aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs
AgeCommit message (Collapse)AuthorFilesLines
2021-02-08btrfs: refactor __extent_writepage_io() to improve readabilityQu Wenruo1-21/+16
The refactoring involves the following modifications: - iosize alignment In fact we don't really need to manually do alignment at all. All extent maps should already be aligned, thus basic ASSERT() check would be enough. - redundant variables We have extra variable like blocksize/pg_offset/end. They are all unnecessary. @blocksize can be replaced by sectorsize size directly, and it's only used to verify the em start/size is aligned. @pg_offset can be easily calculated using @cur and page_offset(page). @end is just assigned from @page_end and never modified, use "start + PAGE_SIZE - 1" directly and remove @page_end. - remove some BUG_ON()s The BUG_ON()s are for extent map, which we have tree-checker to check on-disk extent data item and runtime check. ASSERT() should be enough. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: rename parameter offset to disk_bytenr in submit_extent_pageQu Wenruo1-15/+15
The parameter offset is confusing, it's supposed to be the disk bytenr of metadata/data. Rename it to disk_bytenr and update the comment. Also rename each offset passed to submit_extent_page() as @disk_bytenr so they're consistent. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: refactor btrfs_dec_test_* functions for ordered extentsQu Wenruo3-55/+65
The refactoring involves the following modifications: - Return bool instead of int - Parameter update for @cached of btrfs_dec_test_first_ordered_pending() For btrfs_dec_test_first_ordered_pending(), @cached is only used to return the finished ordered extent. Rename it to @finished_ret. - Comment updates * Change one stale comment Which still refers to btrfs_dec_test_ordered_pending(), but the context is calling btrfs_dec_test_first_ordered_pending(). * Follow the common comment style for both functions Add more detailed descriptions for parameters and the return value * Move the reason why test_and_set_bit() is used into the call sites - Change how the return value is calculated The most anti-human part of the return value is: if (...) ret = 1; ... return ret == 0; This means, when we set ret to 1, the function returns 0. Change the local variable name to @finished, and directly return the value of it. Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: make btrfs_dio_private::bytes u32Qu Wenruo1-1/+2
btrfs_dio_private::bytes is only assigned from bio::bi_iter::bi_size, which is never larger than U32. Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: remove always true condition in btrfs_start_delalloc_rootsNikolay Borisov1-1/+1
Following the rework in e076ab2a2ca7 ("btrfs: shrink delalloc pages instead of full inodes") the nr variable is no longer passed by reference to start_delalloc_inodes hence it cannot change. Additionally we are always guaranteed for it to be positive number hence it's redundant to have it as a condition in the loop. Simply remove that usage. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: make btrfs_start_delalloc_root's nr argument a longNikolay Borisov5-7/+8
It's currently u64 which gets instantly translated either to LONG_MAX (if U64_MAX is passed) or cast to an unsigned long (which is in fact, wrong because writeback_control::nr_to_write is a signed, long type). Just convert the function's argument to be long time which obviates the need to manually convert u64 value to a long. Adjust all call sites which pass U64_MAX to pass LONG_MAX. Finally ensure that in shrink_delalloc the u64 is converted to a long without overflowing, resulting in a negative number. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: send: remove stale code when checking for shared extentsFilipe Manana1-16/+0
After commit 040ee6120cb670 ("Btrfs: send, improve clone range") we do not use anymore the data_offset field of struct backref_ctx, as after that we do all the necessary checks for the data offset of file extent items at clone_range(). Since there are no more users of data_offset from that structure, remove it. Signed-off-by: Filipe Manana <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: consolidate btrfs_previous_item ret val handling in btrfs_shrink_deviceNikolay Borisov1-4/+3
Instead of having three 'if' to handle non-NULL return value consolidate this in one 'if (ret)'. That way the code is more obvious: - Always drop delete_unused_bgs_mutex if ret is not NULL - If ret is negative -> goto done - If it's 1 -> reset ret to 0, release the path and finish the loop. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: ref-verify: make sure owner is set for all refsJosef Bacik1-13/+10
I noticed that shared ref entries in ref-verify didn't have the proper owner set, which caused me to think there was something seriously wrong. However the problem is if we have a parent we simply weren't filling out the owner part of the reference, even though we have it. Fix this by making sure we set all the proper fields when we modify a reference, this way we'll have the proper owner if a problem happens and we don't waste time thinking we're updating the wrong level. Signed-off-by: Josef Bacik <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: ref-verify: pass down tree block level when building refsJosef Bacik1-8/+12
I noticed that sometimes I would have the wrong level printed out with ref-verify while testing some error injection related problems. This is because we only get the level from the main extent item, but our references could go off the current leaf into another, and at that point we lose our level. Fix this by keeping track of the last tree block level that we found, the same way we keep track of our bytenr and num_bytes, in case we happen to wander into another leaf while still processing the references for a bytenr. Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: noinline btrfs_should_cancel_balanceJosef Bacik1-1/+1
I was attempting to reproduce a problem that Zygo hit, but my error injection wasn't firing for a few of the common calls to btrfs_should_cancel_balance. This is because the compiler decided to inline it at these spots. Keep this from happening by explicitly marking the function as noinline so that error injection will always work. Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Reviewed-by: Nikolay Borisov <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: allow error injection for btrfs_search_slot and btrfs_cow_blockJosef Bacik1-0/+2
The following patches are going to address error handling in relocation, in order to test those patches I need to be able to inject errors in btrfs_search_slot and btrfs_cow_block, as we call both of these pretty often in different cases during relocation. Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Reviewed-by: Nikolay Borisov <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: remove new_dirid argument from btrfs_create_subvol_rootNikolay Borisov3-7/+4
It's no longer used. While at it also remove new_dirid in create_subvol as it's used in a single place and open code it. No functional changes. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: make btrfs_root::free_objectid hold the next available objectidNikolay Borisov3-10/+10
Adjust the way free_objectid is being initialized, it now stores BTRFS_FIRST_FREE_OBJECTID rather than the, somewhat arbitrary, BTRFS_FIRST_FREE_OBJECTID - 1. This change also has the added benefit that now it becomes unnecessary to explicitly initialize free_objectid for a newly create fs root. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: rename btrfs_root::highest_objectid to free_objectidNikolay Borisov3-9/+9
This reflects the true purpose of the member as it's being used solely in context where a new objectid is being allocated. Future changes will also change the way it's being used to closely follow this semantics. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: rename btrfs_find_free_objectid to btrfs_get_free_objectidNikolay Borisov7-12/+12
This better reflects the semantics of the function i.e no search is performed whatsoever. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: rename btrfs_find_highest_objectid to btrfs_init_root_free_objectidNikolay Borisov3-10/+7
This function is used to initialize the in-memory btrfs_root::highest_objectid member, which is used to get an available objectid. Rename it to better reflect its semantics. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: cleanup local variables in btrfs_file_write_iterNikolay Borisov1-9/+7
First replace all inode instances with a pointer to btrfs_inode. This removes multiple invocations of the BTRFS_I macro, subsequently remove 2 local variables as they are called only once and simply refer to them directly. Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: clarify error returns values in __load_free_space_cacheZhihao Cheng1-1/+5
Return value in __load_free_space_cache is not properly set after (unlikely) memory allocation failures and 0 is returned instead. This is not a problem for the caller load_free_space_cache because only value 1 is considered as 'cache loaded' but for clarity it's better to set the errors accordingly. Fixes: a67509c30079 ("Btrfs: add a io_ctl struct and helpers for dealing with the space cache") Reported-by: Hulk Robot <[email protected]> Signed-off-by: Zhihao Cheng <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-02-08btrfs: fix error handling in commit_fs_rootsJosef Bacik1-5/+6
While doing error injection I would sometimes get a corrupt file system. This is because I was injecting errors at btrfs_search_slot, but would only do it one time per stack. This uncovered a problem in commit_fs_roots, where if we get an error we would just break. However we're in a nested loop, the first loop being a loop to find all the dirty fs roots, and then subsequent root updates would succeed clearing the error value. This isn't likely to happen in real scenarios, however we could potentially get a random ENOMEM once and then not again, and we'd end up with a corrupted file system. Fix this by moving the error checking around a bit to the main loop, as this is the only place where something will fail, and return the error as soon as it occurs. With this patch my reproducer no longer corrupts the file system. Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-29Merge tag 'for-5.11-rc5-tag' of ↵Linus Torvalds6-51/+46
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes for a late rc: - fix lockdep complaint on 32bit arches and also remove an unsafe memory use due to device vs filesystem lifetime - two fixes for free space tree: * race during log replay and cache rebuild, now more likely to happen due to changes in this dev cycle * possible free space tree corruption with online conversion during initial tree population" * tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix log replay failure due to race with space cache rebuild btrfs: fix lockdep warning due to seqcount_mutex on 32bit arch btrfs: fix possible free space tree corruption with online conversion
2021-01-27btrfs: use bio_kmalloc in __alloc_deviceChristoph Hellwig1-1/+1
Use bio_kmalloc instead of open coding it. Signed-off-by: Christoph Hellwig <[email protected]> Reviewed-by: Josef Bacik <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Reviewed-by: Chaitanya Kulkarni <[email protected]> Acked-by: Damien Le Moal <[email protected]> Signed-off-by: Jens Axboe <[email protected]>
2021-01-25btrfs: fix log replay failure due to race with space cache rebuildFilipe Manana1-43/+18
After a sudden power failure we may end up with a space cache on disk that is not valid and needs to be rebuilt from scratch. If that happens, during log replay when we attempt to pin an extent buffer from a log tree, at btrfs_pin_extent_for_log_replay(), we do not wait for the space cache to be rebuilt through the call to: btrfs_cache_block_group(cache, 1); That is because that only waits for the task (work queue job) that loads the space cache to change the cache state from BTRFS_CACHE_FAST to any other value. That is ok when the space cache on disk exists and is valid, but when the cache is not valid and needs to be rebuilt, it ends up returning as soon as the cache state changes to BTRFS_CACHE_STARTED (done at caching_thread()). So this means that we can end up trying to unpin a range which is not yet marked as free in the block group. This results in the call to btrfs_remove_free_space() to return -EINVAL to btrfs_pin_extent_for_log_replay(), which in turn makes the log replay fail as well as mounting the filesystem. More specifically the -EINVAL comes from free_space_cache.c:remove_from_bitmap(), because the requested range is not marked as free space (ones in the bitmap), we have the following condition triggered: static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, (...) if (ret < 0 || search_start != *offset) return -EINVAL; (...) It's the "search_start != *offset" that results in the condition being evaluated to true. When this happens we got the following in dmesg/syslog: [72383.415114] BTRFS: device fsid 32b95b69-0ea9-496a-9f02-3f5a56dc9322 devid 1 transid 1432 /dev/sdb scanned by mount (3816007) [72383.417837] BTRFS info (device sdb): disk space caching is enabled [72383.418536] BTRFS info (device sdb): has skinny extents [72383.423846] BTRFS info (device sdb): start tree-log replay [72383.426416] BTRFS warning (device sdb): block group 30408704 has wrong amount of free space [72383.427686] BTRFS warning (device sdb): failed to load free space cache for block group 30408704, rebuilding it now [72383.454291] BTRFS: error (device sdb) in btrfs_recover_log_trees:6203: errno=-22 unknown (Failed to pin buffers while recovering log root tree.) [72383.456725] BTRFS: error (device sdb) in btrfs_replay_log:2253: errno=-22 unknown (Failed to recover log tree) [72383.460241] BTRFS error (device sdb): open_ctree failed We also mark the range for the extent buffer in the excluded extents io tree. That is fine when the space cache is valid on disk and we can load it, in which case it causes no problems. However, for the case where we need to rebuild the space cache, because it is either invalid or it is missing, having the extent buffer range marked in the excluded extents io tree leads to a -EINVAL failure from the call to btrfs_remove_free_space(), resulting in the log replay and mount to fail. This is because by having the range marked in the excluded extents io tree, the caching thread ends up never adding the range of the extent buffer as free space in the block group since the calls to add_new_free_space(), called from load_extent_tree_free(), filter out any ranges that are marked as excluded extents. So fix this by making sure that during log replay we wait for the caching task to finish completely when we need to rebuild a space cache, and also drop the need to mark the extent buffer range in the excluded extents io tree, as well as clearing ranges from that tree at btrfs_finish_extent_commit(). This started to happen with some frequency on large filesystems having block groups with a lot of fragmentation since the recent commit e747853cae3ae3 ("btrfs: load free space cache asynchronously"), but in fact the issue has been there for years, it was just much less likely to happen. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Filipe Manana <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-25btrfs: fix lockdep warning due to seqcount_mutex on 32bit archSu Yue2-6/+7
This effectively reverts commit d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t"). While running fstests on 32 bits test box, many tests failed because of warnings in dmesg. One of those warnings (btrfs/003): [66.441317] WARNING: CPU: 6 PID: 9251 at include/linux/seqlock.h:279 btrfs_remove_chunk+0x58b/0x7b0 [btrfs] [66.441446] CPU: 6 PID: 9251 Comm: btrfs Tainted: G O 5.11.0-rc4-custom+ #5 [66.441449] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.441451] EIP: btrfs_remove_chunk+0x58b/0x7b0 [btrfs] [66.441472] EAX: 00000000 EBX: 00000001 ECX: c576070c EDX: c6b15803 [66.441475] ESI: 10000000 EDI: 00000000 EBP: c56fbcfc ESP: c56fbc70 [66.441477] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00010246 [66.441481] CR0: 80050033 CR2: 05c8da20 CR3: 04b20000 CR4: 00350ed0 [66.441485] Call Trace: [66.441510] btrfs_relocate_chunk+0xb1/0x100 [btrfs] [66.441529] ? btrfs_lookup_block_group+0x17/0x20 [btrfs] [66.441562] btrfs_balance+0x8ed/0x13b0 [btrfs] [66.441586] ? btrfs_ioctl_balance+0x333/0x3c0 [btrfs] [66.441619] ? __this_cpu_preempt_check+0xf/0x11 [66.441643] btrfs_ioctl_balance+0x333/0x3c0 [btrfs] [66.441664] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441683] btrfs_ioctl+0x414/0x2ae0 [btrfs] [66.441700] ? __lock_acquire+0x35f/0x2650 [66.441717] ? lockdep_hardirqs_on+0x87/0x120 [66.441720] ? lockdep_hardirqs_on_prepare+0xd0/0x1e0 [66.441724] ? call_rcu+0x2d3/0x530 [66.441731] ? __might_fault+0x41/0x90 [66.441736] ? kvm_sched_clock_read+0x15/0x50 [66.441740] ? sched_clock+0x8/0x10 [66.441745] ? sched_clock_cpu+0x13/0x180 [66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441768] __ia32_sys_ioctl+0x165/0x8a0 [66.441773] ? __this_cpu_preempt_check+0xf/0x11 [66.441785] ? __might_fault+0x89/0x90 [66.441791] __do_fast_syscall_32+0x54/0x80 [66.441796] do_fast_syscall_32+0x32/0x70 [66.441801] do_SYSENTER_32+0x15/0x20 [66.441805] entry_SYSENTER_32+0x9f/0xf2 [66.441808] EIP: 0xab7b5549 [66.441814] EAX: ffffffda EBX: 00000003 ECX: c4009420 EDX: bfa91f5c [66.441816] ESI: 00000003 EDI: 00000001 EBP: 00000000 ESP: bfa91e98 [66.441818] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b EFLAGS: 00000292 [66.441833] irq event stamp: 42579 [66.441835] hardirqs last enabled at (42585): [<c60eb065>] console_unlock+0x495/0x590 [66.441838] hardirqs last disabled at (42590): [<c60eafd5>] console_unlock+0x405/0x590 [66.441840] softirqs last enabled at (41698): [<c601b76c>] call_on_stack+0x1c/0x60 [66.441843] softirqs last disabled at (41681): [<c601b76c>] call_on_stack+0x1c/0x60 ======================================================================== btrfs_remove_chunk+0x58b/0x7b0: __seqprop_mutex_assert at linux/./include/linux/seqlock.h:279 (inlined by) btrfs_device_set_bytes_used at linux/fs/btrfs/volumes.h:212 (inlined by) btrfs_remove_chunk at linux/fs/btrfs/volumes.c:2994 ======================================================================== The warning is produced by lockdep_assert_held() in __seqprop_mutex_assert() if CONFIG_LOCKDEP is enabled. And "olumes.c:2994 is btrfs_device_set_bytes_used() with mutex lock fs_info->chunk_mutex held already. After adding some debug prints, the cause was found that many __alloc_device() are called with NULL @fs_info (during scanning ioctl). Inside the function, btrfs_device_data_ordered_init() is expanded to seqcount_mutex_init(). In this scenario, its second parameter info->chunk_mutex is &NULL->chunk_mutex which equals to offsetof(struct btrfs_fs_info, chunk_mutex) unexpectedly. Thus, seqcount_mutex_init() is called in wrong way. And later btrfs_device_get/set helpers trigger lockdep warnings. The device and filesystem object lifetimes are different and we'd have to synchronize initialization of the btrfs_device::data_seqcount with the fs_info, possibly using some additional synchronization. It would still not prevent concurrent access to the seqcount lock when it's used for read and initialization. Commit d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t") does not mention a particular problem being fixed so revert should not cause any harm and we'll get the lockdep warning fixed. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=210139 Reported-by: Erhard F <[email protected]> Fixes: d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t") CC: [email protected] # 5.10 CC: Davidlohr Bueso <[email protected]> Signed-off-by: Su Yue <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-25btrfs: fix possible free space tree corruption with online conversionJosef Bacik3-2/+21
While running btrfs/011 in a loop I would often ASSERT() while trying to add a new free space entry that already existed, or get an EEXIST while adding a new block to the extent tree, which is another indication of double allocation. This occurs because when we do the free space tree population, we create the new root and then populate the tree and commit the transaction. The problem is when you create a new root, the root node and commit root node are the same. During this initial transaction commit we will run all of the delayed refs that were paused during the free space tree generation, and thus begin to cache block groups. While caching block groups the caching thread will be reading from the main root for the free space tree, so as we make allocations we'll be changing the free space tree, which can cause us to add the same range twice which results in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a variety of different errors when running delayed refs because of a double allocation. Fix this by marking the fs_info as unsafe to load the free space tree, and fall back on the old slow method. We could be smarter than this, for example caching the block group while we're populating the free space tree, but since this is a serious problem I've opted for the simplest solution. CC: [email protected] # 4.9+ Fixes: a5ed91828518 ("Btrfs: implement the free space B-tree") Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-24block: store a block_device pointer in struct bioChristoph Hellwig3-11/+8
Replace the gendisk pointer in struct bio with a pointer to the newly improved struct block device. From that the gendisk can be trivially accessed with an extra indirection, but it also allows to directly look up all information related to partition remapping. Signed-off-by: Christoph Hellwig <[email protected]> Acked-by: Tejun Heo <[email protected]> Signed-off-by: Jens Axboe <[email protected]>
2021-01-24fs: make helpers idmap mount awareChristian Brauner3-16/+23
Extend some inode methods with an additional user namespace argument. A filesystem that is aware of idmapped mounts will receive the user namespace the mount has been marked with. This can be used for additional permission checking and also to enable filesystems to translate between uids and gids if they need to. We have implemented all relevant helpers in earlier patches. As requested we simply extend the exisiting inode method instead of introducing new ones. This is a little more code churn but it's mostly mechanical and doesnt't leave us with additional inode methods. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24namei: handle idmapped mounts in may_*() helpersChristian Brauner1-2/+3
The may_follow_link(), may_linkat(), may_lookup(), may_open(), may_o_create(), may_create_in_sticky(), may_delete(), and may_create() helpers determine whether the caller is privileged enough to perform the associated operations. Let them handle idmapped mounts by mapping the inode or fsids according to the mount's user namespace. Afterwards the checks are identical to non-idmapped inodes. The patch takes care to retrieve the mount's user namespace right before performing permission checks and passing it down into the fileystem so the user namespace can't change in between by someone idmapping a mount that is currently not idmapped. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24stat: handle idmapped mountsChristian Brauner1-1/+1
The generic_fillattr() helper fills in the basic attributes associated with an inode. Enable it to handle idmapped mounts. If the inode is accessed through an idmapped mount map it into the mount's user namespace before we store the uid and gid. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24acl: handle idmapped mountsChristian Brauner3-2/+6
The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24attr: handle idmapped mountsChristian Brauner1-2/+2
When file attributes are changed most filesystems rely on the setattr_prepare(), setattr_copy(), and notify_change() helpers for initialization and permission checking. Let them handle idmapped mounts. If the inode is accessed through an idmapped mount map it into the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Helpers that perform checks on the ia_uid and ia_gid fields in struct iattr assume that ia_uid and ia_gid are intended values and have already been mapped correctly at the userspace-kernelspace boundary as we already do today. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24inode: make init and permission helpers idmapped mount awareChristian Brauner3-7/+7
The inode_owner_or_capable() helper determines whether the caller is the owner of the inode or is capable with respect to that inode. Allow it to handle idmapped mounts. If the inode is accessed through an idmapped mount it according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Similarly, allow the inode_init_owner() helper to handle idmapped mounts. It initializes a new inode on idmapped mounts by mapping the fsuid and fsgid of the caller from the mount's user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-24namei: make permission helpers idmapped mount awareChristian Brauner2-6/+8
The two helpers inode_permission() and generic_permission() are used by the vfs to perform basic permission checking by verifying that the caller is privileged over an inode. In order to handle idmapped mounts we extend the two helpers with an additional user namespace argument. On idmapped mounts the two helpers will make sure to map the inode according to the mount's user namespace and then peform identical permission checks to inode_permission() and generic_permission(). If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/[email protected] Cc: Christoph Hellwig <[email protected]> Cc: David Howells <[email protected]> Cc: Al Viro <[email protected]> Cc: [email protected] Reviewed-by: Christoph Hellwig <[email protected]> Reviewed-by: James Morris <[email protected]> Acked-by: Serge Hallyn <[email protected]> Signed-off-by: Christian Brauner <[email protected]>
2021-01-23iomap: pass a flags argument to iomap_dio_rwChristoph Hellwig1-4/+3
Pass a set of flags to iomap_dio_rw instead of the boolean wait_for_completion argument. The IOMAP_DIO_FORCE_WAIT flag replaces the wait_for_completion, but only needs to be passed when the iocb isn't synchronous to start with to simplify the callers. Signed-off-by: Christoph Hellwig <[email protected]> Reviewed-by: Dave Chinner <[email protected]> Reviewed-by: Brian Foster <[email protected]> [djwong: rework xfs_file.c so that we can push iomap changes separately] Reviewed-by: Darrick J. Wong <[email protected]> Signed-off-by: Darrick J. Wong <[email protected]>
2021-01-20Merge tag 'for-5.11-rc4-tag' of ↵Linus Torvalds6-11/+29
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more one line fixes for various bugs, stable material. - fix send when emitting clone operation from the same file and root - fix double free on error when cleaning backrefs - lockdep fix during relocation - handle potential error during reloc when starting transaction - skip running delayed refs during commit (leftover from code removal in this dev cycle)" * tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: don't clear ret in btrfs_start_dirty_block_groups btrfs: fix lockdep splat in btrfs_recover_relocation btrfs: do not double free backref nodes on error btrfs: don't get an EINTR during drop_snapshot for reloc btrfs: send: fix invalid clone operations when cloning from the same file and root btrfs: no need to run delayed refs after commit_fs_roots during commit
2021-01-18btrfs: don't clear ret in btrfs_start_dirty_block_groupsJosef Bacik1-1/+2
If we fail to update a block group item in the loop we'll break, however we'll do btrfs_run_delayed_refs and lose our error value in ret, and thus not clean up properly. Fix this by only running the delayed refs if there was no failure. CC: [email protected] # 4.4+ Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-18btrfs: fix lockdep splat in btrfs_recover_relocationJosef Bacik1-0/+2
While testing the error paths of relocation I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc6+ #217 Not tainted ------------------------------------------------------ mount/779 is trying to acquire lock: ffffa0e676945418 (&fs_info->balance_mutex){+.+.}-{3:3}, at: btrfs_recover_balance+0x2f0/0x340 but task is already holding lock: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x462/0x8f0 btrfs_update_root+0x55/0x2b0 btrfs_drop_snapshot+0x398/0x750 clean_dirty_subvols+0xdf/0x120 btrfs_recover_relocation+0x534/0x5a0 btrfs_start_pre_rw_mount+0xcb/0x170 open_ctree+0x151f/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (sb_internal#2){.+.+}-{0:0}: start_transaction+0x444/0x700 insert_balance_item.isra.0+0x37/0x320 btrfs_balance+0x354/0xf40 btrfs_ioctl_balance+0x2cf/0x380 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->balance_mutex){+.+.}-{3:3}: __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 __mutex_lock+0x7e/0x7b0 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &fs_info->balance_mutex --> sb_internal#2 --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(sb_internal#2); lock(btrfs-root-00); lock(&fs_info->balance_mutex); *** DEADLOCK *** 2 locks held by mount/779: #0: ffffa0e60dc040e0 (&type->s_umount_key#47/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380 #1: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 stack backtrace: CPU: 0 PID: 779 Comm: mount Not tainted 5.10.0-rc6+ #217 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 ? btrfs_recover_balance+0x2f0/0x340 __mutex_lock+0x7e/0x7b0 ? btrfs_recover_balance+0x2f0/0x340 ? btrfs_recover_balance+0x2f0/0x340 ? rcu_read_lock_sched_held+0x3f/0x80 ? kmem_cache_alloc_trace+0x2c4/0x2f0 ? btrfs_get_64+0x5e/0x100 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea ? rcu_read_lock_sched_held+0x3f/0x80 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 ? __kmalloc_track_caller+0x2f2/0x320 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 ? capable+0x3a/0x60 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is straightforward to fix, simply release the path before we setup the balance_ctl. CC: [email protected] # 4.4+ Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Johannes Thumshirn <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-18btrfs: do not double free backref nodes on errorJosef Bacik1-1/+1
Zygo reported the following KASAN splat: BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420 Read of size 8 at addr ffff888112402950 by task btrfs/28836 CPU: 0 PID: 28836 Comm: btrfs Tainted: G W 5.10.0-e35f27394290-for-next+ #23 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Call Trace: dump_stack+0xbc/0xf9 ? btrfs_backref_cleanup_node+0x18a/0x420 print_address_description.constprop.8+0x21/0x210 ? record_print_text.cold.34+0x11/0x11 ? btrfs_backref_cleanup_node+0x18a/0x420 ? btrfs_backref_cleanup_node+0x18a/0x420 kasan_report.cold.10+0x20/0x37 ? btrfs_backref_cleanup_node+0x18a/0x420 __asan_load8+0x69/0x90 btrfs_backref_cleanup_node+0x18a/0x420 btrfs_backref_release_cache+0x83/0x1b0 relocate_block_group+0x394/0x780 ? merge_reloc_roots+0x4a0/0x4a0 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 ? check_flags.part.50+0x6c/0x1e0 ? btrfs_relocate_chunk+0x120/0x120 ? kmem_cache_alloc_trace+0xa06/0xcb0 ? _copy_from_user+0x83/0xc0 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 ? __kasan_check_read+0x11/0x20 ? check_chain_key+0x1f4/0x2f0 ? __asan_loadN+0xf/0x20 ? btrfs_ioctl_get_supported_features+0x30/0x30 ? kvm_sched_clock_read+0x18/0x30 ? check_chain_key+0x1f4/0x2f0 ? lock_downgrade+0x3f0/0x3f0 ? handle_mm_fault+0xad6/0x2150 ? do_vfs_ioctl+0xfc/0x9d0 ? ioctl_file_clone+0xe0/0xe0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags+0x26/0x30 ? lock_is_held_type+0xc3/0xf0 ? syscall_enter_from_user_mode+0x1b/0x60 ? do_syscall_64+0x13/0x80 ? rcu_read_lock_sched_held+0xa1/0xd0 ? __kasan_check_read+0x11/0x20 ? __fget_light+0xae/0x110 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f4c4bdfe427 Allocated by task 28836: kasan_save_stack+0x21/0x50 __kasan_kmalloc.constprop.18+0xbe/0xd0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x410/0xcb0 btrfs_backref_alloc_node+0x46/0xf0 btrfs_backref_add_tree_node+0x60d/0x11d0 build_backref_tree+0xc5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 28836: kasan_save_stack+0x21/0x50 kasan_set_track+0x20/0x30 kasan_set_free_info+0x1f/0x30 __kasan_slab_free+0xf3/0x140 kasan_slab_free+0xe/0x10 kfree+0xde/0x200 btrfs_backref_error_cleanup+0x452/0x530 build_backref_tree+0x1a5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This occurred because we freed our backref node in btrfs_backref_error_cleanup(), but then tried to free it again in btrfs_backref_release_cache(). This is because btrfs_backref_release_cache() will cycle through all of the cache->leaves nodes and free them up. However btrfs_backref_error_cleanup() freed the backref node with btrfs_backref_free_node(), which simply kfree()d the backref node without unlinking it from the cache. Change this to a btrfs_backref_drop_node(), which does the appropriate cleanup and removes the node from the cache->leaves list, so when we go to free the remaining cache we don't trip over items we've already dropped. Fixes: 75bfb9aff45e ("Btrfs: cleanup error handling in build_backref_tree") CC: [email protected] # 4.4+ Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-18btrfs: don't get an EINTR during drop_snapshot for relocJosef Bacik1-1/+9
This was partially fixed by f3e3d9cc3525 ("btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree"), however it missed a spot when we restart a trans handle because we need to end the transaction. The fix is the same, simply use btrfs_join_transaction() instead of btrfs_start_transaction() when deleting reloc roots. Fixes: f3e3d9cc3525 ("btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree") CC: [email protected] # 5.4+ Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-12btrfs: send: fix invalid clone operations when cloning from the same file ↵Filipe Manana1-0/+15
and root When an incremental send finds an extent that is shared, it checks which file extent items in the range refer to that extent, and for those it emits clone operations, while for others it emits regular write operations to avoid corruption at the destination (as described and fixed by commit d906d49fc5f4 ("Btrfs: send, fix file corruption due to incorrect cloning operations")). However when the root we are cloning from is the send root, we are cloning from the inode currently being processed and the source file range has several extent items that partially point to the desired extent, with an offset smaller than the offset in the file extent item for the range we want to clone into, it can cause the algorithm to issue a clone operation that starts at the current eof of the file being processed in the receiver side, in which case the receiver will fail, with EINVAL, when attempting to execute the clone operation. Example reproducer: $ cat test-send-clone.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV >/dev/null mount $DEV $MNT # Create our test file with a single and large extent (1M) and with # different content for different file ranges that will be reflinked # later. xfs_io -f \ -c "pwrite -S 0xab 0 128K" \ -c "pwrite -S 0xcd 128K 128K" \ -c "pwrite -S 0xef 256K 256K" \ -c "pwrite -S 0x1a 512K 512K" \ $MNT/foobar btrfs subvolume snapshot -r $MNT $MNT/snap1 btrfs send -f /tmp/snap1.send $MNT/snap1 # Now do a series of changes to our file such that we end up with # different parts of the extent reflinked into different file offsets # and we overwrite a large part of the extent too, so no file extent # items refer to that part that was overwritten. This used to confuse # the algorithm used by the kernel to figure out which file ranges to # clone, making it attempt to clone from a source range starting at # the current eof of the file, resulting in the receiver to fail since # it is an invalid clone operation. # xfs_io -c "reflink $MNT/foobar 64K 1M 960K" \ -c "reflink $MNT/foobar 0K 512K 256K" \ -c "reflink $MNT/foobar 512K 128K 256K" \ -c "pwrite -S 0x73 384K 640K" \ $MNT/foobar btrfs subvolume snapshot -r $MNT $MNT/snap2 btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2 echo -e "\nFile digest in the original filesystem:" md5sum $MNT/snap2/foobar # Now unmount the filesystem, create a new one, mount it and try to # apply both send streams to recreate both snapshots. umount $DEV mkfs.btrfs -f $DEV >/dev/null mount $DEV $MNT btrfs receive -f /tmp/snap1.send $MNT btrfs receive -f /tmp/snap2.send $MNT # Must match what we got in the original filesystem of course. echo -e "\nFile digest in the new filesystem:" md5sum $MNT/snap2/foobar umount $MNT When running the reproducer, the incremental send operation fails due to an invalid clone operation: $ ./test-send-clone.sh wrote 131072/131072 bytes at offset 0 128 KiB, 32 ops; 0.0015 sec (80.906 MiB/sec and 20711.9741 ops/sec) wrote 131072/131072 bytes at offset 131072 128 KiB, 32 ops; 0.0013 sec (90.514 MiB/sec and 23171.6148 ops/sec) wrote 262144/262144 bytes at offset 262144 256 KiB, 64 ops; 0.0025 sec (98.270 MiB/sec and 25157.2327 ops/sec) wrote 524288/524288 bytes at offset 524288 512 KiB, 128 ops; 0.0052 sec (95.730 MiB/sec and 24506.9883 ops/sec) Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 linked 983040/983040 bytes at offset 1048576 960 KiB, 1 ops; 0.0006 sec (1.419 GiB/sec and 1550.3876 ops/sec) linked 262144/262144 bytes at offset 524288 256 KiB, 1 ops; 0.0020 sec (120.192 MiB/sec and 480.7692 ops/sec) linked 262144/262144 bytes at offset 131072 256 KiB, 1 ops; 0.0018 sec (133.833 MiB/sec and 535.3319 ops/sec) wrote 655360/655360 bytes at offset 393216 640 KiB, 160 ops; 0.0093 sec (66.781 MiB/sec and 17095.8436 ops/sec) Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 File digest in the original filesystem: 9c13c61cb0b9f5abf45344375cb04dfa /mnt/sdi/snap2/foobar At subvol snap1 At snapshot snap2 ERROR: failed to clone extents to foobar: Invalid argument File digest in the new filesystem: 132f0396da8f48d2e667196bff882cfc /mnt/sdi/snap2/foobar The clone operation is invalid because its source range starts at the current eof of the file in the receiver, causing the receiver to get an EINVAL error from the clone operation when attempting it. For the example above, what happens is the following: 1) When processing the extent at file offset 1M, the algorithm checks that the extent is shared and can be (fully or partially) found at file offset 0. At this point the file has a size (and eof) of 1M at the receiver; 2) It finds that our extent item at file offset 1M has a data offset of 64K and, since the file extent item at file offset 0 has a data offset of 0, it issues a clone operation, from the same file and root, that has a source range offset of 64K, destination offset of 1M and a length of 64K, since the extent item at file offset 0 refers only to the first 128K of the shared extent. After this clone operation, the file size (and eof) at the receiver is increased from 1M to 1088K (1M + 64K); 3) Now there's still 896K (960K - 64K) of data left to clone or write, so it checks for the next file extent item, which starts at file offset 128K. This file extent item has a data offset of 0 and a length of 256K, so a clone operation with a source range offset of 256K, a destination offset of 1088K (1M + 64K) and length of 128K is issued. After this operation the file size (and eof) at the receiver increases from 1088K to 1216K (1088K + 128K); 4) Now there's still 768K (896K - 128K) of data left to clone or write, so it checks for the next file extent item, located at file offset 384K. This file extent item points to a different extent, not the one we want to clone, with a length of 640K. So we issue a write operation into the file range 1216K (1088K + 128K, end of the last clone operation), with a length of 640K and with a data matching the one we can find for that range in send root. After this operation, the file size (and eof) at the receiver increases from 1216K to 1856K (1216K + 640K); 5) Now there's still 128K (768K - 640K) of data left to clone or write, so we look into the file extent item, which is for file offset 1M and it points to the extent we want to clone, with a data offset of 64K and a length of 960K. However this matches the file offset we started with, the start of the range to clone into. So we can't for sure find any file extent item from here onwards with the rest of the data we want to clone, yet we proceed and since the file extent item points to the shared extent, with a data offset of 64K, we issue a clone operation with a source range starting at file offset 1856K, which matches the file extent item's offset, 1M, plus the amount of data cloned and written so far, which is 64K (step 2) + 128K (step 3) + 640K (step 4). This clone operation is invalid since the source range offset matches the current eof of the file in the receiver. We should have stopped looking for extents to clone at this point and instead fallback to write, which would simply the contain the data in the file range from 1856K to 1856K + 128K. So fix this by stopping the loop that looks for file ranges to clone at clone_range() when we reach the current eof of the file being processed, if we are cloning from the same file and using the send root as the clone root. This ensures any data not yet cloned will be sent to the receiver through a write operation. A test case for fstests will follow soon. Reported-by: Massimo B. <[email protected]> Link: https://lore.kernel.org/linux-btrfs/[email protected]/ Fixes: 11f2069c113e ("Btrfs: send, allow clone operations within the same file") CC: [email protected] # 5.5+ Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Filipe Manana <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-12btrfs: no need to run delayed refs after commit_fs_roots during commitDavid Sterba1-8/+0
The inode number cache has been removed in this dev cycle, there's one more leftover. We don't need to run the delayed refs again after commit_fs_roots as stated in the comment, because btrfs_save_ino_cache is no more since 5297199a8bca ("btrfs: remove inode number cache feature"). Nothing else between commit_fs_roots and btrfs_qgroup_account_extents could create new delayed refs so the qgroup consistency should be safe. Reviewed-by: Nikolay Borisov <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-11Merge tag 'for-5.11-rc3-tag' of ↵Linus Torvalds8-29/+67
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "More material for stable trees. - tree-checker: check item end overflow - fix false warning during relocation regarding extent type - fix inode flushing logic, caused notable performance regression (since 5.10) - debugging fixups: - print correct offset for reloc tree key - pass reliable fs_info pointer to error reporting helper" * tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: shrink delalloc pages instead of full inodes btrfs: reloc: fix wrong file extent type check to avoid false ENOENT btrfs: tree-checker: check if chunk item end overflows btrfs: prevent NULL pointer dereference in extent_io_tree_panic btrfs: print the actual offset in btrfs_root_name
2021-01-08btrfs: shrink delalloc pages instead of full inodesJosef Bacik2-18/+46
Commit 38d715f494f2 ("btrfs: use btrfs_start_delalloc_roots in shrink_delalloc") cleaned up how we do delalloc shrinking by utilizing some infrastructure we have in place to flush inodes that we use for device replace and snapshot. However this introduced a pretty serious performance regression. To reproduce the user untarred the source tarball of Firefox (360MiB xz compressed/1.5GiB uncompressed), and would see it take anywhere from 5 to 20 times as long to untar in 5.10 compared to 5.9. This was observed on fast devices (SSD and better) and not on HDD. The root cause is because before we would generally use the normal writeback path to reclaim delalloc space, and for this we would provide it with the number of pages we wanted to flush. The referenced commit changed this to flush that many inodes, which drastically increased the amount of space we were flushing in certain cases, which severely affected performance. We cannot revert this patch unfortunately because of 3d45f221ce62 ("btrfs: fix deadlock when cloning inline extent and low on free metadata space") which requires the ability to skip flushing inodes that are being cloned in certain scenarios, which means we need to keep using our flushing infrastructure or risk re-introducing the deadlock. Instead to fix this problem we can go back to providing btrfs_start_delalloc_roots with a number of pages to flush, and then set up a writeback_control and utilize sync_inode() to handle the flushing for us. This gives us the same behavior we had prior to the fix, while still allowing us to avoid the deadlock that was fixed by Filipe. I redid the users original test and got the following results on one of our test machines (256GiB of ram, 56 cores, 2TiB Intel NVMe drive) 5.9 0m54.258s 5.10 1m26.212s 5.10+patch 0m38.800s 5.10+patch is significantly faster than plain 5.9 because of my patch series "Change data reservations to use the ticketing infra" which contained the patch that introduced the regression, but generally improved the overall ENOSPC flushing mechanisms. Additional testing on consumer-grade SSD (8GiB ram, 8 CPU) confirm the results: 5.10.5 4m00s 5.10.5+patch 1m08s 5.11-rc2 5m14s 5.11-rc2+patch 1m30s Reported-by: René Rebe <[email protected]> Fixes: 38d715f494f2 ("btrfs: use btrfs_start_delalloc_roots in shrink_delalloc") CC: [email protected] # 5.10 Signed-off-by: Josef Bacik <[email protected]> Tested-by: David Sterba <[email protected]> Reviewed-by: David Sterba <[email protected]> [ add my test results ] Signed-off-by: David Sterba <[email protected]>
2021-01-07btrfs: reloc: fix wrong file extent type check to avoid false ENOENTQu Wenruo1-1/+6
[BUG] There are several bug reports about recent kernel unable to relocate certain data block groups. Sometimes the error just goes away, but there is one reporter who can reproduce it reliably. The dmesg would look like: [438.260483] BTRFS info (device dm-10): balance: start -dvrange=34625344765952..34625344765953 [438.269018] BTRFS info (device dm-10): relocating block group 34625344765952 flags data|raid1 [450.439609] BTRFS info (device dm-10): found 167 extents, stage: move data extents [463.501781] BTRFS info (device dm-10): balance: ended with status: -2 [CAUSE] The ENOENT error is returned from the following call chain: add_data_references() |- delete_v1_space_cache(); |- if (!found) return -ENOENT; The variable @found is set to true if we find a data extent whose disk bytenr matches parameter @data_bytes. With extra debugging, the offending tree block looks like this: leaf bytenr = 42676709441536, data_bytenr = 34626327621632 ctime 1567904822.739884119 (2019-09-08 03:07:02) mtime 0.0 (1970-01-01 01:00:00) otime 0.0 (1970-01-01 01:00:00) item 27 key (51933 EXTENT_DATA 0) itemoff 9854 itemsize 53 generation 1517381 type 2 (prealloc) prealloc data disk byte 34626327621632 nr 262144 <<< prealloc data offset 0 nr 262144 item 28 key (52262 ROOT_ITEM 0) itemoff 9415 itemsize 439 generation 2618893 root_dirid 256 bytenr 42677048360960 level 3 refs 1 lastsnap 2618893 byte_limit 0 bytes_used 5557338112 flags 0x0(none) uuid d0d4361f-d231-6d40-8901-fe506e4b2b53 Although item 27 has disk bytenr 34626327621632, which matches the data_bytenr, its type is prealloc, not reg. This makes the existing code skip that item, and return ENOENT. [FIX] The code is modified in commit 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves"), before that commit, we use something like "if (type == BTRFS_FILE_EXTENT_INLINE) continue;" But in that offending commit, we use (type == BTRFS_FILE_EXTENT_REG), ignoring BTRFS_FILE_EXTENT_PREALLOC. Fix it by also checking BTRFS_FILE_EXTENT_PREALLOC. Reported-by: Stéphane Lesimple <[email protected]> Link: https://lore.kernel.org/linux-btrfs/[email protected] Fixes: 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves") CC: [email protected] # 5.6+ Tested-By: Stéphane Lesimple <[email protected]> Reviewed-by: Su Yue <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-07btrfs: tree-checker: check if chunk item end overflowsSu Yue1-0/+7
While mounting a crafted image provided by user, kernel panics due to the invalid chunk item whose end is less than start. [66.387422] loop: module loaded [66.389773] loop0: detected capacity change from 262144 to 0 [66.427708] BTRFS: device fsid a62e00e8-e94e-4200-8217-12444de93c2e devid 1 transid 12 /dev/loop0 scanned by mount (613) [66.431061] BTRFS info (device loop0): disk space caching is enabled [66.431078] BTRFS info (device loop0): has skinny extents [66.437101] BTRFS error: insert state: end < start 29360127 37748736 [66.437136] ------------[ cut here ]------------ [66.437140] WARNING: CPU: 16 PID: 613 at fs/btrfs/extent_io.c:557 insert_state.cold+0x1a/0x46 [btrfs] [66.437369] CPU: 16 PID: 613 Comm: mount Tainted: G O 5.11.0-rc1-custom #45 [66.437374] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.437378] RIP: 0010:insert_state.cold+0x1a/0x46 [btrfs] [66.437420] RSP: 0018:ffff93e5414c3908 EFLAGS: 00010286 [66.437427] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [66.437431] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [66.437434] RBP: ffff93e5414c3938 R08: 0000000000000001 R09: 0000000000000001 [66.437438] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d72aa0 [66.437441] R13: ffff8ec78bc71628 R14: 0000000000000000 R15: 0000000002400000 [66.437447] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [66.437451] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66.437455] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [66.437460] PKRU: 55555554 [66.437464] Call Trace: [66.437475] set_extent_bit+0x652/0x740 [btrfs] [66.437539] set_extent_bits_nowait+0x1d/0x20 [btrfs] [66.437576] add_extent_mapping+0x1e0/0x2f0 [btrfs] [66.437621] read_one_chunk+0x33c/0x420 [btrfs] [66.437674] btrfs_read_chunk_tree+0x6a4/0x870 [btrfs] [66.437708] ? kvm_sched_clock_read+0x18/0x40 [66.437739] open_ctree+0xb32/0x1734 [btrfs] [66.437781] ? bdi_register_va+0x1b/0x20 [66.437788] ? super_setup_bdi_name+0x79/0xd0 [66.437810] btrfs_mount_root.cold+0x12/0xeb [btrfs] [66.437854] ? __kmalloc_track_caller+0x217/0x3b0 [66.437873] legacy_get_tree+0x34/0x60 [66.437880] vfs_get_tree+0x2d/0xc0 [66.437888] vfs_kern_mount.part.0+0x78/0xc0 [66.437897] vfs_kern_mount+0x13/0x20 [66.437902] btrfs_mount+0x11f/0x3c0 [btrfs] [66.437940] ? kfree+0x5ff/0x670 [66.437944] ? __kmalloc_track_caller+0x217/0x3b0 [66.437962] legacy_get_tree+0x34/0x60 [66.437974] vfs_get_tree+0x2d/0xc0 [66.437983] path_mount+0x48c/0xd30 [66.437998] __x64_sys_mount+0x108/0x140 [66.438011] do_syscall_64+0x38/0x50 [66.438018] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [66.438023] RIP: 0033:0x7f0138827f6e [66.438033] RSP: 002b:00007ffecd79edf8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [66.438040] RAX: ffffffffffffffda RBX: 00007f013894c264 RCX: 00007f0138827f6e [66.438044] RDX: 00005593a4a41360 RSI: 00005593a4a33690 RDI: 00005593a4a3a6c0 [66.438047] RBP: 00005593a4a33440 R08: 0000000000000000 R09: 0000000000000001 [66.438050] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [66.438054] R13: 00005593a4a3a6c0 R14: 00005593a4a41360 R15: 00005593a4a33440 [66.438078] irq event stamp: 18169 [66.438082] hardirqs last enabled at (18175): [<ffffffffb81154bf>] console_unlock+0x4ff/0x5f0 [66.438088] hardirqs last disabled at (18180): [<ffffffffb8115427>] console_unlock+0x467/0x5f0 [66.438092] softirqs last enabled at (16910): [<ffffffffb8a00fe2>] asm_call_irq_on_stack+0x12/0x20 [66.438097] softirqs last disabled at (16905): [<ffffffffb8a00fe2>] asm_call_irq_on_stack+0x12/0x20 [66.438103] ---[ end trace e114b111db64298b ]--- [66.438107] BTRFS error: found node 12582912 29360127 on insert of 37748736 29360127 [66.438127] BTRFS critical: panic in extent_io_tree_panic:679: locking error: extent tree was modified by another thread while locked (errno=-17 Object already exists) [66.441069] ------------[ cut here ]------------ [66.441072] kernel BUG at fs/btrfs/extent_io.c:679! [66.442064] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [66.443018] CPU: 16 PID: 613 Comm: mount Tainted: G W O 5.11.0-rc1-custom #45 [66.444538] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.446223] RIP: 0010:extent_io_tree_panic.isra.0+0x23/0x25 [btrfs] [66.450878] RSP: 0018:ffff93e5414c3948 EFLAGS: 00010246 [66.451840] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [66.453141] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [66.454445] RBP: ffff93e5414c3948 R08: 0000000000000001 R09: 0000000000000001 [66.455743] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d728c0 [66.457055] R13: ffff8ec78bc71628 R14: ffff8ec782d72aa0 R15: 0000000002400000 [66.458356] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [66.459841] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66.460895] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [66.462196] PKRU: 55555554 [66.462692] Call Trace: [66.463139] set_extent_bit.cold+0x30/0x98 [btrfs] [66.464049] set_extent_bits_nowait+0x1d/0x20 [btrfs] [66.490466] add_extent_mapping+0x1e0/0x2f0 [btrfs] [66.514097] read_one_chunk+0x33c/0x420 [btrfs] [66.534976] btrfs_read_chunk_tree+0x6a4/0x870 [btrfs] [66.555718] ? kvm_sched_clock_read+0x18/0x40 [66.575758] open_ctree+0xb32/0x1734 [btrfs] [66.595272] ? bdi_register_va+0x1b/0x20 [66.614638] ? super_setup_bdi_name+0x79/0xd0 [66.633809] btrfs_mount_root.cold+0x12/0xeb [btrfs] [66.652938] ? __kmalloc_track_caller+0x217/0x3b0 [66.671925] legacy_get_tree+0x34/0x60 [66.690300] vfs_get_tree+0x2d/0xc0 [66.708221] vfs_kern_mount.part.0+0x78/0xc0 [66.725808] vfs_kern_mount+0x13/0x20 [66.742730] btrfs_mount+0x11f/0x3c0 [btrfs] [66.759350] ? kfree+0x5ff/0x670 [66.775441] ? __kmalloc_track_caller+0x217/0x3b0 [66.791750] legacy_get_tree+0x34/0x60 [66.807494] vfs_get_tree+0x2d/0xc0 [66.823349] path_mount+0x48c/0xd30 [66.838753] __x64_sys_mount+0x108/0x140 [66.854412] do_syscall_64+0x38/0x50 [66.869673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [66.885093] RIP: 0033:0x7f0138827f6e [66.945613] RSP: 002b:00007ffecd79edf8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [66.977214] RAX: ffffffffffffffda RBX: 00007f013894c264 RCX: 00007f0138827f6e [66.994266] RDX: 00005593a4a41360 RSI: 00005593a4a33690 RDI: 00005593a4a3a6c0 [67.011544] RBP: 00005593a4a33440 R08: 0000000000000000 R09: 0000000000000001 [67.028836] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [67.045812] R13: 00005593a4a3a6c0 R14: 00005593a4a41360 R15: 00005593a4a33440 [67.216138] ---[ end trace e114b111db64298c ]--- [67.237089] RIP: 0010:extent_io_tree_panic.isra.0+0x23/0x25 [btrfs] [67.325317] RSP: 0018:ffff93e5414c3948 EFLAGS: 00010246 [67.347946] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [67.371343] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [67.394757] RBP: ffff93e5414c3948 R08: 0000000000000001 R09: 0000000000000001 [67.418409] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d728c0 [67.441906] R13: ffff8ec78bc71628 R14: ffff8ec782d72aa0 R15: 0000000002400000 [67.465436] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [67.511660] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [67.535047] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [67.558449] PKRU: 55555554 [67.581146] note: mount[613] exited with preempt_count 2 The image has a chunk item which has a logical start 37748736 and length 18446744073701163008 (-8M). The calculated end 29360127 overflows. EEXIST was caught by insert_state() because of the duplicate end and extent_io_tree_panic() was called. Add overflow check of chunk item end to tree checker so it can be detected early at mount time. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=208929 CC: [email protected] # 4.19+ Reviewed-by: Anand Jain <[email protected]> Signed-off-by: Su Yue <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-07btrfs: prevent NULL pointer dereference in extent_io_tree_panicSu Yue1-3/+1
Some extent io trees are initialized with NULL private member (e.g. btrfs_device::alloc_state and btrfs_fs_info::excluded_extents). Dereference of a NULL tree->private as inode pointer will cause panic. Pass tree->fs_info as it's known to be valid in all cases. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=208929 Fixes: 05912a3c04eb ("btrfs: drop extent_io_ops::tree_fs_info callback") CC: [email protected] # 4.19+ Reviewed-by: Anand Jain <[email protected]> Signed-off-by: Su Yue <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-07btrfs: print the actual offset in btrfs_root_nameJosef Bacik3-7/+7
We're supposed to print the root_key.offset in btrfs_root_name in the case of a reloc root, not the objectid. Fix this helper to take the key so we have access to the offset when we need it. Fixes: 457f1864b569 ("btrfs: pretty print leaked root name") Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Nikolay Borisov <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2021-01-06Merge tag 'for-5.11-rc2-tag' of ↵Linus Torvalds18-97/+243
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes that arrived before the end of the year: - a bunch of fixes related to transaction handle lifetime wrt various operations (umount, remount, qgroup scan, orphan cleanup) - async discard scheduling fixes - fix item size calculation when item keys collide for extend refs (hardlinks) - fix qgroup flushing from running transaction - fix send, wrong file path when there is an inode with a pending rmdir - fix deadlock when cloning inline extent and low on free metadata space" * tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: run delayed iputs when remounting RO to avoid leaking them btrfs: add assertion for empty list of transactions at late stage of umount btrfs: fix race between RO remount and the cleaner task btrfs: fix transaction leak and crash after cleaning up orphans on RO mount btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan btrfs: merge critical sections of discard lock in workfn btrfs: fix racy access to discard_ctl data btrfs: fix async discard stall btrfs: tests: initialize test inodes location btrfs: send: fix wrong file path when there is an inode with a pending rmdir btrfs: qgroup: don't try to wait flushing if we're already holding a transaction btrfs: correctly calculate item size used when item key collision happens btrfs: fix deadlock when cloning inline extent and low on free metadata space
2020-12-18btrfs: run delayed iputs when remounting RO to avoid leaking themFilipe Manana1-0/+10
When remounting RO, after setting the superblock with the RO flag, the cleaner task will start sleeping and do nothing, since the call to btrfs_need_cleaner_sleep() keeps returning 'true'. However, when the cleaner task goes to sleep, the list of delayed iputs may not be empty. As long as we are in RO mode, the cleaner task will keep sleeping and never run the delayed iputs. This means that if a filesystem unmount is started, we get into close_ctree() with a non-empty list of delayed iputs, and because the filesystem is in RO mode and is not in an error state (or a transaction aborted), btrfs_error_commit_super() and btrfs_commit_super(), which run the delayed iputs, are never called, and later we fail the assertion that checks if the delayed iputs list is empty: assertion failed: list_empty(&fs_info->delayed_iputs), in fs/btrfs/disk-io.c:4049 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3153! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 1 PID: 3780621 Comm: umount Tainted: G L 5.6.0-rc2-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014 RIP: 0010:assertfail.constprop.0+0x18/0x26 [btrfs] Code: 8b 7b 58 48 85 ff 74 (...) RSP: 0018:ffffb748c89bbdf8 EFLAGS: 00010246 RAX: 0000000000000051 RBX: ffff9608f2584000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff91998988 RDI: 00000000ffffffff RBP: ffff9608f25870d8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffc0cbc500 R13: ffffffff92411750 R14: 0000000000000000 R15: ffff9608f2aab250 FS: 00007fcbfaa66c80(0000) GS:ffff960936c80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fffc2c2dd38 CR3: 0000000235e54002 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x1a2/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x93/0xc0 exit_to_usermode_loop+0xf9/0x100 do_syscall_64+0x20d/0x260 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fcbfaca6307 Code: eb 0b 00 f7 d8 64 89 (...) RSP: 002b:00007fffc2c2ed68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 0000558203b559b0 RCX: 00007fcbfaca6307 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000558203b55bc0 RBP: 0000000000000000 R08: 0000000000000001 R09: 00007fffc2c2dad0 R10: 0000558203b55bf0 R11: 0000000000000246 R12: 0000558203b55bc0 R13: 00007fcbfadcc204 R14: 0000558203b55aa8 R15: 0000000000000000 Modules linked in: btrfs dm_flakey dm_log_writes (...) ---[ end trace d44d303790049ef6 ]--- So fix this by making the remount RO path run any remaining delayed iputs after waiting for the cleaner to become inactive. Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Filipe Manana <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
2020-12-18btrfs: add assertion for empty list of transactions at late stage of umountFilipe Manana1-0/+3
Add an assertion to close_ctree(), after destroying all the work queues, to verify we do not have any transaction still open or committing at that at that point. If we have any, it means something is seriously wrong and that can cause memory leaks and use-after-free problems. This is motivated by the previous patches that fixed bugs where we ended up leaking an open transaction after unmounting the filesystem. Tested-by: Fabian Vogt <[email protected]> Reviewed-by: Josef Bacik <[email protected]> Signed-off-by: Filipe Manana <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>