aboutsummaryrefslogtreecommitdiff
path: root/include/linux/sched
AgeCommit message (Collapse)AuthorFilesLines
2019-06-24sched/uclamp: Add CPU's clamp buckets refcountingPatrick Bellasi1-6/+0
Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Alessio Balsini <[email protected]> Cc: Dietmar Eggemann <[email protected]> Cc: Joel Fernandes <[email protected]> Cc: Juri Lelli <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Morten Rasmussen <[email protected]> Cc: Paul Turner <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Quentin Perret <[email protected]> Cc: Rafael J . Wysocki <[email protected]> Cc: Steve Muckle <[email protected]> Cc: Suren Baghdasaryan <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Todd Kjos <[email protected]> Cc: Vincent Guittot <[email protected]> Cc: Viresh Kumar <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-06-24sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()Vincent Guittot1-11/+3
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is unused since commit: 765d0af19f5f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'") Remove it. Signed-off-by: Vincent Guittot <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Viresh Kumar <[email protected]> Reviewed-by: Valentin Schneider <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-06-17locking/rwsem: Always release wait_lock before waking up tasksWaiman Long1-0/+5
With the use of wake_q, we can do task wakeups without holding the wait_lock. There is one exception in the rwsem code, though. It is when the writer in the slowpath detects that there are waiters ahead but the rwsem is not held by a writer. This can lead to a long wait_lock hold time especially when a large number of readers are to be woken up. Remediate this situation by releasing the wait_lock before waking up tasks and re-acquiring it afterward. The rwsem_try_write_lock() function is also modified to read the rwsem count directly to avoid stale count value. Suggested-by: Peter Zijlstra <[email protected]> Signed-off-by: Waiman Long <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Borislav Petkov <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: H. Peter Anvin <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Tim Chen <[email protected]> Cc: Will Deacon <[email protected]> Cc: huang ying <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-06-17Merge tag 'v5.2-rc5' into sched/core, to pick up fixesIngo Molnar1-0/+4
Signed-off-by: Ingo Molnar <[email protected]>
2019-06-13coredump: fix race condition between collapse_huge_page() and core dumpingAndrea Arcangeli1-0/+4
When fixing the race conditions between the coredump and the mmap_sem holders outside the context of the process, we focused on mmget_not_zero()/get_task_mm() callers in 04f5866e41fb70 ("coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping"), but those aren't the only cases where the mmap_sem can be taken outside of the context of the process as Michal Hocko noticed while backporting that commit to older -stable kernels. If mmgrab() is called in the context of the process, but then the mm_count reference is transferred outside the context of the process, that can also be a problem if the mmap_sem has to be taken for writing through that mm_count reference. khugepaged registration calls mmgrab() in the context of the process, but the mmap_sem for writing is taken later in the context of the khugepaged kernel thread. collapse_huge_page() after taking the mmap_sem for writing doesn't modify any vma, so it's not obvious that it could cause a problem to the coredump, but it happens to modify the pmd in a way that breaks an invariant that pmd_trans_huge_lock() relies upon. collapse_huge_page() needs the mmap_sem for writing just to block concurrent page faults that call pmd_trans_huge_lock(). Specifically the invariant that "!pmd_trans_huge()" cannot become a "pmd_trans_huge()" doesn't hold while collapse_huge_page() runs. The coredump will call __get_user_pages() without mmap_sem for reading, which eventually can invoke a lockless page fault which will need a functional pmd_trans_huge_lock(). So collapse_huge_page() needs to use mmget_still_valid() to check it's not running concurrently with the coredump... as long as the coredump can invoke page faults without holding the mmap_sem for reading. This has "Fixes: khugepaged" to facilitate backporting, but in my view it's more a bug in the coredump code that will eventually have to be rewritten to stop invoking page faults without the mmap_sem for reading. So the long term plan is still to drop all mmget_still_valid(). Link: http://lkml.kernel.org/r/[email protected] Fixes: ba76149f47d8 ("thp: khugepaged") Signed-off-by: Andrea Arcangeli <[email protected]> Reported-by: Michal Hocko <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Jann Horn <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Mike Rapoport <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Peter Xu <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-06-09fork: add clone3Christian Brauner1-1/+16
This adds the clone3 system call. As mentioned several times already (cf. [7], [8]) here's the promised patchset for clone3(). We recently merged the CLONE_PIDFD patchset (cf. [1]). It took the last free flag from clone(). Independent of the CLONE_PIDFD patchset a time namespace has been discussed at Linux Plumber Conference last year and has been sent out and reviewed (cf. [5]). It is expected that it will go upstream in the not too distant future. However, it relies on the addition of the CLONE_NEWTIME flag to clone(). The only other good candidate - CLONE_DETACHED - is currently not recyclable as we have identified at least two large or widely used codebases that currently pass this flag (cf. [2], [3], and [4]). Given that CLONE_PIDFD grabbed the last clone() flag the time namespace is effectively blocked. clone3() has the advantage that it will unblock this patchset again. In general, clone3() is extensible and allows for the implementation of new features. The idea is to keep clone3() very simple and close to the original clone(), specifically, to keep on supporting old clone()-based workloads. We know there have been various creative proposals how a new process creation syscall or even api is supposed to look like. Some people even going so far as to argue that the traditional fork()+exec() split should be abandoned in favor of an in-kernel version of spawn(). Independent of whether or not we personally think spawn() is a good idea this patchset has and does not want to have anything to do with this. One stance we take is that there's no real good alternative to clone()+exec() and we need and want to support this model going forward; independent of spawn(). The following requirements guided clone3(): - bump the number of available flags - move arguments that are currently passed as separate arguments in clone() into a dedicated struct clone_args - choose a struct layout that is easy to handle on 32 and on 64 bit - choose a struct layout that is extensible - give new flags that currently need to abuse another flag's dedicated return argument in clone() their own dedicated return argument (e.g. CLONE_PIDFD) - use a separate kernel internal struct kernel_clone_args that is properly typed according to current kernel conventions in fork.c and is different from the uapi struct clone_args - port _do_fork() to use kernel_clone_args so that all process creation syscalls such as fork(), vfork(), clone(), and clone3() behave identical (Arnd suggested, that we can probably also port do_fork() itself in a separate patchset.) - ease of transition for userspace from clone() to clone3() This very much means that we do *not* remove functionality that userspace currently relies on as the latter is a good way of creating a syscall that won't be adopted. - do not try to be clever or complex: keep clone3() as dumb as possible In accordance with Linus suggestions (cf. [11]), clone3() has the following signature: /* uapi */ struct clone_args { __aligned_u64 flags; __aligned_u64 pidfd; __aligned_u64 child_tid; __aligned_u64 parent_tid; __aligned_u64 exit_signal; __aligned_u64 stack; __aligned_u64 stack_size; __aligned_u64 tls; }; /* kernel internal */ struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; }; long sys_clone3(struct clone_args __user *uargs, size_t size) clone3() cleanly supports all of the supported flags from clone() and thus all legacy workloads. The advantage of sticking close to the old clone() is the low cost for userspace to switch to this new api. Quite a lot of userspace apis (e.g. pthreads) are based on the clone() syscall. With the new clone3() syscall supporting all of the old workloads and opening up the ability to add new features should make switching to it for userspace more appealing. In essence, glibc can just write a simple wrapper to switch from clone() to clone3(). There has been some interest in this patchset already. We have received a patch from the CRIU corner for clone3() that would set the PID/TID of a restored process without /proc/sys/kernel/ns_last_pid to eliminate a race. /* User visible differences to legacy clone() */ - CLONE_DETACHED will cause EINVAL with clone3() - CSIGNAL is deprecated It is superseeded by a dedicated "exit_signal" argument in struct clone_args freeing up space for additional flags. This is based on a suggestion from Andrei and Linus (cf. [9] and [10]) /* References */ [1]: b3e5838252665ee4cfa76b82bdf1198dca81e5be [2]: https://dxr.mozilla.org/mozilla-central/source/security/sandbox/linux/SandboxFilter.cpp#343 [3]: https://git.musl-libc.org/cgit/musl/tree/src/thread/pthread_create.c#n233 [4]: https://sources.debian.org/src/blcr/0.8.5-2.3/cr_module/cr_dump_self.c/?hl=740#L740 [5]: https://lore.kernel.org/lkml/[email protected]/ [6]: https://lore.kernel.org/lkml/[email protected]/ [7]: https://lore.kernel.org/lkml/CAHrFyr5HxpGXA2YrKza-oB-GGwJCqwPfyhD-Y5wbktWZdt0sGQ@mail.gmail.com/ [8]: https://lore.kernel.org/lkml/[email protected]/ [9]: https://lore.kernel.org/lkml/[email protected]/ [10]: https://lore.kernel.org/lkml/CAHk-=whQP-Ykxi=zSYaV9iXsHsENa+2fdj-zYKwyeyed63Lsfw@mail.gmail.com/ [11]: https://lore.kernel.org/lkml/CAHk-=wieuV4hGwznPsX-8E0G2FKhx3NjZ9X3dTKh5zKd+iqOBw@mail.gmail.com/ Suggested-by: Linus Torvalds <[email protected]> Signed-off-by: Christian Brauner <[email protected]> Acked-by: Arnd Bergmann <[email protected]> Acked-by: Serge Hallyn <[email protected]> Cc: Kees Cook <[email protected]> Cc: Pavel Emelyanov <[email protected]> Cc: Jann Horn <[email protected]> Cc: David Howells <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Adrian Reber <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrei Vagin <[email protected]> Cc: Al Viro <[email protected]> Cc: Florian Weimer <[email protected]> Cc: [email protected]
2019-06-03sched/core: Remove sd->*_idxDietmar Eggemann1-5/+0
The sched domain per rq load index files also disappear from the /proc/sys/kernel/sched_domain/cpuX/domainY directories. Signed-off-by: Dietmar Eggemann <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: Rik van Riel <[email protected]> Cc: Frederic Weisbecker <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Morten Rasmussen <[email protected]> Cc: Patrick Bellasi <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Quentin Perret <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Valentin Schneider <[email protected]> Cc: Vincent Guittot <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-06-03sched/fair: Remove the rq->cpu_load[] update codeDietmar Eggemann1-8/+0
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx] any more. Signed-off-by: Dietmar Eggemann <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Acked-by: Rik van Riel <[email protected]> Cc: Frederic Weisbecker <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Morten Rasmussen <[email protected]> Cc: Patrick Bellasi <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Quentin Perret <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Valentin Schneider <[email protected]> Cc: Vincent Guittot <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-05-29signal: Remove the signal number and task parameters from force_sig_infoEric W. Biederman1-1/+1
force_sig_info always delivers to the current task and the signal parameter always matches info.si_signo. So remove those parameters to make it a simpler less error prone interface, and to make it clear that none of the callers are doing anything clever. This guarantees that force_sig_info will not grow any new buggy callers that attempt to call force_sig on a non-current task, or that pass an signal number that does not match info.si_signo. Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-29signal: Remove the task parameter from force_sig_faultEric W. Biederman1-2/+1
As synchronous exceptions really only make sense against the current task (otherwise how are you synchronous) remove the task parameter from from force_sig_fault to make it explicit that is what is going on. The two known exceptions that deliver a synchronous exception to a stopped ptraced task have already been changed to force_sig_fault_to_task. The callers have been changed with the following emacs regular expression (with obvious variations on the architectures that take more arguments) to avoid typos: force_sig_fault[(]\([^,]+\)[,]\([^,]+\)[,]\([^,]+\)[,]\W+current[)] -> force_sig_fault(\1,\2,\3) Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-29signal: Use force_sig_fault_to_task for the two calls that don't deliver to ↵Eric W. Biederman1-0/+4
current In preparation for removing the task parameter from force_sig_fault introduce force_sig_fault_to_task and use it for the two cases where it matters. On mips force_fcr31_sig calls force_sig_fault and is called on either the current task, or a task that is suspended and is being switched to by the scheduler. This is safe because the task being switched to by the scheduler is guaranteed to be suspended. This ensures that task->sighand is stable while the signal is delivered to it. On parisc user_enable_single_step calls force_sig_fault and is in turn called by ptrace_request. The function ptrace_request always calls user_enable_single_step on a child that is stopped for tracing. The child being traced and not reaped ensures that child->sighand is not NULL, and that the child will not change child->sighand. Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-27signal: Remove task parameter from force_sig_mceerrEric W. Biederman1-1/+1
All of the callers pass current into force_sig_mceer so remove the task parameter to make this obvious. This also makes it clear that force_sig_mceerr passes current into force_sig_info. Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-27signal: Remove task parameter from force_sigEric W. Biederman1-1/+1
All of the remaining callers pass current into force_sig so remove the task parameter to make this obvious and to make misuse more difficult in the future. This also makes it clear force_sig passes current into force_sig_info. Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-27signal: Remove task parameter from force_sigsegvEric W. Biederman1-1/+1
The function force_sigsegv is always called on the current task so passing in current is redundant and not passing in current makes this fact obvious. This also makes it clear force_sigsegv always calls force_sig on the current task. Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-22signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncioEric W. Biederman1-1/+1
The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <[email protected]> Cc: [email protected] Cc: Alan Stern <[email protected]> Cc: Oliver Neukum <[email protected]> Fixes: v2.3.39 Cc: [email protected] Acked-by: Alan Stern <[email protected]> Signed-off-by: "Eric W. Biederman" <[email protected]>
2019-05-14include/linux/sched/signal.h: replace `tsk' with `task'Andrei Vagin1-25/+26
This file uses "task" 85 times and "tsk" 25 times. It is better to be consistent. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Andrei Vagin <[email protected]> Reviewed-by: Andrew Morton <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: "Eric W. Biederman" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-05-09Merge branch 'for-5.2' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "This includes Roman's cgroup2 freezer implementation. It's a separate machanism from cgroup1 freezer. Instead of blocking user tasks in arbitrary uninterruptible sleeps, the new implementation extends jobctl stop - frozen tasks are trapped in jobctl stop until thawed and can be killed and ptraced. Lots of thanks to Oleg for sheperding the effort. Other than that, there are a few trivial changes" * 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: never call do_group_exit() with task->frozen bit set kernel: cgroup: fix misuse of %x cgroup: get rid of cgroup_freezer_frozen_exit() cgroup: prevent spurious transition into non-frozen state cgroup: Remove unused cgrp variable cgroup: document cgroup v2 freezer interface cgroup: add tracing points for cgroup v2 freezer cgroup: make TRACE_CGROUP_PATH irq-safe kselftests: cgroup: add freezer controller self-tests kselftests: cgroup: don't fail on cg_kill_all() error in cg_destroy() cgroup: cgroup v2 freezer cgroup: protect cgroup->nr_(dying_)descendants by css_set_lock cgroup: implement __cgroup_task_count() helper cgroup: rename freezer.c into legacy_freezer.c cgroup: remove extra cgroup_migrate_finish() call
2019-05-07Merge branch 'next-general' of ↵Linus Torvalds1-0/+7
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "Just a few bugfixes and documentation updates" * 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: seccomp: fix up grammar in comment Revert "security: inode: fix a missing check for securityfs_create_file" Yama: mark function as static security: inode: fix a missing check for securityfs_create_file keys: safe concurrent user->{session,uid}_keyring access security: don't use RCU accessors for cred->session_keyring Yama: mark local symbols as static LSM: lsm_hooks.h: fix documentation format LSM: fix documentation for the shm_* hooks LSM: fix documentation for the sem_* hooks LSM: fix documentation for the msg_queue_* hooks LSM: fix documentation for the audit_* hooks LSM: fix documentation for the path_chmod hook LSM: fix documentation for the socket_getpeersec_dgram hook LSM: fix documentation for the task_setscheduler hook LSM: fix documentation for the socket_post_create hook LSM: fix documentation for the syslog hook LSM: fix documentation for sb_copy_data hook
2019-05-06Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Ingo Molnar: "The changes in here are: - text_poke() fixes and an extensive set of executability lockdowns, to (hopefully) eliminate the last residual circumstances under which we are using W|X mappings even temporarily on x86 kernels. This required a broad range of surgery in text patching facilities, module loading, trampoline handling and other bits. - tweak page fault messages to be more informative and more structured. - remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the default. - reduce KASLR granularity on 5-level paging kernels from 512 GB to 1 GB. - misc other changes and updates" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/mm: Initialize PGD cache during mm initialization x86/alternatives: Add comment about module removal races x86/kprobes: Use vmalloc special flag x86/ftrace: Use vmalloc special flag bpf: Use vmalloc special flag modules: Use vmalloc special flag mm/vmalloc: Add flag for freeing of special permsissions mm/hibernation: Make hibernation handle unmapped pages x86/mm/cpa: Add set_direct_map_*() functions x86/alternatives: Remove the return value of text_poke_*() x86/jump-label: Remove support for custom text poker x86/modules: Avoid breaking W^X while loading modules x86/kprobes: Set instruction page as executable x86/ftrace: Set trampoline pages as executable x86/kgdb: Avoid redundant comparison of patched code x86/alternatives: Use temporary mm for text poking x86/alternatives: Initialize temporary mm for patching fork: Provide a function for copying init_mm uprobes: Initialize uprobes earlier x86/mm: Save debug registers when loading a temporary mm ...
2019-05-03Merge branch 'linus' into sched/core, to pick up fixesIngo Molnar1-0/+21
Signed-off-by: Ingo Molnar <[email protected]>
2019-04-30fork: Provide a function for copying init_mmNadav Amit1-0/+1
Provide a function for copying init_mm. This function will be later used for setting a temporary mm. Tested-by: Masami Hiramatsu <[email protected]> Signed-off-by: Nadav Amit <[email protected]> Signed-off-by: Rick Edgecombe <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: Masami Hiramatsu <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Borislav Petkov <[email protected]> Cc: Dave Hansen <[email protected]> Cc: H. Peter Anvin <[email protected]> Cc: Kees Cook <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Rik van Riel <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-04-19cgroup: cgroup v2 freezerRoman Gushchin1-0/+2
Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <[email protected]> Signed-off-by: Tejun Heo <[email protected]> No-objection-from-me-by: Oleg Nesterov <[email protected]> Cc: [email protected]
2019-04-19coredump: fix race condition between mmget_not_zero()/get_task_mm() and core ↵Andrea Arcangeli1-0/+21
dumping The core dumping code has always run without holding the mmap_sem for writing, despite that is the only way to ensure that the entire vma layout will not change from under it. Only using some signal serialization on the processes belonging to the mm is not nearly enough. This was pointed out earlier. For example in Hugh's post from Jul 2017: https://lkml.kernel.org/r/[email protected] "Not strictly relevant here, but a related note: I was very surprised to discover, only quite recently, how handle_mm_fault() may be called without down_read(mmap_sem) - when core dumping. That seems a misguided optimization to me, which would also be nice to correct" In particular because the growsdown and growsup can move the vm_start/vm_end the various loops the core dump does around the vma will not be consistent if page faults can happen concurrently. Pretty much all users calling mmget_not_zero()/get_task_mm() and then taking the mmap_sem had the potential to introduce unexpected side effects in the core dumping code. Adding mmap_sem for writing around the ->core_dump invocation is a viable long term fix, but it requires removing all copy user and page faults and to replace them with get_dump_page() for all binary formats which is not suitable as a short term fix. For the time being this solution manually covers the places that can confuse the core dump either by altering the vma layout or the vma flags while it runs. Once ->core_dump runs under mmap_sem for writing the function mmget_still_valid() can be dropped. Allowing mmap_sem protected sections to run in parallel with the coredump provides some minor parallelism advantage to the swapoff code (which seems to be safe enough by never mangling any vma field and can keep doing swapins in parallel to the core dumping) and to some other corner case. In order to facilitate the backporting I added "Fixes: 86039bd3b4e6" however the side effect of this same race condition in /proc/pid/mem should be reproducible since before 2.6.12-rc2 so I couldn't add any other "Fixes:" because there's no hash beyond the git genesis commit. Because find_extend_vma() is the only location outside of the process context that could modify the "mm" structures under mmap_sem for reading, by adding the mmget_still_valid() check to it, all other cases that take the mmap_sem for reading don't need the new check after mmget_not_zero()/get_task_mm(). The expand_stack() in page fault context also doesn't need the new check, because all tasks under core dumping are frozen. Link: http://lkml.kernel.org/r/[email protected] Fixes: 86039bd3b4e6 ("userfaultfd: add new syscall to provide memory externalization") Signed-off-by: Andrea Arcangeli <[email protected]> Reported-by: Jann Horn <[email protected]> Suggested-by: Oleg Nesterov <[email protected]> Acked-by: Peter Xu <[email protected]> Reviewed-by: Mike Rapoport <[email protected]> Reviewed-by: Oleg Nesterov <[email protected]> Reviewed-by: Jann Horn <[email protected]> Acked-by: Jason Gunthorpe <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-04-10keys: safe concurrent user->{session,uid}_keyring accessJann Horn1-0/+7
The current code can perform concurrent updates and reads on user->session_keyring and user->uid_keyring. Add a comment to struct user_struct to document the nontrivial locking semantics, and use READ_ONCE() for unlocked readers and smp_store_release() for writers to prevent memory ordering issues. Fixes: 69664cf16af4 ("keys: don't generate user and user session keyrings unless they're accessed") Signed-off-by: Jann Horn <[email protected]> Signed-off-by: James Morris <[email protected]>
2019-04-03sched_domain: Annotate RCU pointers properlyJoel Fernandes (Google)1-2/+2
The scheduler uses RCU API in various places to access sched_domain pointers. These cause sparse errors as below. Many new errors show up because of an annotation check I added to rcu_assign_pointer(). Let us annotate the pointers correctly which also will help sparse catch any potential future bugs. This fixes the following sparse errors: rt.c:1681:9: error: incompatible types in comparison expression deadline.c:1904:9: error: incompatible types in comparison expression core.c:519:9: error: incompatible types in comparison expression core.c:1634:17: error: incompatible types in comparison expression fair.c:6193:14: error: incompatible types in comparison expression fair.c:9883:22: error: incompatible types in comparison expression fair.c:9897:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:612:9: error: incompatible types in comparison expression topology.c:615:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:618:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:621:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:624:9: error: incompatible types in comparison expression topology.c:671:9: error: incompatible types in comparison expression stats.c:45:17: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:6120:19: error: incompatible types in comparison expression fair.c:6506:14: error: incompatible types in comparison expression fair.c:6515:14: error: incompatible types in comparison expression fair.c:6623:9: error: incompatible types in comparison expression fair.c:5970:17: error: incompatible types in comparison expression fair.c:8642:21: error: incompatible types in comparison expression fair.c:9253:9: error: incompatible types in comparison expression fair.c:9331:9: error: incompatible types in comparison expression fair.c:9519:15: error: incompatible types in comparison expression fair.c:9533:14: error: incompatible types in comparison expression fair.c:9542:14: error: incompatible types in comparison expression fair.c:9567:14: error: incompatible types in comparison expression fair.c:9597:14: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression Signed-off-by: Joel Fernandes (Google) <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> [ From an RCU perspective. ] Reviewed-by: Paul E. McKenney <[email protected]> Cc: Josh Triplett <[email protected]> Cc: Lai Jiangshan <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Luc Van Oostenryck <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Morten Rasmussen <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-03-29ptrace: take into account saved_sigmask in PTRACE{GET,SET}SIGMASKAndrei Vagin1-0/+18
There are a few system calls (pselect, ppoll, etc) which replace a task sigmask while they are running in a kernel-space When a task calls one of these syscalls, the kernel saves a current sigmask in task->saved_sigmask and sets a syscall sigmask. On syscall-exit-stop, ptrace traps a task before restoring the saved_sigmask, so PTRACE_GETSIGMASK returns the syscall sigmask and PTRACE_SETSIGMASK does nothing, because its sigmask is replaced by saved_sigmask, when the task returns to user-space. This patch fixes this problem. PTRACE_GETSIGMASK returns saved_sigmask if it's set. PTRACE_SETSIGMASK drops the TIF_RESTORE_SIGMASK flag. Link: http://lkml.kernel.org/r/[email protected] Fixes: 29000caecbe8 ("ptrace: add ability to get/set signal-blocked mask") Signed-off-by: Andrei Vagin <[email protected]> Acked-by: Oleg Nesterov <[email protected]> Cc: "Eric W. Biederman" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-03-08Merge tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-blockLinus Torvalds1-1/+1
Pull io_uring IO interface from Jens Axboe: "Second attempt at adding the io_uring interface. Since the first one, we've added basic unit testing of the three system calls, that resides in liburing like the other unit tests that we have so far. It'll take a while to get full coverage of it, but we're working towards it. I've also added two basic test programs to tools/io_uring. One uses the raw interface and has support for all the various features that io_uring supports outside of standard IO, like fixed files, fixed IO buffers, and polled IO. The other uses the liburing API, and is a simplified version of cp(1). This adds support for a new IO interface, io_uring. io_uring allows an application to communicate with the kernel through two rings, the submission queue (SQ) and completion queue (CQ) ring. This allows for very efficient handling of IOs, see the v5 posting for some basic numbers: https://lore.kernel.org/linux-block/[email protected]/ Outside of just efficiency, the interface is also flexible and extendable, and allows for future use cases like the upcoming NVMe key-value store API, networked IO, and so on. It also supports async buffered IO, something that we've always failed to support in the kernel. Outside of basic IO features, it supports async polled IO as well. This particular feature has already been tested at Facebook months ago for flash storage boxes, with 25-33% improvements. It makes polled IO actually useful for real world use cases, where even basic flash sees a nice win in terms of efficiency, latency, and performance. These boxes were IOPS bound before, now they are not. This series adds three new system calls. One for setting up an io_uring instance (io_uring_setup(2)), one for submitting/completing IO (io_uring_enter(2)), and one for aux functions like registrating file sets, buffers, etc (io_uring_register(2)). Through the help of Arnd, I've coordinated the syscall numbers so merge on that front should be painless. Jon did a writeup of the interface a while back, which (except for minor details that have been tweaked) is still accurate. Find that here: https://lwn.net/Articles/776703/ Huge thanks to Al Viro for helping getting the reference cycle code correct, and to Jann Horn for his extensive reviews focused on both security and bugs in general. There's a userspace library that provides basic functionality for applications that don't need or want to care about how to fiddle with the rings directly. It has helpers to allow applications to easily set up an io_uring instance, and submit/complete IO through it without knowing about the intricacies of the rings. It also includes man pages (thanks to Jeff Moyer), and will continue to grow support helper functions and features as time progresses. Find it here: git://git.kernel.dk/liburing Fio has full support for the raw interface, both in the form of an IO engine (io_uring), but also with a small test application (t/io_uring) that can exercise and benchmark the interface" * tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block: io_uring: add a few test tools io_uring: allow workqueue item to handle multiple buffered requests io_uring: add support for IORING_OP_POLL io_uring: add io_kiocb ref count io_uring: add submission polling io_uring: add file set registration net: split out functions related to registering inflight socket files io_uring: add support for pre-mapped user IO buffers block: implement bio helper to add iter bvec pages to bio io_uring: batch io_kiocb allocation io_uring: use fget/fput_many() for file references fs: add fget_many() and fput_many() io_uring: support for IO polling io_uring: add fsync support Add io_uring IO interface
2019-03-06Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-8/+40
Merge misc updates from Andrew Morton: - a few misc things - ocfs2 updates - most of MM * emailed patches from Andrew Morton <[email protected]>: (159 commits) tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include proc: more robust bulk read test proc: test /proc/*/maps, smaps, smaps_rollup, statm proc: use seq_puts() everywhere proc: read kernel cpu stat pointer once proc: remove unused argument in proc_pid_lookup() fs/proc/thread_self.c: code cleanup for proc_setup_thread_self() fs/proc/self.c: code cleanup for proc_setup_self() proc: return exit code 4 for skipped tests mm,mremap: bail out earlier in mremap_to under map pressure mm/sparse: fix a bad comparison mm/memory.c: do_fault: avoid usage of stale vm_area_struct writeback: fix inode cgroup switching comment mm/huge_memory.c: fix "orig_pud" set but not used mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC mm/memcontrol.c: fix bad line in comment mm/cma.c: cma_declare_contiguous: correct err handling mm/page_ext.c: fix an imbalance with kmemleak mm/compaction: pass pgdat to too_many_isolated() instead of zone mm: remove zone_lru_lock() function, access ->lru_lock directly ...
2019-03-06Merge branch 'sched-core-for-linus' of ↵Linus Torvalds5-9/+17
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - refcount conversions - Solve the rq->leaf_cfs_rq_list can of worms for real. - improve power-aware scheduling - add sysctl knob for Energy Aware Scheduling - documentation updates - misc other changes" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) kthread: Do not use TIMER_IRQSAFE kthread: Convert worker lock to raw spinlock sched/fair: Use non-atomic cpumask_{set,clear}_cpu() sched/fair: Remove unused 'sd' parameter from select_idle_smt() sched/wait: Use freezable_schedule() when possible sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block sched/fair: Explain LLC nohz kick condition sched/fair: Simplify nohz_balancer_kick() sched/topology: Fix percpu data types in struct sd_data & struct s_data sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument sched/fair: Fix O(nr_cgroups) in the load balancing path sched/fair: Optimize update_blocked_averages() sched/fair: Fix insertion in rq->leaf_cfs_rq_list sched/fair: Add tmp_alone_branch assertion sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock() sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity sched/fair: Update scale invariance of PELT sched/fair: Move the rq_of() helper function sched/core: Convert task_struct.stack_refcount to refcount_t ...
2019-03-05mm/cma: add PF flag to force non cma allocAneesh Kumar K.V1-8/+40
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA region", v8. ppc64 uses the CMA area for the allocation of guest page table (hash page table). We won't be able to start guest if we fail to allocate hash page table. We have observed hash table allocation failure because we failed to migrate pages out of CMA region because they were pinned. This happen when we are using VFIO. VFIO on ppc64 pins the entire guest RAM. If the guest RAM pages get allocated out of CMA region, we won't be able to migrate those pages. The pages are also pinned for the lifetime of the guest. Currently we support migration of non-compound pages. With THP and with the addition of hugetlb migration we can end up allocating compound pages from CMA region. This patch series add support for migrating compound pages. This patch (of 4): Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is marked non-movable and hence cannot be satisfied by CMA region. This is useful with get_user_pages_longterm where we want to take a page pin by migrating pages from CMA region. Marking the section PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration later. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Aneesh Kumar K.V <[email protected]> Suggested-by: Andrea Arcangeli <[email protected]> Reviewed-by: Andrea Arcangeli <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Alexey Kardashevskiy <[email protected]> Cc: David Gibson <[email protected]> Cc: Michael Ellerman <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Vlastimil Babka <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-02-28Add io_uring IO interfaceJens Axboe1-1/+1
The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c Reviewed-by: Hannes Reinecke <[email protected]> Signed-off-by: Jens Axboe <[email protected]>
2019-02-11sched/topology: Fix percpu data types in struct sd_data & struct s_dataLuc Van Oostenryck1-4/+4
The percpu members of struct sd_data and s_data are declared as: struct ... ** __percpu member; So their type is: __percpu pointer to pointer to struct ... But looking at how they're used, their type should be: pointer to __percpu pointer to struct ... and they should thus be declared as: struct ... * __percpu *member; So fix the placement of '__percpu' in the definition of these structures. This addresses a bunch of Sparse's warnings like: warning: incorrect type in initializer (different address spaces) expected void const [noderef] <asn:3> *__vpp_verify got struct sched_domain ** Signed-off-by: Luc Van Oostenryck <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-02-11Merge tag 'v5.0-rc6' into sched/core, to pick up fixesIngo Molnar2-1/+6
Signed-off-by: Ingo Molnar <[email protected]>
2019-02-04sched/wake_q: Reduce reference counting for special usersDavidlohr Bueso1-2/+2
Some users, specifically futexes and rwsems, required fixes that allowed the callers to be safe when wakeups occur before they are expected by wake_up_q(). Such scenarios also play games and rely on reference counting, and until now were pivoting on wake_q doing it. With the wake_q_add() call being moved down, this can no longer be the case. As such we end up with a a double task refcounting overhead; and these callers care enough about this (being rather core-ish). This patch introduces a wake_q_add_safe() call that serves for callers that have already done refcounting and therefore the task is 'safe' from wake_q point of view (int that it requires reference throughout the entire queue/>wakeup cycle). In the one case it has internal reference counting, in the other case it consumes the reference counting. Signed-off-by: Davidlohr Bueso <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Paul E. McKenney <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Waiman Long <[email protected]> Cc: Will Deacon <[email protected]> Cc: Xie Yongji <[email protected]> Cc: Yongji Xie <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/20181218195352.7orq3upiwfdbrdne@linux-r8p5 Signed-off-by: Ingo Molnar <[email protected]>
2019-02-04sched/core: Convert task_struct.stack_refcount to refcount_tElena Reshetova1-1/+1
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.stack_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.stack_refcount it might make a difference in following places: - try_get_task_stack(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - put_task_stack(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <[email protected]> Signed-off-by: Elena Reshetova <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: David Windsor <[email protected]> Reviewed-by: Hans Liljestrand <[email protected]> Reviewed-by: Andrea Parri <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-02-04sched/core: Convert task_struct.usage to refcount_tElena Reshetova1-2/+2
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.usage is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.usage it might make a difference in following places: - put_task_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <[email protected]> Signed-off-by: Elena Reshetova <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: David Windsor <[email protected]> Reviewed-by: Hans Liljestrand <[email protected]> Reviewed-by: Andrea Parri <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-02-04sched/core: Convert signal_struct.sigcnt to refcount_tElena Reshetova1-1/+1
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable signal_struct.sigcnt is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the signal_struct.sigcnt it might make a difference in following places: - put_signal_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <[email protected]> Signed-off-by: Elena Reshetova <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: David Windsor <[email protected]> Reviewed-by: Hans Liljestrand <[email protected]> Reviewed-by: Andrea Parri <[email protected]> Reviewed-by: Oleg Nesterov <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-02-04sched/core: Convert sighand_struct.count to refcount_tElena Reshetova1-1/+2
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable sighand_struct.count is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the sighand_struct.count it might make a difference in following places: - __cleanup_sighand: decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <[email protected]> Signed-off-by: Elena Reshetova <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Reviewed-by: David Windsor <[email protected]> Reviewed-by: Hans Liljestrand <[email protected]> Reviewed-by: Andrea Parri <[email protected]> Reviewed-by: Oleg Nesterov <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-02-01oom, oom_reaper: do not enqueue same task twiceTetsuo Handa1-0/+1
Arkadiusz reported that enabling memcg's group oom killing causes strange memcg statistics where there is no task in a memcg despite the number of tasks in that memcg is not 0. It turned out that there is a bug in wake_oom_reaper() which allows enqueuing same task twice which makes impossible to decrease the number of tasks in that memcg due to a refcount leak. This bug existed since the OOM reaper became invokable from task_will_free_mem(current) path in out_of_memory() in Linux 4.7, T1@P1 |T2@P1 |T3@P1 |OOM reaper ----------+----------+----------+------------ # Processing an OOM victim in a different memcg domain. try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) out_of_memory() oom_kill_process(P1) do_send_sig_info(SIGKILL, @P1) mark_oom_victim(T1@P1) wake_oom_reaper(T1@P1) # T1@P1 is enqueued. mutex_unlock(&oom_lock) out_of_memory() mark_oom_victim(T2@P1) wake_oom_reaper(T2@P1) # T2@P1 is enqueued. mutex_unlock(&oom_lock) out_of_memory() mark_oom_victim(T1@P1) wake_oom_reaper(T1@P1) # T1@P1 is enqueued again due to oom_reaper_list == T2@P1 && T1@P1->oom_reaper_list == NULL. mutex_unlock(&oom_lock) # Completed processing an OOM victim in a different memcg domain. spin_lock(&oom_reaper_lock) # T1P1 is dequeued. spin_unlock(&oom_reaper_lock) but memcg's group oom killing made it easier to trigger this bug by calling wake_oom_reaper() on the same task from one out_of_memory() request. Fix this bug using an approach used by commit 855b018325737f76 ("oom, oom_reaper: disable oom_reaper for oom_kill_allocating_task"). As a side effect of this patch, this patch also avoids enqueuing multiple threads sharing memory via task_will_free_mem(current) path. Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Fixes: af8e15cc85a25315 ("oom, oom_reaper: do not enqueue task if it is on the oom_reaper_list head") Signed-off-by: Tetsuo Handa <[email protected]> Reported-by: Arkadiusz Miskiewicz <[email protected]> Tested-by: Arkadiusz Miskiewicz <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Roman Gushchin <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Aleksa Sarai <[email protected]> Cc: Jay Kamat <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2019-01-27sched/topology: Introduce a sysctl for Energy Aware SchedulingQuentin Perret1-0/+7
In its current state, Energy Aware Scheduling (EAS) starts automatically on asymmetric platforms having an Energy Model (EM). However, there are users who want to have an EM (for thermal management for example), but don't want EAS with it. In order to let users disable EAS explicitly, introduce a new sysctl called 'sched_energy_aware'. It is enabled by default so that EAS can start automatically on platforms where it makes sense. Flipping it to 0 rebuilds the scheduling domains and disables EAS. Signed-off-by: Quentin Perret <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2019-01-21sched/wake_q: Document wake_q_add()Peter Zijlstra1-1/+5
The only guarantee provided by wake_q_add() is that a wakeup will happen after it, it does _NOT_ guarantee the wakeup will be delayed until the matching wake_up_q(). If wake_q_add() fails the cmpxchg() a concurrent wakeup is pending and that can happen at any time after the cmpxchg(). This means we should not rely on the wakeup happening at wake_q_up(), but should be ready for wake_q_add() to issue the wakeup. The delay; if provided (most likely); should only result in more efficient behaviour. Reported-by: Yongji Xie <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Davidlohr Bueso <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Waiman Long <[email protected]> Cc: Will Deacon <[email protected]> Signed-off-by: Ingo Molnar <[email protected]>
2019-01-04fork: fix some -Wmissing-prototypes warningsYi Wang1-0/+2
We get a warning when building kernel with W=1: kernel/fork.c:167:13: warning: no previous prototype for `arch_release_thread_stack' [-Wmissing-prototypes] kernel/fork.c:779:13: warning: no previous prototype for `fork_init' [-Wmissing-prototypes] Add the missing declaration in head file to fix this. Also, remove arch_release_thread_stack() completely because no arch seems to implement it since bb9d81264 (arch: remove tile port). Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yi Wang <[email protected]> Acked-by: Michal Hocko <[email protected]> Acked-by: Mike Rapoport <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2018-12-11sched/cpufreq: Prepare schedutil for Energy Aware SchedulingQuentin Perret1-0/+6
Schedutil requests frequency by aggregating utilization signals from the scheduler (CFS, RT, DL, IRQ) and applying a 25% margin on top of them. Since Energy Aware Scheduling (EAS) needs to be able to predict the frequency requests, it needs to forecast the decisions made by the governor. In order to prepare the introduction of EAS, introduce schedutil_freq_util() to centralize the aforementioned signal aggregation and make it available to both schedutil and EAS. Since frequency selection and energy estimation still need to deal with RT and DL signals slightly differently, schedutil_freq_util() is called with a different 'type' parameter in those two contexts, and returns an aggregated utilization signal accordingly. While at it, introduce the map_util_freq() function which is designed to make schedutil's 25% margin usable easily for both sugov and EAS. As EAS will be able to predict schedutil's frequency requests more accurately than any other governor by design, it'd be sensible to make sure EAS cannot be used without schedutil. This will be done later, once EAS has actually been introduced. Suggested-by: Peter Zijlstra <[email protected]> Signed-off-by: Quentin Perret <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2018-12-11sched/topology: Relocate arch_scale_cpu_capacity() to the internal headerQuentin Perret1-0/+16
By default, arch_scale_cpu_capacity() is only visible from within the kernel/sched folder. Relocate it to include/linux/sched/topology.h to make it visible to other clients needing to know about the capacity of CPUs, such as the Energy Model framework. This also shrinks the <linux/sched/topology.h> public header. Signed-off-by: Quentin Perret <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2018-12-11sched/topology: Remove the ::smt_gain field from 'struct sched_domain'Vincent Guittot1-1/+0
::smt_gain is used to compute the capacity of CPUs of a SMT core with the constraint 1 < ::smt_gain < 2 in order to be able to compute number of CPUs per core. The field has_free_capacity of struct numa_stat, which was the last user of this computation of number of CPUs per core, has been removed by: 2d4056fafa19 ("sched/numa: Remove numa_has_capacity()") We can now remove this constraint on core capacity and use the defautl value SCHED_CAPACITY_SCALE for SMT CPUs. With this remove, SCHED_CAPACITY_SCALE becomes the maximum compute capacity of CPUs on every systems. This should help to simplify some code and remove fields like rd->max_cpu_capacity Furthermore, arch_scale_cpu_capacity() is used with a NULL sd in several other places in the code when it wants the capacity of a CPUs to scale some metrics like in pelt, deadline or schedutil. In case on SMT, the value returned is not the capacity of SMT CPUs but default SCHED_CAPACITY_SCALE. So remove it. Signed-off-by: Vincent Guittot <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]>
2018-12-03sched: Fix various typos in commentsIngo Molnar3-4/+4
Go over the scheduler source code and fix common typos in comments - and a typo in an actual variable name. No change in functionality intended. Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: [email protected] Signed-off-by: Ingo Molnar <[email protected]>
2018-11-28x86/speculation: Rework SMT state changeThomas Gleixner1-0/+2
arch_smt_update() is only called when the sysfs SMT control knob is changed. This means that when SMT is enabled in the sysfs control knob the system is considered to have SMT active even if all siblings are offline. To allow finegrained control of the speculation mitigations, the actual SMT state is more interesting than the fact that siblings could be enabled. Rework the code, so arch_smt_update() is invoked from each individual CPU hotplug function, and simplify the update function while at it. Signed-off-by: Thomas Gleixner <[email protected]> Reviewed-by: Ingo Molnar <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Jiri Kosina <[email protected]> Cc: Tom Lendacky <[email protected]> Cc: Josh Poimboeuf <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: David Woodhouse <[email protected]> Cc: Tim Chen <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Casey Schaufler <[email protected]> Cc: Asit Mallick <[email protected]> Cc: Arjan van de Ven <[email protected]> Cc: Jon Masters <[email protected]> Cc: Waiman Long <[email protected]> Cc: Greg KH <[email protected]> Cc: Dave Stewart <[email protected]> Cc: Kees Cook <[email protected]> Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected]
2018-11-28sched/smt: Expose sched_smt_present static keyThomas Gleixner1-0/+18
Make the scheduler's 'sched_smt_present' static key globaly available, so it can be used in the x86 speculation control code. Provide a query function and a stub for the CONFIG_SMP=n case. Signed-off-by: Thomas Gleixner <[email protected]> Reviewed-by: Ingo Molnar <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Jiri Kosina <[email protected]> Cc: Tom Lendacky <[email protected]> Cc: Josh Poimboeuf <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: David Woodhouse <[email protected]> Cc: Tim Chen <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Dave Hansen <[email protected]> Cc: Casey Schaufler <[email protected]> Cc: Asit Mallick <[email protected]> Cc: Arjan van de Ven <[email protected]> Cc: Jon Masters <[email protected]> Cc: Waiman Long <[email protected]> Cc: Greg KH <[email protected]> Cc: Dave Stewart <[email protected]> Cc: Kees Cook <[email protected]> Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected]
2018-10-30Merge tag 'pm-4.20-rc1-2' of ↵Linus Torvalds1-1/+0
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull more power management updates from Rafael Wysocki: "These remove a questionable heuristic from the menu cpuidle governor, fix a recent build regression in the intel_pstate driver, clean up ARM big-Little support in cpufreq and fix up hung task watchdog's interaction with system-wide power management transitions. Specifics: - Fix build regression in the intel_pstate driver that doesn't build without CONFIG_ACPI after recent changes (Dominik Brodowski). - One of the heuristics in the menu cpuidle governor is based on a function returning 0 most of the time, so drop it and clean up the scheduler code related to it (Daniel Lezcano). - Prevent the arm_big_little cpufreq driver from being used on ARM64 which is not suitable for it and drop the arm_big_little_dt driver that is not used any more (Sudeep Holla). - Prevent the hung task watchdog from triggering during resume from system-wide sleep states by disabling it before freezing tasks and enabling it again after they have been thawed (Vitaly Kuznetsov)" * tag 'pm-4.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: kernel: hung_task.c: disable on suspend cpufreq: remove unused arm_big_little_dt driver cpufreq: drop ARM_BIG_LITTLE_CPUFREQ support for ARM64 cpufreq: intel_pstate: Fix compilation for !CONFIG_ACPI cpuidle: menu: Remove get_loadavg() from the performance multiplier sched: Factor out nr_iowait and nr_iowait_cpu
2018-10-26sched: loadavg: make calc_load_n() publicJohannes Weiner1-0/+3
It's going to be used in a later patch. Keep the churn separate. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Johannes Weiner <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Suren Baghdasaryan <[email protected]> Tested-by: Daniel Drake <[email protected]> Cc: Christopher Lameter <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Mike Galbraith <[email protected]> Cc: Peter Enderborg <[email protected]> Cc: Randy Dunlap <[email protected]> Cc: Shakeel Butt <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Vinayak Menon <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>