| Age | Commit message (Collapse) | Author | Files | Lines |
|
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <[email protected]>
Suggested-by: Tejun Heo <[email protected]>
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
cgroup_psi() can't return psi_group for root cgroup, so we have many
open code "psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi".
This patch move cgroup_psi() definition to <linux/psi.h>, in which
we can return psi_system for root cgroup, so can handle all cgroups.
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
This patch move psi_task_change/psi_task_switch declarations out of
PSI public header, since they are only needed for implementing the
PSI stats tracking in sched/stats.h
psi_task_switch is obvious, psi_task_change can't be public helper
since it doesn't check psi_disabled static key. And there is no
any user now, so put it in sched/stats.h too.
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
psi_trigger_create()'s 'nbytes' parameter is not used, so we can remove it.
Signed-off-by: Hao Jia <[email protected]>
Reviewed-by: Ingo Molnar <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Signed-off-by: Tejun Heo <[email protected]>
|
|
Add the <linux/cgroup-defs.h> dependency to <linux/psi.h>, because
cgroup_move_task() will dereference 'struct css_set'.
( Only older toolchains are affected, due to variations in
the implementation of rcu_assign_pointer() et al. )
Cc: Peter Zijlstra <[email protected]>
Cc: Linus Torvalds <[email protected]>
Reported-by: Sachin Sant <[email protected]>
Reported-by: Andrew Morton <[email protected]>
Reported-by: Borislav Petkov <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
|
|
When CONFIG_CGROUPS is disabled psi code generates the following
warnings:
kernel/sched/psi.c:1112:21: warning: no previous prototype for 'psi_trigger_create' [-Wmissing-prototypes]
1112 | struct psi_trigger *psi_trigger_create(struct psi_group *group,
| ^~~~~~~~~~~~~~~~~~
kernel/sched/psi.c:1182:6: warning: no previous prototype for 'psi_trigger_destroy' [-Wmissing-prototypes]
1182 | void psi_trigger_destroy(struct psi_trigger *t)
| ^~~~~~~~~~~~~~~~~~~
kernel/sched/psi.c:1249:10: warning: no previous prototype for 'psi_trigger_poll' [-Wmissing-prototypes]
1249 | __poll_t psi_trigger_poll(void **trigger_ptr,
| ^~~~~~~~~~~~~~~~
Change the declarations of these functions in the header to provide the
prototypes even when they are unused.
Link: https://lkml.kernel.org/r/[email protected]
Fixes: 0e94682b73bf ("psi: introduce psi monitor")
Signed-off-by: Suren Baghdasaryan <[email protected]>
Reported-by: kernel test robot <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
With write operation on psi files replacing old trigger with a new one,
the lifetime of its waitqueue is totally arbitrary. Overwriting an
existing trigger causes its waitqueue to be freed and pending poll()
will stumble on trigger->event_wait which was destroyed.
Fix this by disallowing to redefine an existing psi trigger. If a write
operation is used on a file descriptor with an already existing psi
trigger, the operation will fail with EBUSY error.
Also bypass a check for psi_disabled in the psi_trigger_destroy as the
flag can be flipped after the trigger is created, leading to a memory
leak.
Fixes: 0e94682b73bf ("psi: introduce psi monitor")
Reported-by: [email protected]
Suggested-by: Linus Torvalds <[email protected]>
Analyzed-by: Eric Biggers <[email protected]>
Signed-off-by: Suren Baghdasaryan <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Eric Biggers <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
|
|
Add the missing SPDX license header to
include/linux/psi.h
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Liu Xinpeng <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Move the reclaim detection from the timer tick to the task state
tracking machinery using the recently added ONCPU state. And we
also add task psi_flags changes checking in the psi_task_switch()
optimization to update the parents properly.
In terms of performance and cost, this ONCPU task state tracking
is not cheaper than previous timer tick in aggregate. But the code is
simpler and shorter this way, so it's a maintainability win. And
Johannes did some testing with perf bench, the performace and cost
changes would be acceptable for real workloads.
Thanks to Johannes Weiner for pointing out the psi_task_switch()
optimization things and the clearer changelog.
Co-developed-by: Muchun Song <[email protected]>
Signed-off-by: Muchun Song <[email protected]>
Signed-off-by: Chengming Zhou <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
When switching tasks running on a CPU, the psi state of a cgroup
containing both of these tasks does not change. Right now, we don't
exploit that, and can perform many unnecessary state changes in nested
hierarchies, especially when most activity comes from one leaf cgroup.
This patch implements an optimization where we only update cgroups
whose state actually changes during a task switch. These are all
cgroups that contain one task but not the other, up to the first
shared ancestor. When both tasks are in the same group, we don't need
to update anything at all.
We can identify the first shared ancestor by walking the groups of the
incoming task until we see TSK_ONCPU set on the local CPU; that's the
first group that also contains the outgoing task.
The new psi_task_switch() is similar to psi_task_change(). To allow
code reuse, move the task flag maintenance code into a new function
and the poll/avg worker wakeups into the shared psi_group_change().
Suggested-by: Peter Zijlstra <[email protected]>
Signed-off-by: Johannes Weiner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
Pressure metrics are already recorded and exposed in procfs for the
entire system, but any tool which monitors cgroup pressure has to
special case the root cgroup to read from procfs. This patch exposes
the already recorded pressure metrics on the root cgroup.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Dan Schatzberg <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
Cc: Tejun Heo <[email protected]>
Cc: Li Zefan <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Psi monitor aims to provide a low-latency short-term pressure detection
mechanism configurable by users. It allows users to monitor psi metrics
growth and trigger events whenever a metric raises above user-defined
threshold within user-defined time window.
Time window and threshold are both expressed in usecs. Multiple psi
resources with different thresholds and window sizes can be monitored
concurrently.
Psi monitors activate when system enters stall state for the monitored
psi metric and deactivate upon exit from the stall state. While system
is in the stall state psi signal growth is monitored at a rate of 10
times per tracking window. Min window size is 500ms, therefore the min
monitoring interval is 50ms. Max window size is 10s with monitoring
interval of 1s.
When activated psi monitor stays active for at least the duration of one
tracking window to avoid repeated activations/deactivations when psi
signal is bouncing.
Notifications to the users are rate-limited to one per tracking window.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Suren Baghdasaryan <[email protected]>
Signed-off-by: Johannes Weiner <[email protected]>
Cc: Dennis Zhou <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jens Axboe <[email protected]>
Cc: Li Zefan <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Tejun Heo <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Mel Gorman reports a hackbench regression with psi that would prohibit
shipping the suse kernel with it default-enabled, but he'd still like
users to be able to opt in at little to no cost to others.
With the current combination of CONFIG_PSI and the psi_disabled bool set
from the commandline, this is a challenge. Do the following things to
make it easier:
1. Add a config option CONFIG_PSI_DEFAULT_DISABLED that allows distros
to enable CONFIG_PSI in their kernel but leave the feature disabled
unless a user requests it at boot-time.
To avoid double negatives, rename psi_disabled= to psi=.
2. Make psi_disabled a static branch to eliminate any branch costs
when the feature is disabled.
In terms of numbers before and after this patch, Mel says:
: The following is a comparision using CONFIG_PSI=n as a baseline against
: your patch and a vanilla kernel
:
: 4.20.0-rc4 4.20.0-rc4 4.20.0-rc4
: kconfigdisable-v1r1 vanilla psidisable-v1r1
: Amean 1 1.3100 ( 0.00%) 1.3923 ( -6.28%) 1.3427 ( -2.49%)
: Amean 3 3.8860 ( 0.00%) 4.1230 * -6.10%* 3.8860 ( -0.00%)
: Amean 5 6.8847 ( 0.00%) 8.0390 * -16.77%* 6.7727 ( 1.63%)
: Amean 7 9.9310 ( 0.00%) 10.8367 * -9.12%* 9.9910 ( -0.60%)
: Amean 12 16.6577 ( 0.00%) 18.2363 * -9.48%* 17.1083 ( -2.71%)
: Amean 18 26.5133 ( 0.00%) 27.8833 * -5.17%* 25.7663 ( 2.82%)
: Amean 24 34.3003 ( 0.00%) 34.6830 ( -1.12%) 32.0450 ( 6.58%)
: Amean 30 40.0063 ( 0.00%) 40.5800 ( -1.43%) 41.5087 ( -3.76%)
: Amean 32 40.1407 ( 0.00%) 41.2273 ( -2.71%) 39.9417 ( 0.50%)
:
: It's showing that the vanilla kernel takes a hit (as the bisection
: indicated it would) and that disabling PSI by default is reasonably
: close in terms of performance for this particular workload on this
: particular machine so;
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Johannes Weiner <[email protected]>
Tested-by: Mel Gorman <[email protected]>
Reported-by: Mel Gorman <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
On a system that executes multiple cgrouped jobs and independent
workloads, we don't just care about the health of the overall system, but
also that of individual jobs, so that we can ensure individual job health,
fairness between jobs, or prioritize some jobs over others.
This patch implements pressure stall tracking for cgroups. In kernels
with CONFIG_PSI=y, cgroup2 groups will have cpu.pressure, memory.pressure,
and io.pressure files that track aggregate pressure stall times for only
the tasks inside the cgroup.
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Johannes Weiner <[email protected]>
Acked-by: Tejun Heo <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
Tested-by: Daniel Drake <[email protected]>
Tested-by: Suren Baghdasaryan <[email protected]>
Cc: Christopher Lameter <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Mike Galbraith <[email protected]>
Cc: Peter Enderborg <[email protected]>
Cc: Randy Dunlap <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: Vinayak Menon <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[[email protected]: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: code optimization]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/[email protected]
[[email protected]: fix build]
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Johannes Weiner <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
Tested-by: Daniel Drake <[email protected]>
Tested-by: Suren Baghdasaryan <[email protected]>
Cc: Christopher Lameter <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Mike Galbraith <[email protected]>
Cc: Peter Enderborg <[email protected]>
Cc: Randy Dunlap <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: Tejun Heo <[email protected]>
Cc: Vinayak Menon <[email protected]>
Cc: Randy Dunlap <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|