Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"Beyond some specific LoadPin, UBSAN, and fortify features, there are
other fixes scattered around in various subsystems where maintainers
were okay with me carrying them in my tree or were non-responsive but
the patches were reviewed by others:
- Replace 0-length and 1-element arrays with flexible arrays in
various subsystems (Paulo Miguel Almeida, Stephen Rothwell, Kees
Cook)
- randstruct: Disable Clang 15 support (Eric Biggers)
- GCC plugins: Drop -std=gnu++11 flag (Sam James)
- strpbrk(): Refactor to use strchr() (Andy Shevchenko)
- LoadPin LSM: Allow root filesystem switching when non-enforcing
- fortify: Use dynamic object size hints when available
- ext4: Fix CFI function prototype mismatch
- Nouveau: Fix DP buffer size arguments
- hisilicon: Wipe entire crypto DMA pool on error
- coda: Fully allocate sig_inputArgs
- UBSAN: Improve arm64 trap code reporting
- copy_struct_from_user(): Add minimum bounds check on kernel buffer
size"
* tag 'hardening-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: disable Clang 15 support
uaccess: Add minimum bounds check on kernel buffer size
arm64: Support Clang UBSAN trap codes for better reporting
coda: Avoid partial allocation of sig_inputArgs
gcc-plugins: drop -std=gnu++11 to fix GCC 13 build
lib/string: Use strchr() in strpbrk()
crypto: hisilicon: Wipe entire pool on error
net/i40e: Replace 0-length array with flexible array
io_uring: Replace 0-length array with flexible array
ext4: Fix function prototype mismatch for ext4_feat_ktype
i915/gvt: Replace one-element array with flexible-array member
drm/nouveau/disp: Fix nvif_outp_acquire_dp() argument size
LoadPin: Allow filesystem switch when not enforcing
LoadPin: Move pin reporting cleanly out of locking
LoadPin: Refactor sysctl initialization
LoadPin: Refactor read-only check into a helper
ARM: ixp4xx: Replace 0-length arrays with flexible arrays
fortify: Use __builtin_dynamic_object_size() when available
rxrpc: replace zero-lenth array with DECLARE_FLEX_ARRAY() helper
|
|
Pull fsverity updates from Eric Biggers:
"Fix the longstanding implementation limitation that fsverity was only
supported when the Merkle tree block size, filesystem block size, and
PAGE_SIZE were all equal.
Specifically, add support for Merkle tree block sizes less than
PAGE_SIZE, and make ext4 support fsverity on filesystems where the
filesystem block size is less than PAGE_SIZE.
Effectively, this means that fsverity can now be used on systems with
non-4K pages, at least on ext4. These changes have been tested using
the verity group of xfstests, newly updated to cover the new code
paths.
Also update fs/verity/ to support verifying data from large folios.
There's also a similar patch for fs/crypto/, to support decrypting
data from large folios, which I'm including in here to avoid a merge
conflict between the fscrypt and fsverity branches"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fsverity/linux:
fscrypt: support decrypting data from large folios
fsverity: support verifying data from large folios
fsverity.rst: update git repo URL for fsverity-utils
ext4: allow verity with fs block size < PAGE_SIZE
fs/buffer.c: support fsverity in block_read_full_folio()
f2fs: simplify f2fs_readpage_limit()
ext4: simplify ext4_readpage_limit()
fsverity: support enabling with tree block size < PAGE_SIZE
fsverity: support verification with tree block size < PAGE_SIZE
fsverity: replace fsverity_hash_page() with fsverity_hash_block()
fsverity: use EFBIG for file too large to enable verity
fsverity: store log2(digest_size) precomputed
fsverity: simplify Merkle tree readahead size calculation
fsverity: use unsigned long for level_start
fsverity: remove debug messages and CONFIG_FS_VERITY_DEBUG
fsverity: pass pos and size to ->write_merkle_tree_block
fsverity: optimize fsverity_cleanup_inode() on non-verity files
fsverity: optimize fsverity_prepare_setattr() on non-verity files
fsverity: optimize fsverity_file_open() on non-verity files
|
|
Pull fscrypt updates from Eric Biggers:
"Simplify the implementation of the test_dummy_encryption mount option
by adding the 'test dummy key' on-demand"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/linux:
fscrypt: clean up fscrypt_add_test_dummy_key()
fs/super.c: stop calling fscrypt_destroy_keyring() from __put_super()
f2fs: stop calling fscrypt_add_test_dummy_key()
ext4: stop calling fscrypt_add_test_dummy_key()
fscrypt: add the test dummy encryption key on-demand
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b42 ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
|
|
Now that fs/crypto/ adds the test dummy encryption key on-demand when
it's needed, there's no need for individual filesystems to call
fscrypt_add_test_dummy_key(). Remove the call to it from ext4.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-3-ebiggers@kernel.org
|
|
Try to make the filesystem-level decryption functions in fs/crypto/
aware of large folios. This includes making fscrypt_decrypt_bio()
support the case where the bio contains large folios, and making
fscrypt_decrypt_pagecache_blocks() take a folio instead of a page.
There's no way to actually test this with large folios yet, but I've
tested that this doesn't cause any regressions.
Note that this patch just handles *decryption*, not encryption which
will be a little more difficult.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20230127224202.355629-1-ebiggers@kernel.org
|
|
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.
ext4_feat_ktype was setting the "release" handler to "kfree", which
doesn't have a matching function prototype. Add a simple wrapper
with the correct prototype.
This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches.
Note that this code is only reached when ext4 is a loadable module and
it is being unloaded:
CFI failure at kobject_put+0xbb/0x1b0 (target: kfree+0x0/0x180; expected type: 0x7c4aa698)
...
RIP: 0010:kobject_put+0xbb/0x1b0
...
Call Trace:
<TASK>
ext4_exit_sysfs+0x14/0x60 [ext4]
cleanup_module+0x67/0xedb [ext4]
Fixes: b99fee58a20a ("ext4: create ext4_feat kobject dynamically")
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: stable@vger.kernel.org
Build-tested-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20230103234616.never.915-kees@kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230104210908.gonna.388-kees@kernel.org
|
|
Commit f3bbac32475b ("ext4: deal with legacy signed xattr name hash
values") added a hashing function for the legacy case of having the
xattr hash calculated using a signed 'char' type. It left the unsigned
case alone, since it's all implicitly handled by the '-funsigned-char'
compiler option.
However, there's been some noise about back-porting it all into stable
kernels that lack the '-funsigned-char', so let's just make that at
least possible by making the whole 'this uses unsigned char' very
explicit in the code itself. Whether such a back-port is really
warranted or not, I'll leave to others, but at least together with this
change it is technically sensible.
Also, add a 'pr_warn_once()' for reporting the "hey, signedness for this
hash calculation has changed" issue. Hopefully it never triggers except
for that xfstests generic/454 test-case, but even if it does it's just
good information to have.
If for no other reason than "we can remove the legacy signed hash code
entirely if nobody ever sees the message any more".
Cc: Sasha Levin <sashal@kernel.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Andreas Dilger <adilger@dilger.ca>
Cc: Theodore Ts'o <tytso@mit.edu>,
Cc: Jason Donenfeld <Jason@zx2c4.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We potentially have old hashes of the xattr names generated on systems
with signed 'char' types. Now that everybody uses '-funsigned-char',
those hashes will no longer match.
This only happens if you use xattrs names that have the high bit set,
which probably doesn't happen in practice, but the xfstest generic/454
shows it.
Instead of adding a new "signed xattr hash filesystem" bit and having to
deal with all the possible combinations, just calculate the hash both
ways if the first one fails, and always generate new hashes with the
proper unsigned char version.
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/oe-lkp/202212291509.704a11c9-oliver.sang@intel.com
Link: https://lore.kernel.org/all/CAHk-=whUNjwqZXa-MH9KMmc_CpQpoFKFjAB9ZKHuu=TbsouT4A@mail.gmail.com/
Exposed-by: 3bc753c06dd0 ("kbuild: treat char as always unsigned")
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Andreas Dilger <adilger@dilger.ca>
Cc: Theodore Ts'o <tytso@mit.edu>,
Cc: Jason Donenfeld <Jason@zx2c4.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Now that the needed changes have been made to fs/buffer.c, ext4 is ready
to support the verity feature when the filesystem block size is less
than the page size. So remove the mount-time check that prevented this.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-12-ebiggers@kernel.org
|
|
Now that the implementation of FS_IOC_ENABLE_VERITY has changed to not
involve reading back Merkle tree blocks that were previously written,
there is no need for ext4_readpage_limit() to allow for this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-9-ebiggers@kernel.org
|
|
fsverity_operations::write_merkle_tree_block is passed the index of the
block to write and the log base 2 of the block size. However, all
implementations of it use these parameters only to calculate the
position and the size of the block, in bytes.
Therefore, make ->write_merkle_tree_block take 'pos' and 'size'
parameters instead of 'index' and 'log_blocksize'.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20221214224304.145712-5-ebiggers@kernel.org
|
|
Due to several bugs caused by timers being re-armed after they are
shutdown and just before they are freed, a new state of timers was added
called "shutdown". After a timer is set to this state, then it can no
longer be re-armed.
The following script was run to find all the trivial locations where
del_timer() or del_timer_sync() is called in the same function that the
object holding the timer is freed. It also ignores any locations where
the timer->function is modified between the del_timer*() and the free(),
as that is not considered a "trivial" case.
This was created by using a coccinelle script and the following
commands:
$ cat timer.cocci
@@
expression ptr, slab;
identifier timer, rfield;
@@
(
- del_timer(&ptr->timer);
+ timer_shutdown(&ptr->timer);
|
- del_timer_sync(&ptr->timer);
+ timer_shutdown_sync(&ptr->timer);
)
... when strict
when != ptr->timer
(
kfree_rcu(ptr, rfield);
|
kmem_cache_free(slab, ptr);
|
kfree(ptr);
)
$ spatch timer.cocci . > /tmp/t.patch
$ patch -p1 < /tmp/t.patch
Link: https://lore.kernel.org/lkml/20221123201306.823305113@linutronix.de/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Pavel Machek <pavel@ucw.cz> [ LED ]
Acked-by: Kalle Valo <kvalo@kernel.org> [ wireless ]
Acked-by: Paolo Abeni <pabeni@redhat.com> [ networking ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fsverity updates from Eric Biggers:
"The main change this cycle is to stop using the PG_error flag to track
verity failures, and instead just track failures at the bio level.
This follows a similar fscrypt change that went into 6.1, and it is a
step towards freeing up PG_error for other uses.
There's also one other small cleanup"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fsverity: simplify fsverity_get_digest()
fsverity: stop using PG_error to track error status
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"A large number of cleanups and bug fixes, with many of the bug fixes
found by Syzbot and fuzzing. (Many of the bug fixes involve less-used
ext4 features such as fast_commit, inline_data and bigalloc)
In addition, remove the writepage function for ext4, since the
medium-term plan is to remove ->writepage() entirely. (The VM doesn't
need or want writepage() for writeback, since it is fine with
->writepages() so long as ->migrate_folio() is implemented)"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
ext4: fix reserved cluster accounting in __es_remove_extent()
ext4: fix inode leak in ext4_xattr_inode_create() on an error path
ext4: allocate extended attribute value in vmalloc area
ext4: avoid unaccounted block allocation when expanding inode
ext4: initialize quota before expanding inode in setproject ioctl
ext4: stop providing .writepage hook
mm: export buffer_migrate_folio_norefs()
ext4: switch to using write_cache_pages() for data=journal writeout
jbd2: switch jbd2_submit_inode_data() to use fs-provided hook for data writeout
ext4: switch to using ext4_do_writepages() for ordered data writeout
ext4: move percpu_rwsem protection into ext4_writepages()
ext4: provide ext4_do_writepages()
ext4: add support for writepages calls that cannot map blocks
ext4: drop pointless IO submission from ext4_bio_write_page()
ext4: remove nr_submitted from ext4_bio_write_page()
ext4: move keep_towrite handling to ext4_bio_write_page()
ext4: handle redirtying in ext4_bio_write_page()
ext4: fix kernel BUG in 'ext4_write_inline_data_end()'
ext4: make ext4_mb_initialize_context return void
ext4: fix deadlock due to mbcache entry corruption
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull VFS acl updates from Christian Brauner:
"This contains the work that builds a dedicated vfs posix acl api.
The origins of this work trace back to v5.19 but it took quite a while
to understand the various filesystem specific implementations in
sufficient detail and also come up with an acceptable solution.
As we discussed and seen multiple times the current state of how posix
acls are handled isn't nice and comes with a lot of problems: The
current way of handling posix acls via the generic xattr api is error
prone, hard to maintain, and type unsafe for the vfs until we call
into the filesystem's dedicated get and set inode operations.
It is already the case that posix acls are special-cased to death all
the way through the vfs. There are an uncounted number of hacks that
operate on the uapi posix acl struct instead of the dedicated vfs
struct posix_acl. And the vfs must be involved in order to interpret
and fixup posix acls before storing them to the backing store, caching
them, reporting them to userspace, or for permission checking.
Currently a range of hacks and duct tape exist to make this work. As
with most things this is really no ones fault it's just something that
happened over time. But the code is hard to understand and difficult
to maintain and one is constantly at risk of introducing bugs and
regressions when having to touch it.
Instead of continuing to hack posix acls through the xattr handlers
this series builds a dedicated posix acl api solely around the get and
set inode operations.
Going forward, the vfs_get_acl(), vfs_remove_acl(), and vfs_set_acl()
helpers must be used in order to interact with posix acls. They
operate directly on the vfs internal struct posix_acl instead of
abusing the uapi posix acl struct as we currently do. In the end this
removes all of the hackiness, makes the codepaths easier to maintain,
and gets us type safety.
This series passes the LTP and xfstests suites without any
regressions. For xfstests the following combinations were tested:
- xfs
- ext4
- btrfs
- overlayfs
- overlayfs on top of idmapped mounts
- orangefs
- (limited) cifs
There's more simplifications for posix acls that we can make in the
future if the basic api has made it.
A few implementation details:
- The series makes sure to retain exactly the same security and
integrity module permission checks. Especially for the integrity
modules this api is a win because right now they convert the uapi
posix acl struct passed to them via a void pointer into the vfs
struct posix_acl format to perform permission checking on the mode.
There's a new dedicated security hook for setting posix acls which
passes the vfs struct posix_acl not a void pointer. Basing checking
on the posix acl stored in the uapi format is really unreliable.
The vfs currently hacks around directly in the uapi struct storing
values that frankly the security and integrity modules can't
correctly interpret as evidenced by bugs we reported and fixed in
this area. It's not necessarily even their fault it's just that the
format we provide to them is sub optimal.
- Some filesystems like 9p and cifs need access to the dentry in
order to get and set posix acls which is why they either only
partially or not even at all implement get and set inode
operations. For example, cifs allows setxattr() and getxattr()
operations but doesn't allow permission checking based on posix
acls because it can't implement a get acl inode operation.
Thus, this patch series updates the set acl inode operation to take
a dentry instead of an inode argument. However, for the get acl
inode operation we can't do this as the old get acl method is
called in e.g., generic_permission() and inode_permission(). These
helpers in turn are called in various filesystem's permission inode
operation. So passing a dentry argument to the old get acl inode
operation would amount to passing a dentry to the permission inode
operation which we shouldn't and probably can't do.
So instead of extending the existing inode operation Christoph
suggested to add a new one. He also requested to ensure that the
get and set acl inode operation taking a dentry are consistently
named. So for this version the old get acl operation is renamed to
->get_inode_acl() and a new ->get_acl() inode operation taking a
dentry is added. With this we can give both 9p and cifs get and set
acl inode operations and in turn remove their complex custom posix
xattr handlers.
In the future I hope to get rid of the inode method duplication but
it isn't like we have never had this situation. Readdir is just one
example. And frankly, the overall gain in type safety and the more
pleasant api wise are simply too big of a benefit to not accept
this duplication for a while.
- We've done a full audit of every codepaths using variant of the
current generic xattr api to get and set posix acls and
surprisingly it isn't that many places. There's of course always a
chance that we might have missed some and if so I'm sure we'll find
them soon enough.
The crucial codepaths to be converted are obviously stacking
filesystems such as ecryptfs and overlayfs.
For a list of all callers currently using generic xattr api helpers
see [2] including comments whether they support posix acls or not.
- The old vfs generic posix acl infrastructure doesn't obey the
create and replace semantics promised on the setxattr(2) manpage.
This patch series doesn't address this. It really is something we
should revisit later though.
The patches are roughly organized as follows:
(1) Change existing set acl inode operation to take a dentry
argument (Intended to be a non-functional change)
(2) Rename existing get acl method (Intended to be a non-functional
change)
(3) Implement get and set acl inode operations for filesystems that
couldn't implement one before because of the missing dentry.
That's mostly 9p and cifs (Intended to be a non-functional
change)
(4) Build posix acl api, i.e., add vfs_get_acl(), vfs_remove_acl(),
and vfs_set_acl() including security and integrity hooks
(Intended to be a non-functional change)
(5) Implement get and set acl inode operations for stacking
filesystems (Intended to be a non-functional change)
(6) Switch posix acl handling in stacking filesystems to new posix
acl api now that all filesystems it can stack upon support it.
(7) Switch vfs to new posix acl api (semantical change)
(8) Remove all now unused helpers
(9) Additional regression fixes reported after we merged this into
linux-next
Thanks to Seth for a lot of good discussion around this and
encouragement and input from Christoph"
* tag 'fs.acl.rework.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (36 commits)
posix_acl: Fix the type of sentinel in get_acl
orangefs: fix mode handling
ovl: call posix_acl_release() after error checking
evm: remove dead code in evm_inode_set_acl()
cifs: check whether acl is valid early
acl: make vfs_posix_acl_to_xattr() static
acl: remove a slew of now unused helpers
9p: use stub posix acl handlers
cifs: use stub posix acl handlers
ovl: use stub posix acl handlers
ecryptfs: use stub posix acl handlers
evm: remove evm_xattr_acl_change()
xattr: use posix acl api
ovl: use posix acl api
ovl: implement set acl method
ovl: implement get acl method
ecryptfs: implement set acl method
ecryptfs: implement get acl method
ksmbd: use vfs_remove_acl()
acl: add vfs_remove_acl()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
|
|
When bigalloc is enabled, reserved cluster accounting for delayed
allocation is handled in extent_status.c. With a corrupted file
system, it's possible for this accounting to be incorrect,
dsicovered by Syzbot:
EXT4-fs error (device loop0): ext4_validate_block_bitmap:398: comm rep:
bg 0: block 5: invalid block bitmap
EXT4-fs (loop0): Delayed block allocation failed for inode 18 at logical
offset 0 with max blocks 32 with error 28
EXT4-fs (loop0): This should not happen!! Data will be lost
EXT4-fs (loop0): Total free blocks count 0
EXT4-fs (loop0): Free/Dirty block details
EXT4-fs (loop0): free_blocks=0
EXT4-fs (loop0): dirty_blocks=32
EXT4-fs (loop0): Block reservation details
EXT4-fs (loop0): i_reserved_data_blocks=2
EXT4-fs (loop0): Inode 18 (00000000845cd634):
i_reserved_data_blocks (1) not cleared!
Above issue happens as follows:
Assume:
sbi->s_cluster_ratio = 16
Step1:
Insert delay block [0, 31] -> ei->i_reserved_data_blocks=2
Step2:
ext4_writepages
mpage_map_and_submit_extent -> return failed
mpage_release_unused_pages -> to release [0, 30]
ext4_es_remove_extent -> remove lblk=0 end=30
__es_remove_extent -> len1=0 len2=31-30=1
__es_remove_extent:
...
if (len2 > 0) {
...
if (len1 > 0) {
...
} else {
es->es_lblk = end + 1;
es->es_len = len2;
...
}
if (count_reserved)
count_rsvd(inode, lblk, ...);
goto out; -> will return but didn't calculate 'reserved'
...
Step3:
ext4_destroy_inode -> trigger "i_reserved_data_blocks (1) not cleared!"
To solve above issue if 'len2>0' call 'get_rsvd()' before goto out.
Reported-by: syzbot+05a0f0ccab4a25626e38@syzkaller.appspotmail.com
Fixes: 8fcc3a580651 ("ext4: rework reserved cluster accounting when invalidating pages")
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20221208033426.1832460-2-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
|
|
There is issue as follows when do setxattr with inject fault:
[localhost]# fsck.ext4 -fn /dev/sda
e2fsck 1.46.6-rc1 (12-Sep-2022)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Unattached zero-length inode 15. Clear? no
Unattached inode 15
Connect to /lost+found? no
Pass 5: Checking group summary information
/dev/sda: ********** WARNING: Filesystem still has errors **********
/dev/sda: 15/655360 files (0.0% non-contiguous), 66755/2621440 blocks
This occurs in 'ext4_xattr_inode_create()'. If 'ext4_mark_inode_dirty()'
fails, dropping i_nlink of the inode is needed. Or will lead to inode leak.
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-5-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
|
|
Now, extended attribute value maximum length is 64K. The memory
requested here does not need continuous physical addresses, so it is
appropriate to use kvmalloc to request memory. At the same time, it
can also cope with the situation that the extended attribute will
become longer in the future.
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-3-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
|
|
When expanding inode space in ext4_expand_extra_isize_ea() we may need
to allocate external xattr block. If quota is not initialized for the
inode, the block allocation will not be accounted into quota usage. Make
sure the quota is initialized before we try to expand inode space.
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Link: https://lore.kernel.org/all/Y5BT+k6xWqthZc1P@xpf.sh.intel.com
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Make sure we initialize quotas before possibly expanding inode space
(and thus maybe needing to allocate external xattr block) in
ext4_ioctl_setproject(). This prevents not accounting the necessary
block allocation.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Now we don't need .writepage hook for anything anymore. Reclaim is
fine with relying on .writepages to clean pages and we often couldn't
do much from the .writepage callback anyway. We only need to provide
.migrate_folio callback for the ext4_journalled_aops - let's use
buffer_migrate_page_norefs() there so that buffers cannot be modified
under jdb2's hands as that can cause data corruption. For example when
commit code does writeout of transaction buffers in
jbd2_journal_write_metadata_buffer(), we don't hold page lock or have
page writeback bit set or have the buffer locked. So page migration
code would go and happily migrate the page elsewhere while the copy is
running thus corrupting data.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-12-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Instead of using generic_writepages(), let's use write_cache_pages() for
writeout of journalled data. It will allow us to stop providing
.writepage callback. Our data=journal writeback path would benefit from
a larger cleanup and refactoring but that's for a separate cleanup
series.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-10-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
jbd2_submit_inode_data() hardcoded use of
jbd2_journal_submit_inode_data_buffers() for submission of data pages.
Make it use j_submit_inode_data_buffers hook instead. This effectively
switches ext4 fastcommits to use ext4_writepages() for data writeout
instead of generic_writepages().
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-9-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Use the standard writepages method (ext4_do_writepages()) to perform
writeout of ordered data during journal commit.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-8-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Move protection by percpu_rwsem from ext4_do_writepages() to
ext4_writepages(). We will not want to grab this protection during
transaction commits as that would be prone to deadlocks and the
protection is not needed. Move the shutdown state checking as well since
we want to be able to complete commit while the shutdown is in progress.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-7-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Provide ext4_do_writepages() function that takes mpage_da_data as an
argument and make ext4_writepages() just a simple wrapper around it. No
functional changes.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-6-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Add support for calls to ext4_writepages() than cannot map blocks. These
will be issued from jbd2 transaction commit code.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-5-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
We submit outstanding IO in ext4_bio_write_page() if we find a buffer we
are not going to write. This is however pointless because we already
handle submission of previous IO in case we detect newly added buffer
head is discontiguous. So just delete the pointless IO submission call.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-4-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
nr_submitted is the same as nr_to_submit. Drop one of them.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-3-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
When we are writing back page but we cannot for some reason write all
its buffers (e.g. because we cannot allocate blocks in current context) we
have to keep TOWRITE tag set in the mapping as otherwise racing
WB_SYNC_ALL writeback that could write these buffers can skip the page
and result in data loss. We will need this logic for writeback during
transaction commit so move the logic from ext4_writepage() to
ext4_bio_write_page().
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|