protected]>
Cc: Dave Jiang <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Steven Rostedt <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[[email protected]: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Dave Jiang <[email protected]>
Reviewed-by: Ross Zwisler <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
Cc: Dave Chinner <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Steven Rostedt <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Add tracepoints to dax_pmd_insert_mapping(), following the same logging
conventions as the tracepoints in dax_iomap_pmd_fault().
Here is an example PMD fault showing the new tracepoints:
big-1504 [001] .... 326.960743: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003
big-1504 [001] .... 326.960753: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400
big-1504 [001] .... 326.960981: dax_pmd_insert_mapping: dev 259:0 ino 0x1003 shared write address 0x10505000 length 0x200000 pfn 0x100600 DEV|MAP radix_entry 0xc000e
big-1504 [001] .... 326.960986: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 NOPAGE
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ross Zwisler <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
Acked-by: Steven Rostedt <[email protected]>
Cc: Dave Chinner <[email protected]>
Cc: Dave Jiang <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Tracepoints are the standard way to capture debugging and tracing
information in many parts of the kernel, including the XFS and ext4
filesystems. Create a tracepoint header for FS DAX and add the first DAX
tracepoints to the PMD fault handler. This allows the tracing for DAX to
be done in the same way as the filesystem tracing so that developers can
look at them together and get a coherent idea of what the system is doing.
I added both an entry and exit tracepoint because future patches will add
tracepoints to child functions of dax_iomap_pmd_fault() like
dax_pmd_load_hole() and dax_pmd_insert_mapping(). We want those messages
to be wrapped by the parent function tracepoints so the code flow is more
easily understood. Having entry and exit tracepoints for faults also
allows us to easily see what filesystems functions were called during the
fault. These filesystem functions get executed via iomap_begin() and
iomap_end() calls, for example, and will have their own tracepoints.
For PMD faults we primarily want to understand the type of mapping, the
fault flags, the faulting address and whether it fell back to 4k faults.
If it fell back to 4k faults the tracepoints should let us understand why.
I named the new tracepoint header file "fs_dax.h" to allow for device DAX
to have its own separate tracing header in the same directory at some
point.
Here is an example output for these events from a successful PMD fault:
big-1441 [005] .... 32.582758: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003
big-1441 [005] .... 32.582776: dax_pmd_fault: dev 259:0 ino 0x1003
shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400
big-1441 [005] .... 32.583292: dax_pmd_fault_done: dev 259:0 ino 0x1003
shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 NOPAGE
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ross Zwisler <[email protected]>
Suggested-by: Dave Chinner <[email protected]>
Reviewed-by: Jan Kara <[email protected]>
Acked-by: Steven Rostedt <[email protected]>
Cc: Dave Jiang <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "DAX tracepoints, mm argument simplification", v4.
This contains both my DAX tracepoint code and Dave Jiang's MM argument
simplifications. Dave's code was written with my tracepoint code as a
baseline, so it seemed simplest to keep them together in a single series.
This patch (of 7):
Add __print_flags_u64() and the helper trace_print_flags_seq_u64() in the
same spirit as __print_symbolic_u64() and trace_print_symbols_seq_u64().
These functions allow us to print symbols associated with flags that are
64 bits wide even on 32 bit machines.
These will be used by the DAX code so that we can print the flags set in a
pfn_t such as PFN_SG_CHAIN, PFN_SG_LAST, PFN_DEV and PFN_MAP.
Without this new function I was getting errors like the following when
compiling for i386:
include/linux/pfn_t.h:13:22: warning: large integer implicitly truncated to unsigned type [-Woverflow]
#define PFN_SG_CHAIN (1ULL << (BITS_PER_LONG_LONG - 1))
^
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ross Zwisler <[email protected]>
Reviewed-by: Steven Rostedt <[email protected]>
Cc: Dave Chinner <[email protected]>
Cc: Dave Jiang <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
This will enable the usage for nvme rdma target.
Also move from a lookup array to a switch statement.
Signed-off-by: Max Gurtovoy <[email protected]>
Reviewed-by: Parav Pandit <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Signed-off-by: Sagi Grimberg <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
|
|
NVMe devices can advertise multiple power states. These states can
be either "operational" (the device is fully functional but possibly
slow) or "non-operational" (the device is asleep until woken up).
Some devices can automatically enter a non-operational state when
idle for a specified amount of time and then automatically wake back
up when needed.
The hardware configuration is a table. For each state, an entry in
the table indicates the next deeper non-operational state, if any,
to autonomously transition to and the idle time required before
transitioning.
This patch teaches the driver to program APST so that each successive
non-operational state will be entered after an idle time equal to 100%
of the total latency (entry plus exit) associated with that state.
The maximum acceptable latency is controlled using dev_pm_qos
(e.g. power/pm_qos_latency_tolerance_us in sysfs); non-operational
states with total latency greater than this value will not be used.
As a special case, setting the latency tolerance to 0 will disable
APST entirely. On hardware without APST support, the sysfs file will
not be exposed.
The latency tolerance for newly-probed devices is set by the module
parameter nvme_core.default_ps_max_latency_us.
In theory, the device can expose "default" APST table, but this
doesn't seem to function correctly on my device (Samsung 950), nor
does it seem particularly useful. There is also an optional
mechanism by which a configuration can be "saved" so it will be
automatically loaded on reset. This can be configured from
userspace, but it doesn't seem useful to support in the driver.
On my laptop, enabling APST seems to save nearly 1W.
The hardware tables can be decoded in userspace with nvme-cli.
'nvme id-ctrl /dev/nvmeN' will show the power state table and
'nvme get-feature -f 0x0c -H /dev/nvme0' will show the current APST
configuration.
This feature is quirked off on a known-buggy Samsung device.
Signed-off-by: Andy Lutomirski <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Signed-off-by: Sagi Grimberg <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
|