Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"No new features, the bulk of the changes are fixes, refactoring and
cleanups. The notable fix is the scrub performance restoration after
rewrite in 6.4, though still only partial.
Fixes:
- scrub performance drop due to rewrite in 6.4 partially restored:
- do IO grouping by blg_plug/blk_unplug again
- avoid unnecessary tree searches when processing stripes, in
extent and checksum trees
- the drop is noticeable on fast PCIe devices, -66% and restored
to -33% of the original
- backports to 6.4 planned
- handle more corner cases of transaction commit during orphan
cleanup or delayed ref processing
- use correct fsid/metadata_uuid when validating super block
- copy directory permissions and time when creating a stub subvolume
Core:
- debugging feature integrity checker deprecated, to be removed in
6.7
- in zoned mode, zones are activated just before the write, making
error handling easier, now the overcommit mechanism can be enabled
again which improves performance by avoiding more frequent flushing
- v0 extent handling completely removed, deprecated long time ago
- error handling improvements
- tests:
- extent buffer bitmap tests
- pinned extent splitting tests
- cleanups and refactoring:
- compression writeback
- extent buffer bitmap
- space flushing, ENOSPC handling"
* tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (110 commits)
btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
btrfs: tests: test invalid splitting when skipping pinned drop extent_map
btrfs: tests: add a test for btrfs_add_extent_mapping
btrfs: tests: add extent_map tests for dropping with odd layouts
btrfs: scrub: move write back of repaired sectors to scrub_stripe_read_repair_worker()
btrfs: scrub: don't go ordered workqueue for dev-replace
btrfs: scrub: fix grouping of read IO
btrfs: scrub: avoid unnecessary csum tree search preparing stripes
btrfs: scrub: avoid unnecessary extent tree search preparing stripes
btrfs: copy dir permission and time when creating a stub subvolume
btrfs: remove pointless empty list check when reading delayed dir indexes
btrfs: drop redundant check to use fs_devices::metadata_uuid
btrfs: compare the correct fsid/metadata_uuid in btrfs_validate_super
btrfs: use the correct superblock to compare fsid in btrfs_validate_super
btrfs: simplify memcpy either of metadata_uuid or fsid
btrfs: add a helper to read the superblock metadata_uuid
btrfs: remove v0 extent handling
btrfs: output extra debug info if we failed to find an inline backref
btrfs: move the !zoned assert into run_delalloc_cow
btrfs: consolidate the error handling in run_delalloc_nocow
...
|
|
Pull iomap updates from Darrick Wong:
"We've got some big changes for this release -- I'm very happy to be
landing willy's work to enable large folios for the page cache for
general read and write IOs when the fs can make contiguous space
allocations, and Ritesh's work to track sub-folio dirty state to
eliminate the write amplification problems inherent in using large
folios.
As a bonus, io_uring can now process write completions in the caller's
context instead of bouncing through a workqueue, which should reduce
io latency dramatically. IOWs, XFS should see a nice performance bump
for both IO paths.
Summary:
- Make large writes to the page cache fill sparse parts of the cache
with large folios, then use large memcpy calls for the large folio.
- Track the per-block dirty state of each large folio so that a
buffered write to a single byte on a large folio does not result in
a (potentially) multi-megabyte writeback IO.
- Allow some directio completions to be performed in the initiating
task's context instead of punting through a workqueue. This will
reduce latency for some io_uring requests"
* tag 'iomap-6.6-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (26 commits)
iomap: support IOCB_DIO_CALLER_COMP
io_uring/rw: add write support for IOCB_DIO_CALLER_COMP
fs: add IOCB flags related to passing back dio completions
iomap: add IOMAP_DIO_INLINE_COMP
iomap: only set iocb->private for polled bio
iomap: treat a write through cache the same as FUA
iomap: use an unsigned type for IOMAP_DIO_* defines
iomap: cleanup up iomap_dio_bio_end_io()
iomap: Add per-block dirty state tracking to improve performance
iomap: Allocate ifs in ->write_begin() early
iomap: Refactor iomap_write_delalloc_punch() function out
iomap: Use iomap_punch_t typedef
iomap: Fix possible overflow condition in iomap_write_delalloc_scan
iomap: Add some uptodate state handling helpers for ifs state bitmap
iomap: Drop ifs argument from iomap_set_range_uptodate()
iomap: Rename iomap_page to iomap_folio_state and others
iomap: Copy larger chunks from userspace
iomap: Create large folios in the buffered write path
filemap: Allow __filemap_get_folio to allocate large folios
filemap: Add fgf_t typedef
...
|
|
Use LIST_HEAD() to initialize the list_head instead of open-coding it.
Signed-off-by: Ruan Jinjie <ruanjinjie@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Enable multigrain timestamps, which should ensure that there is an
apparent change to the timestamp whenever it has been written after
being actively observed via getattr.
Beyond enabling the FS_MGTIME flag, this patch eliminates
update_time_for_write, which goes to great pains to avoid in-memory
stores. Just have it overwrite the timestamps unconditionally.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230807-mgctime-v7-13-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Similarly to gfp_t, define fgf_t as its own type to prevent various
misuses and confusion. Leave the flags as FGP_* for now to reduce the
size of this patch; they will be converted to FGF_* later. Move the
documentation to the definition of the type insted of burying it in the
__filemap_get_folio() documentation.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-27-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
|
|
Pull splice updates from Jens Axboe:
"This kills off ITER_PIPE to avoid a race between truncate,
iov_iter_revert() on the pipe and an as-yet incomplete DMA to a bio
with unpinned/unref'ed pages from an O_DIRECT splice read. This causes
memory corruption.
Instead, we either use (a) filemap_splice_read(), which invokes the
buffered file reading code and splices from the pagecache into the
pipe; (b) copy_splice_read(), which bulk-allocates a buffer, reads
into it and then pushes the filled pages into the pipe; or (c) handle
it in filesystem-specific code.
Summary:
- Rename direct_splice_read() to copy_splice_read()
- Simplify the calculations for the number of pages to be reclaimed
in copy_splice_read()
- Turn do_splice_to() into a helper, vfs_splice_read(), so that it
can be used by overlayfs and coda to perform the checks on the
lower fs
- Make vfs_splice_read() jump to copy_splice_read() to handle
direct-I/O and DAX
- Provide shmem with its own splice_read to handle non-existent pages
in the pagecache. We don't want a ->read_folio() as we don't want
to populate holes, but filemap_get_pages() requires it
- Provide overlayfs with its own splice_read to call down to a lower
layer as overlayfs doesn't provide ->read_folio()
- Provide coda with its own splice_read to call down to a lower layer
as coda doesn't provide ->read_folio()
- Direct ->splice_read to copy_splice_read() in tty, procfs, kernfs
and random files as they just copy to the output buffer and don't
splice pages
- Provide wrappers for afs, ceph, ecryptfs, ext4, f2fs, nfs, ntfs3,
ocfs2, orangefs, xfs and zonefs to do locking and/or revalidation
- Make cifs use filemap_splice_read()
- Replace pointers to generic_file_splice_read() with pointers to
filemap_splice_read() as DIO and DAX are handled in the caller;
filesystems can still provide their own alternate ->splice_read()
op
- Remove generic_file_splice_read()
- Remove ITER_PIPE and its paraphernalia as generic_file_splice_read
was the only user"
* tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux: (31 commits)
splice: kdoc for filemap_splice_read() and copy_splice_read()
iov_iter: Kill ITER_PIPE
splice: Remove generic_file_splice_read()
splice: Use filemap_splice_read() instead of generic_file_splice_read()
cifs: Use filemap_splice_read()
trace: Convert trace/seq to use copy_splice_read()
zonefs: Provide a splice-read wrapper
xfs: Provide a splice-read wrapper
orangefs: Provide a splice-read wrapper
ocfs2: Provide a splice-read wrapper
ntfs3: Provide a splice-read wrapper
nfs: Provide a splice-read wrapper
f2fs: Provide a splice-read wrapper
ext4: Provide a splice-read wrapper
ecryptfs: Provide a splice-read wrapper
ceph: Provide a splice-read wrapper
afs: Provide a splice-read wrapper
9p: Add splice_read wrapper
net: Make sock_splice_read() use copy_splice_read() by default
tty, proc, kernfs, random: Use copy_splice_read()
...
|
|
Since commit a2ad63daa88b ("VFS: add FMODE_CAN_ODIRECT file flag") file
systems can just set the FMODE_CAN_ODIRECT flag at open time instead of
wiring up a dummy direct_IO method to indicate support for direct I/O.
Do that for btrfs so that noop_direct_IO can eventually be removed.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The writeback_control structure already passes down the information about
a writeback being synchronous from the core VM code, and thus information
is propagated into the bio REQ_SYNC flag through the wbc_to_write_flags
helper.
Use that information to decide if checksums calculation is offloaded to
a workqueue instead of btrfs_inode::sync_writers field that not only
bloats the inode but also has too wide scope, being inode wide instead
of limited to the actual writeback request.
The sync writes were set in:
- btrfs_do_write_iter - regular IO, sync status is set
- start_ordered_ops - ordered write start, writeback with WB_SYNC_ALL
mode
- btrfs_write_marked_extents - write marked extents, writeback with
WB_SYNC_ALL mode
Reviewed-by: Chris Mason <clm@fb.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Patch series "cleanup the filemap / direct I/O interaction", v4.
This series cleans up some of the generic write helper calling conventions
and the page cache writeback / invalidation for direct I/O. This is a
spinoff from the no-bufferhead kernel project, for which we'll want to an
use iomap based buffered write path in the block layer.
This patch (of 12):
The last user of current->backing_dev_info disappeared in commit
b9b1335e6403 ("remove bdi_congested() and wb_congested() and related
functions"). Remove the field and all assignments to it.
Link: https://lkml.kernel.org/r/20230601145904.1385409-1-hch@lst.de
Link: https://lkml.kernel.org/r/20230601145904.1385409-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace pointers to generic_file_splice_read() with calls to
filemap_splice_read().
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
cc: Jens Axboe <axboe@kernel.dk>
cc: Al Viro <viro@zeniv.linux.org.uk>
cc: David Hildenbrand <david@redhat.com>
cc: John Hubbard <jhubbard@nvidia.com>
cc: linux-mm@kvack.org
cc: linux-block@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/20230522135018.2742245-29-dhowells@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This returns a pointer to the current iovec entry in the iterator. Only
useful with ITER_IOVEC right now, but it prepares us to treat ITER_UBUF
and ITER_IOVEC identically for the first segment.
Rename struct iov_iter->iov to iov_iter->__iov to find any potentially
troublesome spots, and also to prevent anyone from adding new code that
accesses iter->iov directly.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Given that wait is always set to 1, so remove the argument.
Last use of wait with 0 was in 0c304304feab ("Btrfs: remove
csum_bytes_left").
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During lseek, for SEEK_DATA and SEEK_HOLE modes, we access the disk_bytenr
of an extent without checking its type. However inline extents have their
data starting the offset of the disk_bytenr field, so accessing that field
when we have an inline extent can result in either of the following:
1) Interpret the inline extent's data as a disk_bytenr value;
2) In case the inline data is less than 8 bytes, we access part of some
other item in the leaf, or unused space in the leaf;
3) In case the inline data is less than 8 bytes and the extent item is
the first item in the leaf, we can access beyond the leaf's limit.
So fix this by not accessing the disk_bytenr field if we have an inline
extent.
Fixes: b6e833567ea1 ("btrfs: make hole and data seeking a lot more efficient")
Reported-by: Matthias Schoepfer <matthias.schoepfer@googlemail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216908
Link: https://lore.kernel.org/linux-btrfs/7f25442f-b121-2a3a-5a3d-22bcaae83cd4@leemhuis.info/
CC: stable@vger.kernel.org # 6.1
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During lseek, when searching for delalloc in a range that represents a
hole and that range has a length of 1 byte, we end up not doing the actual
delalloc search in the inode's io tree, resulting in not correctly
reporting the offset with data or a hole. This actually only happens when
the start offset is 0 because with any other start offset we round it down
by sector size.
Reproducer:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -c "pwrite -q 0 1" /mnt/sdc/foo
$ xfs_io -c "seek -d 0" /mnt/sdc/foo
Whence Result
DATA EOF
It should have reported an offset of 0 instead of EOF.
Fix this by updating btrfs_find_delalloc_in_range() and count_range_bits()
to deal with inclusive ranges properly. These functions are already
supposed to work with inclusive end offsets, they just got it wrong in a
couple places due to off-by-one mistakes.
A test case for fstests will be added later.
Reported-by: Joan Bruguera Micó <joanbrugueram@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/20221223020509.457113-1-joanbrugueram@gmail.com/
Fixes: b6e833567ea1 ("btrfs: make hole and data seeking a lot more efficient")
CC: stable@vger.kernel.org # 6.1
Tested-by: Joan Bruguera Micó <joanbrugueram@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we get -ENOMEM while dropping file extent items in a given range, at
btrfs_drop_extents(), due to failure to allocate memory when attempting to
increment the reference count for an extent or drop the reference count,
we handle it with a BUG_ON(). This is excessive, instead we can simply
abort the transaction and return the error to the caller. In fact most
callers of btrfs_drop_extents(), directly or indirectly, already abort
the transaction if btrfs_drop_extents() returns any error.
Also, we already have error paths at btrfs_drop_extents() that may return
-ENOMEM and in those cases we abort the transaction, like for example
anything that changes the b+tree may return -ENOMEM due to a failure to
allocate a new extent buffer when COWing an existing extent buffer, such
as a call to btrfs_duplicate_item() for example.
So replace the BUG_ON() calls with proper logic to abort the transaction
and return the error.
Reported-by: syzbot+0b1fb6b0108c27419f9f@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000089773e05ee4b9cb4@google.com/
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During lseek (SEEK_HOLE/DATA), whenever we find a hole or prealloc extent,
we will look for delalloc in that range, and one of the things we do for
that is to find out ranges in the inode's io_tree marked with
EXTENT_DELALLOC, using calls to count_range_bits().
Typically there's a single, or few, searches in the io_tree for delalloc
per lseek call. However it's common for applications to keep calling
lseek with SEEK_HOLE and SEEK_DATA to find where extents and holes are in
a file, read the extents and skip holes in order to avoid unnecessary IO
and save disk space by preserving holes.
One popular user is the cp utility from coreutils. Starting with coreutils
9.0, cp uses SEEK_HOLE and SEEK_DATA to iterate over the extents of a
file. Before 9.0, it used fiemap to figure out where holes and extents are
in the source file. Another popular user is the tar utility when used with
the --sparse / -S option to detect and preserve holes.
Given that the pattern is to keep calling lseek with a start offset that
matches the returned offset from the previous lseek call, we can benefit
from caching the last extent state visited in count_range_bits() and use
it for the next count_range_bits() from the next lseek call. Example,
the following strace excerpt from running tar:
$ strace tar cJSvf foo.tar.xz qemu_disk_file.raw
(...)
lseek(5, 125019574272, SEEK_HOLE) = 125024989184
lseek(5, 125024989184, SEEK_DATA) = 125024993280
lseek(5, 125024993280, SEEK_HOLE) = 125025239040
lseek(5, 125025239040, SEEK_DATA) = 125025255424
lseek(5, 125025255424, SEEK_HOLE) = 125025353728
lseek(5, 125025353728, SEEK_DATA) = 125025357824
lseek(5, 125025357824, SEEK_HOLE) = 125026766848
lseek(5, 125026766848, SEEK_DATA) = 125026770944
lseek(5, 125026770944, SEEK_HOLE) = 125027053568
(...)
Shows that pattern, which is the same as with cp from coreutils 9.0+.
So start using a cached state for the delalloc searches in lseek, and
store it in struct file's private data so that it can be reused across
lseek calls.
This change is part of a patchset that is comprised of the following
patches:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
The following test was run before and after applying the whole patchset:
$ cat test-cp.sh
#!/bin/bash
DEV=/dev/sdh
MNT=/mnt/sdh
# coreutils 8.32, cp uses fiemap to detect holes and extents
#CP_PROG=/usr/bin/cp
# coreutils 9.1, cp uses SEEK_HOLE/DATA to detect holes and extents
CP_PROG=/home/fdmanana/git/hub/coreutils/src/cp
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
mount $DEV $MNT
FILE_SIZE=$((1024 * 1024 * 1024))
echo "Creating file with a size of $((FILE_SIZE / 1024 / 1024))M"
# Create a very sparse file, where each extent has a length of 4K and
# is preceded by a 4K hole and followed by another 4K hole.
start=$(date +%s%N)
echo -n > $MNT/foobar
for ((off = 0; off < $FILE_SIZE; off += 8192)); do
xfs_io -c "pwrite -S 0xab $off 4K" $MNT/foobar > /dev/null
echo -ne "\r$off / $FILE_SIZE ..."
done
end=$(date +%s%N)
echo -e "\nFile created ($(( (end - start) / 1000000 )) milliseconds)"
start=$(date +%s%N)
$CP_PROG $MNT/foobar /dev/null
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "cp took $dur milliseconds with data/metadata cached and delalloc"
# Flush all delalloc.
sync
start=$(date +%s%N)
$CP_PROG $MNT/foobar /dev/null
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "cp took $dur milliseconds with data/metadata cached and no delalloc"
# Unmount and mount again to test the case without any metadata
# loaded in memory.
umount $MNT
mount $DEV $MNT
start=$(date +%s%N)
$CP_PROG $MNT/foobar /dev/null
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "cp took $dur milliseconds without data/metadata cached and no delalloc"
umount $MNT
The results, running on a box with a non-debug kernel (Debian's default
kernel config), were the following:
128M file, before patchset:
cp took 16574 milliseconds with data/metadata cached and delalloc
cp took 122 milliseconds with data/metadata cached and no delalloc
cp took 20144 milliseconds without data/metadata cached and no delalloc
128M file, after patchset:
cp took 6277 milliseconds with data/metadata cached and delalloc
cp took 109 milliseconds with data/metadata cached and no delalloc
cp took 210 milliseconds without data/metadata cached and no delalloc
512M file, before patchset:
cp took 14369 milliseconds with data/metadata cached and delalloc
cp took 429 milliseconds with data/metadata cached and no delalloc
cp took 88034 milliseconds without data/metadata cached and no delalloc
512M file, after patchset:
cp took 12106 milliseconds with data/metadata cached and delalloc
cp took 427 milliseconds with data/metadata cached and no delalloc
cp took 824 milliseconds without data/metadata cached and no delalloc
1G file, before patchset:
cp took 10074 milliseconds with data/metadata cached and delalloc
cp took 886 milliseconds with data/metadata cached and no delalloc
cp took 181261 milliseconds without data/metadata cached and no delalloc
1G file, after patchset:
cp took 3320 milliseconds with data/metadata cached and delalloc
cp took 880 milliseconds with data/metadata cached and no delalloc
cp took 1801 milliseconds without data/metadata cached and no delalloc
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During fiemap, whenever we find a hole or prealloc extent, we will look
for delalloc in that range, and one of the things we do for that is to
find out ranges in the inode's io_tree marked with EXTENT_DELALLOC, using
calls to count_range_bits().
Since we process file extents from left to right, if we have a file with
several holes or prealloc extents, we benefit from keeping a cached extent
state record for calls to count_range_bits(). Most of the time the last
extent state record we visited in one call to count_range_bits() matches
the first extent state record we will use in the next call to
count_range_bits(), so there's a benefit here. So use an extent state
record to cache results from count_range_bits() calls during fiemap.
This change is part of a patchset that has the goal to make performance
better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to
iterate over the extents of a file. Two examples are the cp program from
coreutils 9.0+ and the tar program (when using its --sparse / -S option).
A sample test and results are listed in the changelog of the last patch
in the series:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
An inode's io_tree can be quite large and there are cases where due to
delalloc it can have thousands of extent state records, which makes the
red black tree have a depth of 10 or more, making the operation of
count_range_bits() slow if we repeatedly call it for a range that starts
where, or after, the previous one we called it for. Such use cases are
when searching for delalloc in a file range that corresponds to a hole or
a prealloc extent, which is done during lseek SEEK_HOLE/DATA and fiemap.
So introduce a cached state parameter to count_range_bits() which we use
to store the last extent state record we visited, and then allow the
caller to pass it again on its next call to count_range_bits(). The next
patches in the series will make fiemap and lseek use the new parameter.
This change is part of a patchset that has the goal to make performance
better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to
iterate over the extents of a file. Two examples are the cp program from
coreutils 9.0+ and the tar program (when using its --sparse / -S option).
A sample test and results are listed in the changelog of the last patch
in the series:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During lseek (SEEK_HOLE/DATA) and fiemap, when processing a file range
that corresponds to a hole or a prealloc extent, we have to check if
there's any delalloc in the range. We do it by searching for delalloc
ranges in the inode's io_tree (for unflushed delalloc) and in the inode's
extent map tree (for delalloc that is flushing).
We avoid searching the extent map tree if the number of outstanding
extents is 0, as in that case we can't have extent maps for our search
range in the tree that correspond to delalloc that is flushing. However
if we have any unflushed delalloc, due to buffered writes or mmap writes,
then the outstanding extents counter is not 0 and we'll search the extent
map tree. The tree may be large because it can have lots of extent maps
that were loaded by reads or created by previous writes, therefore taking
a significant time to search the tree, specially if have a file with a
lot of holes and/or prealloc extents.
We can improve on this by instead of searching the extent map tree,
searching the ordered extents tree of the inode, since when delalloc is
flushing we create an ordered extent along with the new extent map, while
holding the respective file range locked in the inode's io_tree. The
ordered extents tree is typically much smaller, since ordered extents have
a short life and get removed from the tree once they are completed, while
extent maps can stay for a very long time in the extent map tree, either
created by previous writes or loaded by read operations.
So use the ordered extents tree instead of the extent maps tree.
This change is part of a patchset that has the goal to make performance
better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to
iterate over the extents of a file. Two examples are the cp program from
coreutils 9.0+ and the tar program (when using its --sparse / -S option).
A sample test and results are listed in the changelog of the last patch
in the series:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During lseek (SEEK_HOLE/DATA) and fiemap, when processing a file range
that corresponds to a hole or a prealloc extent, if we find that there is
no delalloc marked in the inode's io_tree but there is delalloc due to
an extent map in the io tree, then on the next iteration that calls
find_delalloc_subrange() we can skip searching the io tree again, since
on the first call we had no delalloc in the io tree for the whole range.
This change is part of a patchset that has the goal to make performance
better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to
iterate over the extents of a file. Two examples are the cp program from
coreutils 9.0+ and the tar program (when using its --sparse / -S option).
A sample test and results are listed in the changelog of the last patch
in the series:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During fiemap and lseek (SEEK_HOLE/DATA), when looking for delalloc in a
range corresponding to a hole or a prealloc extent, if we found the whole
range marked as delalloc in the inode's io_tree, then we can terminate
immediately and avoid searching the extent map tree. If not, and if the
found delalloc starts at the same offset of our search start but ends
before our search range's end, then we can adjust the search range for
the search in the extent map tree. So implement those changes.
This change is part of a patchset that has the goal to make performance
better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to
iterate over the extents of a file. Two examples are the cp program from
coreutils 9.0+ and the tar program (when using its --sparse / -S option).
A sample test and results are listed in the changelog of the last patch
in the series:
1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree
2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap
3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap
4/9 btrfs: search for delalloc more efficiently during lseek/fiemap
5/9 btrfs: remove no longer used btrfs_next_extent_map()
6/9 btrfs: allow passing a cached state record to count_range_bits()
7/9 btrfs: update stale comment for count_range_bits()
8/9 btrfs: use cached state when looking for delalloc ranges with fiemap
9/9 btrfs: use cached state when looking for delalloc ranges with lseek
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function is for internal interfaces so we should use the
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function is for internal interfaces so we should use the
btrfs_inode.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If when doing a direct IO write we need to fallback to buffered IO, we
this comment at btrfs_direct_write() that says we can't directly fallback
to buffered IO if we have a NOWAIT iocb, because we have no support for
NOWAIT buffered writes. That is not true anymore, as support for NOWAIT
buffered writes was added recently in commit 926078b21db9 ("btrfs: enable
nowait async buffered writes").
However we still can't fallback to a buffered write in case we have a
NOWAIT iocb, because we'll need to flush delalloc and wait for it to
complete after doing the buffered write, and that can block for several
reasons, the main reason being waiting for IO to complete.
So update the comment to mention all that.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This will make syncing fs.h to user space a little easier if we can pull
the super block specific helpers out of fs.h and put them in super.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move these out of ctree.h into file.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move these out of ctree.h into ioctl.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move these prototypes out of ctree.h and into file-item.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This currently exists in file.c, move it to the more natural location in
defrag.c.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ reformat comments ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move all the extent tree related prototypes to extent-tree.h out of
ctree.h, and then go include it everywhere needed so everything
compiles.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During fiemap and lseek (hole and data seeking), there's no point in
iterating the inode's io tree to count delalloc bits if the inode's
delalloc bytes counter has a value of zero, as that counter is updated
whenever we set a range for delalloc or clear a range from delalloc.
So skip the counting and io tree iteration if the inode's delalloc bytes
counter has a value of zero. This helps save time when processing a file
range corresponding to a hole or prealloc (unwritten) extent.
This patch is part of a series comprised of the following patches:
btrfs: get the next extent map during fiemap/lseek more efficiently
btrfs: skip unnecessary extent map searches during fiemap and lseek
btrfs: skip unnecessary delalloc search during fiemap and lseek
The following test was performed on a release kernel (Debian's default
kernel config) before and after applying those 3 patches.
# Wrapper to call fiemap in extent count only mode.
# (struct fiemap::fm_extent_count set to 0)
$ cat fiemap.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/fs.h>
#include <linux/fiemap.h>
int main(int argc, char **argv)
{
struct fiemap fiemap = { 0 };
int fd;
if (argc != 2) {
printf("usage: %s <path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "error opening file: %s\n",
strerror(errno));
return 1;
}
/* fiemap.fm_extent_count set to 0, to count extents only. */
fiemap.fm_length = FIEMAP_MAX_OFFSET;
if (ioctl(fd, FS_IOC_FIEMAP, &fiemap) < 0) {
fprintf(stderr, "fiemap error: %s\n",
strerror(errno));
return 1;
}
close(fd);
printf("fm_mapped_extents = %d\n", fiemap.fm_mapped_extents);
return 0;
}
$ gcc -o fiemap fiemap.c
And the wrapper shell script that creates a file with many holes and runs
fiemap against it:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
FILE_SIZE=$((1 * 1024 * 1024 * 1024))
echo -n > $MNT/foobar
for ((off = 0; off < $FILE_SIZE; off += 8192)); do
xfs_io -c "pwrite -S 0xab $off 4K" $MNT/foobar > /dev/null
done
# flush all delalloc
sync
start=$(date +%s%N)
./fiemap $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds"
umount $MNT
Result before applying patchset:
fm_mapped_extents = 131072
fiemap took 63 milliseconds
Result after applying patchset:
fm_mapped_extents = 131072
fiemap took 39 milliseconds (-38.1%)
Running the same test for a 512M file instead of a 1G file, gave the
following results.
Result before applying patchset:
fm_mapped_extents = 65536
fiemap took 29 milliseconds
Result after applying patchset:
fm_mapped_extents = 65536
fiemap took 20 milliseconds (-31.0%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we have no outstanding extents it means we don't have any extent maps
corresponding to delalloc that is flushing, as when an ordered extent is
created we increment the number of outstanding extents to 1 and when we
remove the ordered extent we decrement them by 1. So skip extent map tree
searches if the number of outstanding ordered extents is 0, saving time as
the tree is not empty if we have previously made some reads or flushed
delalloc, as in those cases it can have a very large number of extent maps
for files with many extents.
This helps save time when processing a file range corresponding to a hole
or prealloc (unwritten) extent.
The next patch in the series has a performance test in its changelog and
its subject is:
"btrfs: skip unnecessary delalloc search during fiemap and lseek"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At find_delalloc_subrange(), when we need to get the next extent map, we
do a full search on the extent map tree (a red black tree). This is fine
but it's a lot more efficient to simply use rb_next(), which typically
requires iterating over less nodes of the tree and never needs to compare
the ranges of nodes with the one we are looking for.
So add a public helper to extent_map.{h,c} to get the extent map that
immediately follows another extent map, using rb_next(), and use that
helper at find_delalloc_subrange().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that try_lock_extent() takes a cached_state, plumb the cached_state
through btrfs_try_lock_ordered_range() and then use a cached_state in
btrfs_check_nocow_lock everywhere to avoid extra tree searches on the
extent_io_tree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
With nowait becoming more pervasive throughout our codebase go ahead and
add a cached_state to try_lock_extent(). This allows us to be faster
about clearing the locked area if we have contention, and then gives us
the same optimization for unlock if we are able to lock the range.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During a nowait buffered write, if we fail to balance dirty pages we exit
btrfs_buffered_write() without releasing the delalloc space reserved for
an extent, resulting in leaking space from the inode's block reserve.
So fix that by releasing the delalloc space for the extent when balancing
dirty pages fails.
Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/all/202210111304.d369bc32-yujie.liu@intel.com
Fixes: 965f47aeb5de ("btrfs: make btrfs_buffered_write nowait compatible")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we are doing a buffered write in NOWAIT context and we can't reserve
metadata space due to -ENOSPC, then we should return -EAGAIN so that we
retry the write in a context allowed to block and do metadata reservation
with flushing, which might succeed this time due to the allowed flushing.
Returning -ENOSPC while in NOWAIT context simply makes some writes fail
with -ENOSPC when they would likely succeed after switching from NOWAIT
context to blocking context. That is unexpected behaviour and even fio
complains about it with a warning like this:
fio: io_u error on file /mnt/sdi/task_0.0.0: No space left on device: write offset=1535705088, buflen=65536
fio: pid=592630, err=28/file:io_u.c:1846, func=io_u error, error=No space left on device
The fio's job config is this:
[global]
bs=64K
ioengine=io_uring
iodepth=1
size=2236962133
nr_files=1
filesize=2236962133
direct=0
runtime=10
fallocate=posix
io_size=2236962133
group_reporting
time_based
[task_0]
rw=randwrite
directory=/mnt/sdi
numjobs=4
So fix this by returning -EAGAIN if we are in NOWAIT context and the
metadata reservation failed with -ENOSPC.
Fixes: 304e45acdb8f ("btrfs: plumb NOWAIT through the write path")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When doing a direct IO write using a iocb with nowait and dsync set, we
end up not syncing the file once the write completes.
This is because we tell iomap to not call generic_write_sync(), which
would result in calling btrfs_sync_file(), in order to avoid a deadlock
since iomap can call it while we are holding the inode's lock and
btrfs_sync_file() needs to acquire the inode's lock. The deadlock happens
only if the write happens synchronously, when iomap_dio_rw() calls
iomap_dio_complete() before it returns. Instead we do the sync ourselves
at btrfs_do_write_iter().
For a nowait write however we can end up not doing the sync ourselves at
at btrfs_do_write_iter() because the write could have been queued, and
therefore we get -EIOCBQUEUED returned from iomap in such case. That makes
us skip the sync call at btrfs_do_write_iter(), as we don't do it for
any error returned from btrfs_direct_write(). We can't simply do the call
even if -EIOCBQUEUED is returned, since that would block the task waiting
for IO, both for the data since there are bios still in progress as well
as potentially blocking when joining a log transaction and when syncing
the log (writing log trees, super blocks, etc).
So let iomap do the sync call itself and in order to avoid deadlocks for
the case of synchronous writes (without nowait), use __iomap_dio_rw() and
have ourselves call iomap_dio_complete() after unlocking the inode.
A test case will later be sent for fstests, after this is fixed in Linus'
tree.
Fixes: 51bd9563b678 ("btrfs: fix deadlock due to page faults during direct IO reads and writes")
Reported-by: Марк Коренберг <socketpair@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAEmTpZGRKbzc16fWPvxbr6AfFsQoLmz-Lcg-7OgJOZDboJ+SGQ@mail.gmail.com/
CC: stable@vger.kernel.org # 6.0+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have several places that need to drop all the extent maps in a given
file range and then add a new extent map for that range. Currently they
call btrfs_drop_extent_map_range() to delete all extent maps in the range
and then keep trying to add the new extent map in a loop that keeps
retrying while the insertion of the new extent map fails with -EEXIST.
So instead of repeating this logic, add a helper to extent_map.c that
does these steps and name it btrfs_replace_extent_map_range(). Also add
a comment about why the retry loop is necessary.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_drop_extent_cache() doesn't really belong at file.c
because what it does is drop a range of extent maps for a file range.
It directly allocates and manipulates extent maps, by dropping,
splitting and replacing them in an extent map tree, so it should be
located at extent_map.c, where all manipulations of an extent map tree
and its extent maps are supposed to be done.
So move it out of file.c and into extent_map.c. Additionally do the
following changes:
1) Rename it into btrfs_drop_extent_map_range(), as this makes it more
clear about what it does. The term "cache" is a bit confusing as it's
not widely used, "extent maps" or "extent mapping" is much more common;
2) Change its 'skip_pinned' argument from int to bool;
3) Turn several of its local variables from int to bool, since they are
used as booleans;
4) Move the declaration of some variables out of the function's main
scope and into the scopes where they are used;
5) Remove pointless assignment of false to 'modified' early in the while
loop, as later that variable is set and it's not used before that
second assignment;
6) Remove checks for NULL before calling free_extent_map().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When dropping extent maps for a range, through btrfs_drop_extent_cache(),
if we find an extent map that starts before our target range and/or ends
before the target range, and we are not able to allocate extent maps for
splitting that extent map, then we don't fail and simply remove the entire
extent map from the inode's extent map tree.
This is generally fine, because in case anyone needs to access the extent
map, it can just load it again later from the respective file extent
item(s) in the subvolume btree. However, if that extent map is new and is
in the list of modified extents, then a fast fsync will miss the parts of
the extent that were outside our range (that needed to be split),
therefore not logging them. Fix that by marking the inode for a full
fsync. This issue was introduced after removing BUG_ON()s triggered when
the split extent map allocations failed, done by commit 7014cdb49305ed
("Btrfs: btrfs_drop_extent_cache should never fail"), back in 2012, and
the fast fsync path already existed but was very recent.
Also, in the case where we could allocate extent maps for the split
operations but then fail to add a split extent map to the tree, mark the
inode for a full fsync as well. This is not supposed to ever fail, and we
assert that, but in case assertions are disabled (CONFIG_BTRFS_ASSERT is
not set), it's the correct thing to do to make sure a fast fsync will not
miss a new extent.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Enable nowait async buffered writes in btrfs_do_write_iter() and
btrfs_file_open().
In this version encoded buffered writes have the optimization not
enabled. Encoded writes are enabled by using an ioctl. io_uring
currently does not support ioctls. This might be enabled in the future.
Performance results:
For fio the following results have been obtained with a queue depth of
1 and 4k block size (runtime 600 secs):
sequential writes:
without patch with patch libaio psync
iops: 55k 134k 117K 148K
bw: 221MB/s 538MB/s 469MB/s 592MB/s
clat: 15286ns 82ns 994ns 6340ns
For an io depth of 1, the new patch improves throughput by over two
times (compared to the existing behavior, where buffered writes are
processed by an io-worker process) and also the latency is considerably
reduced. To achieve the same or better performance with the existing
code an io depth of 4 is required. Increasing the iodepth further does
not lead to improvements.
The tests have been run like this:
./fio --name=seq-writers --ioengine=psync --iodepth=1 --rw=write \
--bs=4k --direct=0 --size=100000m --time_based --runtime=600 \
--numjobs=1 --filename=...
./fio --name=seq-writers --ioengine=io_uring --iodepth=1 --rw=write \
--bs=4k --direct=0 --size=100000m --time_based --runtime=600 \
--numjobs=1 --filename=...
./fio --name=seq-writers --ioengine=libaio --iodepth=1 --rw=write \
--bs=4k --direct=0 --size=100000m --time_based --runtime=600 \
--numjobs=1 --filename=...
Testing:
This patch has been tested with xfstests, fsx, fio. xfstests shows no new
diffs compared to running without the patch series.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We need to avoid unconditionally calling balance_dirty_pages_ratelimited
as it could wait for some reason. Use balance_dirty_pages_ratelimited_flags
with the BDP_ASYNC in case the buffered write is nowait, returning
EAGAIN eventually.
It also moves the function after the again label. This can cause the
function to be called a bit later, but this should have no impact in the
real world.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have everywhere setup for nowait, plumb NOWAIT through the write path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add the nowait parameter to lock_and_cleanup_extent_if_need(). If the
nowait parameter is specified we try to lock the extent in nowait mode.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add nowait parameter to the prepare_pages function. In case nowait is
specified for an async buffered write request, do a nowait allocation or
return -EAGAIN.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|