aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.h
AgeCommit message (Collapse)AuthorFilesLines
2022-12-05btrfs: move fs_info::flags enum to fs.hJosef Bacik1-68/+0
These definitions are fs wide, take them out of ctree.h and put them in fs.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move mount option definitions to fs.hJosef Bacik1-63/+0
These are fs wide definitions and helpers, move them out of ctree.h and into fs.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move BTRFS_FS_STATE* definitions and helpers to fs.hJosef Bacik1-46/+0
We're going to use fs.h to hold fs wide related helpers and definitions, move the FS_STATE enum and related helpers to fs.h, and then update all files that need these definitions to include fs.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the printk helpers out of ctree.hJosef Bacik1-249/+0
We have a bunch of printk helpers that are in ctree.h. These have nothing to do with ctree.c, so move them into their own header. Subsequent patches will cleanup the printk helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move assert helpers out of ctree.hJosef Bacik1-15/+3
These call functions that aren't defined in, or will be moved out of, ctree.h Move them to super.c where the other assert/error message code is defined. Drop the __noreturn attribute for btrfs_assertfail as objtool does not like it and fails with warnings like fs/btrfs/dir-item.o: warning: objtool: .text.unlikely: unexpected end of section fs/btrfs/xattr.o: warning: objtool: btrfs_setxattr() falls through to next function btrfs_setxattr_trans.cold() fs/btrfs/xattr.o: warning: objtool: .text.unlikely: unexpected end of section Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move fs wide helpers out of ctree.hJosef Bacik1-164/+0
We have several fs wide related helpers in ctree.h. The bulk of these are the incompat flag test helpers, but there are things such as btrfs_fs_closing() and the read only helpers that also aren't directly related to the ctree code. Move these into a fs.h header, which will serve as the location for file system wide related helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: auto enable discard=async when possibleDavid Sterba1-0/+1
There's a request to automatically enable async discard for capable devices. We can do that, the async mode is designed to wait for larger freed extents and is not intrusive, with limits to iops, kbps or latency. The status and tunables will be exported in /sys/fs/btrfs/FSID/discard . The automatic selection is done if there's at least one discard capable device in the filesystem (not capable devices are skipped). Mounting with any other discard option will honor that option, notably mounting with nodiscard will keep it disabled. Link: https://lore.kernel.org/linux-btrfs/CAEg-Je_b1YtdsCR0zS5XZ_SbvJgN70ezwvRwLiCZgDGLbeMB=w@mail.gmail.com/ Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: convert BTRFS_ILOCK-* defines to enum bitDavid Sterba1-3/+6
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the btrfs_verity_descriptor_item defs up in ctree.hJosef Bacik1-9/+10
These are wrapped in CONFIG_FS_VERITY, but we can have the definitions without verity enabled. Move these definitions up with the other accessor helpers. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_next_old_item into ctree.cJosef Bacik1-8/+1
This uses btrfs_header_nritems, which I will be moving out of ctree.h. In order to avoid needing to include the relevant header in ctree.h, simply move this helper function into ctree.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ rename parameters ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move free space cachep's out of ctree.hJosef Bacik1-2/+0
This is local to the free-space-cache.c code, remove it from ctree.h and inode.c, create new init/exit functions for the cachep, and move it locally to free-space-cache.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_path_cachep out of ctree.hJosef Bacik1-1/+2
This is local to the ctree code, remove it from ctree.h and inode.c, create new init/exit functions for the cachep, and move it locally to ctree.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move trans_handle_cachep out of ctree.hJosef Bacik1-1/+0
This is local to the transaction code, remove it from ctree.h and inode.c, create new helpers in the transaction to handle the init work and move the cachep locally to transaction.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move flush related definitions to space-info.hJosef Bacik1-59/+0
This code is used in space-info.c, move the definitions to space-info.h. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move discard stat defs to free-space-cache.hJosef Bacik1-9/+0
These definitions are used for discard statistics, move them out of ctree.h and put them in free-space-cache.h. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move BTRFS_MAX_MIRRORS into scrub.cJosef Bacik1-11/+0
This is only used locally in scrub.c, move it out of ctree.h into scrub.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move maximum limits to btrfs_tree.hJosef Bacik1-13/+0
We have maximum link and name length limits, move these to btrfs_tree.h as they're on disk limitations. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs on-disk definitions out of ctree.hJosef Bacik1-214/+1
The bulk of our on-disk definitions exist in btrfs_tree.h, which user space can use. Keep things consistent and move the rest of the on disk definitions out of ctree.h into btrfs_tree.h. Note I did have to update all u8's to __u8, but otherwise this is a strict copy and paste. Most of the definitions are mainly for internal use and are not guaranteed stable public API and may change as we need. Compilation failures by user applications can happen. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat comments, style fixups ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove unused BTRFS_IOPRIO_READAJosef Bacik1-3/+0
The last user of this definition was removed in patch f26c92386028 ("btrfs: remove reada infrastructure") so we can remove this definition. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove unused BTRFS_TOTAL_BYTES_PINNED_BATCHJosef Bacik1-8/+0
This hasn't been used since 138a12d86574 ("btrfs: rip out btrfs_space_info::total_bytes_pinned") so it is safe to remove. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove unused set/clear_pending_info helpersJosef Bacik1-24/+0
The last users of these helpers were removed in 5297199a8bca ("btrfs: remove inode number cache feature") so delete these helpers. The point was for mount options that were applicable after transaction commit so they could not be applied immediately. We don't have such options anymore and if we do the patch can be reverted. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-11-07btrfs: don't print stack trace when transaction is aborted due to ENOMEMDavid Sterba1-4/+7
Add ENOMEM among the error codes that don't print stack trace on transaction abort. We've got several reports from syzbot that detects stacks as errors but caused by limiting memory. As this is an artificial condition we don't need to know where exactly the error happens, the abort and error cleanup will continue like e.g. for EIO. As the transaction aborts code needs to be inline in a lot of code, the implementation cases about minimal bloat. The error codes are in a separate function and the WARN uses the condition directly. This increases the code size by 571 bytes on release build. Alternatives considered: add -ENOMEM among the errors, this increases size by 2340 bytes, various attempts to combine the WARN and helper calls, increase by 700 or more bytes. Example syzbot reports (error -12): - https://syzkaller.appspot.com/bug?extid=5244d35be7f589cf093e - https://syzkaller.appspot.com/bug?extid=9c37714c07194d816417 Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-31btrfs: fix lost file sync on direct IO write with nowait and dsync iocbFilipe Manana1-1/+4
When doing a direct IO write using a iocb with nowait and dsync set, we end up not syncing the file once the write completes. This is because we tell iomap to not call generic_write_sync(), which would result in calling btrfs_sync_file(), in order to avoid a deadlock since iomap can call it while we are holding the inode's lock and btrfs_sync_file() needs to acquire the inode's lock. The deadlock happens only if the write happens synchronously, when iomap_dio_rw() calls iomap_dio_complete() before it returns. Instead we do the sync ourselves at btrfs_do_write_iter(). For a nowait write however we can end up not doing the sync ourselves at at btrfs_do_write_iter() because the write could have been queued, and therefore we get -EIOCBQUEUED returned from iomap in such case. That makes us skip the sync call at btrfs_do_write_iter(), as we don't do it for any error returned from btrfs_direct_write(). We can't simply do the call even if -EIOCBQUEUED is returned, since that would block the task waiting for IO, both for the data since there are bios still in progress as well as potentially blocking when joining a log transaction and when syncing the log (writing log trees, super blocks, etc). So let iomap do the sync call itself and in order to avoid deadlocks for the case of synchronous writes (without nowait), use __iomap_dio_rw() and have ourselves call iomap_dio_complete() after unlocking the inode. A test case will later be sent for fstests, after this is fixed in Linus' tree. Fixes: 51bd9563b678 ("btrfs: fix deadlock due to page faults during direct IO reads and writes") Reported-by: Марк Коренберг <socketpair@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAEmTpZGRKbzc16fWPvxbr6AfFsQoLmz-Lcg-7OgJOZDboJ+SGQ@mail.gmail.com/ CC: stable@vger.kernel.org # 6.0+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: move btrfs_drop_extent_cache() to extent_map.cFilipe Manana1-2/+0
The function btrfs_drop_extent_cache() doesn't really belong at file.c because what it does is drop a range of extent maps for a file range. It directly allocates and manipulates extent maps, by dropping, splitting and replacing them in an extent map tree, so it should be located at extent_map.c, where all manipulations of an extent map tree and its extent maps are supposed to be done. So move it out of file.c and into extent_map.c. Additionally do the following changes: 1) Rename it into btrfs_drop_extent_map_range(), as this makes it more clear about what it does. The term "cache" is a bit confusing as it's not widely used, "extent maps" or "extent mapping" is much more common; 2) Change its 'skip_pinned' argument from int to bool; 3) Turn several of its local variables from int to bool, since they are used as booleans; 4) Move the declaration of some variables out of the function's main scope and into the scopes where they are used; 5) Remove pointless assignment of false to 'modified' early in the while loop, as later that variable is set and it's not used before that second assignment; 6) Remove checks for NULL before calling free_extent_map(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: remove stale prototype of btrfs_write_inodeJeff Layton1-1/+0
This function no longer exists, was removed in 3c4276936f6f ("Btrfs: fix btrfs_write_inode vs delayed iput deadlock"). Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: make btrfs_check_nocow_lock nowait compatibleJosef Bacik1-1/+1
Now all the helpers that btrfs_check_nocow_lock uses handle nowait, add a nowait flag to btrfs_check_nocow_lock so it can be used by the write path. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Stefan Roesch <shr@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: make can_nocow_extent nowait compatibleJosef Bacik1-2/+3
If we have NOWAIT specified on our IOCB and we're writing into a PREALLOC or NOCOW extent then we need to be able to tell can_nocow_extent that we don't want to wait on any locks or metadata IO. Fix can_nocow_extent to allow for NOWAIT. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Stefan Roesch <shr@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: implement a nowait option for tree searchesJosef Bacik1-0/+2
For NOWAIT IOCBs we'll need a way to tell search to not wait on locks or anything. Accomplish this by adding a path->nowait flag that will use trylocks and skip reading of metadata, returning -EAGAIN in either of these cases. For now we only need this for reads, so only the read side is handled. Add an ASSERT() to catch anybody trying to use this for writes so they know they'll have to implement the write side. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Stefan Roesch <shr@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move the fs_info related helpers closer to fs_info in ctree.hJosef Bacik1-60/+63
This is purely cosmetic, to make it straightforward to copy and paste the definition and helpers from ctree.h into fs.h. These are helpers that act directly on the fs_info, and were scattered throughout ctree.h. Move them directly below the fs_info definition to make it easier to move them later. This includes the exclop prototypes, which shares an enum that's used in struct btrfs_fs_info as well. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_csum_ptr to inode.cJosef Bacik1-8/+0
This helper is only used in inode.c, move it locally to that file instead of defining it in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move fs_info forward declarations to the top of ctree.hJosef Bacik1-7/+5
In order to make it more straightforward to move the fs_info struct and it's related structures, move the struct declarations to the top of ctree.h. This will make it easier to clean up after the fact. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_swapfile_pin into volumes.hJosef Bacik1-25/+0
This isn't a great spot for this, but one of the swapfile helper functions is in volumes.c, so move the struct to volumes.h. In the future when we have better separation of code there will be a more natural spot for this. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_pinned_by_swapfile prototype into volumes.hJosef Bacik1-2/+0
This is defined in volumes.c, move the prototype into volumes.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_init_async_reclaim_work prototype to space-info.hJosef Bacik1-2/+0
The code for this helper is in space-info.c, move the prototype to space-info.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_full_stripe_locks_tree into block-group.hJosef Bacik1-14/+0
This is actually embedded in struct btrfs_block_group, so move this definition to block-group.h, and then open-code the init of the tree where we init the rest of the block group instead of using a helper. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: move btrfs_caching_type to block-group.hJosef Bacik1-7/+0
This is a block group related definition, move it into block-group.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: remove btrfs_bit_radix_cachep declarationGaosheng Cui1-1/+0
btrfs_bit_radix_cachep has been removed since commit 45c06543afe2 ("Btrfs: remove unused btrfs_bit_radix slab"), so remove it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: skip subtree scan if it's too high to avoid low stall in ↵Qu Wenruo1-0/+1
btrfs_commit_transaction() Btrfs qgroup has a long history of bringing performance penalty in btrfs_commit_transaction(). Although we tried our best to migrate such impact, there is still an unsolved call site, btrfs_drop_snapshot(). This function will find the highest shared tree block and modify its extent ownership to do a subvolume/snapshot dropping. Such change will affect the whole subtree, and cause tons of qgroup dirty extents and stall btrfs_commit_transaction(). To avoid such problem, here we introduce a new sysfs interface, /sys/fs/btrfs/<uuid>/qgroups/drop_subptree_threshold, to determine at whether and at which level we should skip qgroup accounting for subtree dropping. The default value is BTRFS_MAX_LEVEL, thus every subtree drop will go through qgroup accounting, to ensure qgroup numbers are kept as consistent as possible. While for performance sensitive cases, add a way to change the values to more reasonable values like 3, to make any subtree, which is at or higher than level 3, to mark qgroup inconsistent and skip the accounting. The cost is obvious, the qgroup number is no longer consistent, but at least performance is more reasonable, and users have the control. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: make fiemap more efficient and accurate reporting extent sharednessFilipe Manana1-2/+2
The current fiemap implementation does not scale very well with the number of extents a file has. This is both because the main algorithm to find out the extents has a high algorithmic complexity and because for each extent we have to check if it's shared. This second part, checking if an extent is shared, is significantly improved by the two previous patches in this patchset, while the first part is improved by this specific patch. Every now and then we get reports from users mentioning fiemap is too slow or even unusable for files with a very large number of extents, such as the two recent reports referred to by the Link tags at the bottom of this change log. To understand why the part of finding which extents a file has is very inefficient, consider the example of doing a full ranged fiemap against a file that has over 100K extents (normal for example for a file with more than 10G of data and using compression, which limits the extent size to 128K). When we enter fiemap at extent_fiemap(), the following happens: 1) Before entering the main loop, we call get_extent_skip_holes() to get the first extent map. This leads us to btrfs_get_extent_fiemap(), which in turn calls btrfs_get_extent(), to find the first extent map that covers the file range [0, LLONG_MAX). btrfs_get_extent() will first search the inode's extent map tree, to see if we have an extent map there that covers the range. If it does not find one, then it will search the inode's subvolume b+tree for a fitting file extent item. After finding the file extent item, it will allocate an extent map, fill it in with information extracted from the file extent item, and add it to the inode's extent map tree (which requires a search for insertion in the tree). 2) Then we enter the main loop at extent_fiemap(), emit the details of the extent, and call again get_extent_skip_holes(), with a start offset matching the end of the extent map we previously processed. We end up at btrfs_get_extent() again, will search the extent map tree and then search the subvolume b+tree for a file extent item if we could not find an extent map in the extent tree. We allocate an extent map, fill it in with the details in the file extent item, and then insert it into the extent map tree (yet another search in this tree). 3) The second step is repeated over and over, until we have processed the whole file range. Each iteration ends at btrfs_get_extent(), which does a red black tree search on the extent map tree, then searches the subvolume b+tree, allocates an extent map and then does another search in the extent map tree in order to insert the extent map. In the best scenario we have all the extent maps already in the extent tree, and so for each extent we do a single search on a red black tree, so we have a complexity of O(n log n). In the worst scenario we don't have any extent map already loaded in the extent map tree, or have very few already there. In this case the complexity is much higher since we do: - A red black tree search on the extent map tree, which has O(log n) complexity, initially very fast since the tree is empty or very small, but as we end up allocating extent maps and adding them to the tree when we don't find them there, each subsequent search on the tree gets slower, since it's getting bigger and bigger after each iteration. - A search on the subvolume b+tree, also O(log n) complexity, but it has items for all inodes in the subvolume, not just items for our inode. Plus on a filesystem with concurrent operations on other inodes, we can block doing the search due to lock contention on b+tree nodes/leaves. - Allocate an extent map - this can block, and can also fail if we are under serious memory pressure. - Do another search on the extent maps red black tree, with the goal of inserting the extent map we just allocated. Again, after every iteration this tree is getting bigger by 1 element, so after many iterations the searches are slower and slower. - We will not need the allocated extent map anymore, so it's pointless to add it to the extent map tree. It's just wasting time and memory. In short we end up searching the extent map tree multiple times, on a tree that is growing bigger and bigger after each iteration. And besides that we visit the same leaf of the subvolume b+tree many times, since a leaf with the default size of 16K can easily have more than 200 file extent items. This is very inefficient overall. This patch changes the algorithm to instead iterate over the subvolume b+tree, visiting each leaf only once, and only searching in the extent map tree for file ranges that have holes or prealloc extents, in order to figure out if we have delalloc there. It will never allocate an extent map and add it to the extent map tree. This is very similar to what was previously done for the lseek's hole and data seeking features. Also, the current implementation relying on extent maps for figuring out which extents we have is not correct. This is because extent maps can be merged even if they represent different extents - we do this to minimize memory utilization and keep extent map trees smaller. For example if we have two extents that are contiguous on disk, once we load the two extent maps, they get merged into a single one - however if only one of the extents is shared, we end up reporting both as shared or both as not shared, which is incorrect. This reproducer triggers that bug: $ cat fiemap-bug.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT # Create a file with two 256K extents. # Since there is no other write activity, they will be contiguous, # and their extent maps merged, despite having two distinct extents. xfs_io -f -c "pwrite -S 0xab 0 256K" \ -c "fsync" \ -c "pwrite -S 0xcd 256K 256K" \ -c "fsync" \ $MNT/foo # Now clone only the second extent into another file. xfs_io -f -c "reflink $MNT/foo 256K 0 256K" $MNT/bar # Filefrag will report a single 512K extent, and say it's not shared. echo filefrag -v $MNT/foo umount $MNT Running the reproducer: $ ./fiemap-bug.sh wrote 262144/262144 bytes at offset 0 256 KiB, 64 ops; 0.0038 sec (65.479 MiB/sec and 16762.7030 ops/sec) wrote 262144/262144 bytes at offset 262144 256 KiB, 64 ops; 0.0040 sec (61.125 MiB/sec and 15647.9218 ops/sec) linked 262144/262144 bytes at offset 0 256 KiB, 1 ops; 0.0002 sec (1.034 GiB/sec and 4237.2881 ops/sec) Filesystem type is: 9123683e File size of /mnt/sdj/foo is 524288 (128 blocks of 4096 bytes) ext: logical_offset: physical_offset: length: expected: flags: 0: 0.. 127: 3328.. 3455: 128: last,eof /mnt/sdj/foo: 1 extent found We end up reporting that we have a single 512K that is not shared, however we have two 256K extents, and the second one is shared. Changing the reproducer to clone instead the first extent into file 'bar', makes us report a single 512K extent that is shared, which is algo incorrect since we have two 256K extents and only the first one is shared. This patch is part of a larger patchset that is comprised of the following patches: btrfs: allow hole and data seeking to be interruptible btrfs: make hole and data seeking a lot more efficient btrfs: remove check for impossible block start for an extent map at fiemap btrfs: remove zero length check when entering fiemap btrfs: properly flush delalloc when entering fiemap btrfs: allow fiemap to be interruptible btrfs: rename btrfs_check_shared() to a more descriptive name btrfs: speedup checking for extent sharedness during fiemap btrfs: skip unnecessary extent buffer sharedness checks during fiemap btrfs: make fiemap more efficient and accurate reporting extent sharedness The patchset was tested on a machine running a non-debug kernel (Debian's default config) and compared the tests below on a branch without the patchset versus the same branch with the whole patchset applied. The following test for a large compressed file without holes: $ cat fiemap-perf-test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount -o compress=lzo $DEV $MNT # 40G gives 327680 128K file extents (due to compression). xfs_io -f -c "pwrite -S 0xab -b 1M 0 20G" $MNT/foobar umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT Before patchset: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 3597 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 2107 milliseconds (metadata cached) After patchset: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1214 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 684 milliseconds (metadata cached) That's a speedup of about 3x for both cases (no metadata cached and all metadata cached). The test provided by Pavel (first Link tag at the bottom), which uses files with a large number of holes, was also used to measure the gains, and it consists on a small C program and a shell script to invoke it. The C program is the following: $ cat pavels-test.c #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/ioctl.h> #include <linux/fs.h> #include <linux/fiemap.h> #define FILE_INTERVAL (1<<13) /* 8Kb */ long long interval(struct timeval t1, struct timeval t2) { long long val = 0; val += (t2.tv_usec - t1.tv_usec); val += (t2.tv_sec - t1.tv_sec) * 1000 * 1000; return val; } int main(int argc, char **argv) { struct fiemap fiemap = {}; struct timeval t1, t2; char data = 'a'; struct stat st; int fd, off, file_size = FILE_INTERVAL; if (argc != 3 && argc != 2) { printf("usage: %s <path> [size]\n", argv[0]); return 1; } if (argc == 3) file_size = atoi(argv[2]); if (file_size < FILE_INTERVAL) file_size = FILE_INTERVAL; file_size -= file_size % FILE_INTERVAL; fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0644); if (fd < 0) { perror("open"); return 1; } for (off = 0; off < file_size; off += FILE_INTERVAL) { if (pwrite(fd, &data, 1, off) != 1) { perror("pwrite"); close(fd); return 1; } } if (ftruncate(fd, file_size)) { perror("ftruncate"); close(fd); return 1; } if (fstat(fd, &st) < 0) { perror("fstat"); close(fd); return 1; } printf("size: %ld\n", st.st_size); printf("actual size: %ld\n", st.st_blocks * 512); fiemap.fm_length = FIEMAP_MAX_OFFSET; gettimeofday(&t1, NULL); if (ioctl(fd, FS_IOC_FIEMAP, &fiemap) < 0) { perror("fiemap"); close(fd); return 1; } gettimeofday(&t2, NULL); printf("fiemap: fm_mapped_extents = %d\n", fiemap.fm_mapped_extents); printf("time = %lld us\n", interval(t1, t2)); close(fd); return 0; } $ gcc -o pavels_test pavels_test.c And the wrapper shell script: $ cat fiemap-pavels-test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f -O no-holes $DEV mount $DEV $MNT echo echo "*********** 256M ***********" echo ./pavels-test $MNT/testfile $((1 << 28)) echo ./pavels-test $MNT/testfile $((1 << 28)) echo echo "*********** 512M ***********" echo ./pavels-test $MNT/testfile $((1 << 29)) echo ./pavels-test $MNT/testfile $((1 << 29)) echo echo "*********** 1G ***********" echo ./pavels-test $MNT/testfile $((1 << 30)) echo ./pavels-test $MNT/testfile $((1 << 30)) umount $MNT Running his reproducer before applying the patchset: *********** 256M *********** size: 268435456 actual size: 134217728 fiemap: fm_mapped_extents = 32768 time = 4003133 us size: 268435456 actual size: 134217728 fiemap: fm_mapped_extents = 32768 time = 4895330 us *********** 512M *********** size: 536870912 actual size: 268435456 fiemap: fm_mapped_extents = 65536 time = 30123675 us size: 536870912 actual size: 268435456 fiemap: fm_mapped_extents = 65536 time = 33450934 us *********** 1G *********** size: 1073741824 actual size: 536870912 fiemap: fm_mapped_extents = 131072 time = 224924074 us size: 1073741824 actual size: 536870912 fiemap: fm_mapped_extents = 131072 time = 217239242 us Running it after applying the patchset: *********** 256M *********** size: 268435456 actual size: 134217728 fiemap: fm_mapped_extents = 32768 time = 29475 us size: 268435456 actual size: 134217728 fiemap: fm_mapped_extents = 32768 time = 29307 us *********** 512M *********** size: 536870912 actual size: 268435456 fiemap: fm_mapped_extents = 65536 time = 58996 us size: 536870912 actual size: 268435456 fiemap: fm_mapped_extents = 65536 time = 59115 us *********** 1G *********** size: 1073741824 actual size: 536870912 fiemap: fm_mapped_extents = 116251 time = 124141 us size: 1073741824 actual size: 536870912 fiemap: fm_mapped_extents = 131072 time = 119387 us The speedup is massive, both on the first fiemap call and on the second one as well, as his test creates files with many holes and small extents (every extent follows a hole and precedes another hole). For the 256M file we go from 4 seconds down to 29 milliseconds in the first run, and then from 4.9 seconds down to 29 milliseconds again in the second run, a speedup of 138x and 169x, respectively. For the 512M file we go from 30.1 seconds down to 59 milliseconds in the first run, and then from 33.5 seconds down to 59 milliseconds again in the second run, a speedup of 510x and 568x, respectively. For the 1G file, we go from 225 seconds down to 124 milliseconds in the first run, and then from 217 seconds down to 119 milliseconds in the second run, a speedup of 1815x and 1824x, respectively. Reported-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Link: https://lore.kernel.org/linux-btrfs/21dd32c6-f1f9-f44a-466a-e18fdc6788a7@virtuozzo.com/ Reported-by: Dominique MARTINET <dominique.martinet@atmark-techno.com> Link: https://lore.kernel.org/linux-btrfs/Ysace25wh5BbLd5f@atmark-techno.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: speedup checking for extent sharedness during fiemapFilipe Manana1-0/+18
One of the most expensive tasks performed during fiemap is to check if an extent is shared. This task has two major steps: 1) Check if the data extent is shared. This implies checking the extent item in the extent tree, checking delayed references, etc. If we find the data extent is directly shared, we terminate immediately; 2) If the data extent is not directly shared (its extent item has a refcount of 1), then it may be shared if we have snapshots that share subtrees of the inode's subvolume b+tree. So we check if the leaf containing the file extent item is shared, then its parent node, then the parent node of the parent node, etc, until we reach the root node or we find one of them is shared - in which case we stop immediately. During fiemap we process the extents of a file from left to right, from file offset 0 to EOF. This means that we iterate b+tree leaves from left to right, and has the implication that we keep repeating that second step above several times for the same b+tree path of the inode's subvolume b+tree. For example, if we have two file extent items in leaf X, and the path to leaf X is A -> B -> C -> X, then when we try to determine if the data extent referenced by the first extent item is shared, we check if the data extent is shared - if it's not, then we check if leaf X is shared, if not, then we check if node C is shared, if not, then check if node B is shared, if not than check if node A is shared. When we move to the next file extent item, after determining the data extent is not shared, we repeat the checks for X, C, B and A - doing all the expensive searches in the extent tree, delayed refs, etc. If we have thousands of tile extents, then we keep repeating the sharedness checks for the same paths over and over. On a file that has no shared extents or only a small portion, it's easy to see that this scales terribly with the number of extents in the file and the sizes of the extent and subvolume b+trees. This change eliminates the repeated sharedness check on extent buffers by caching the results of the last path used. The results can be used as long as no snapshots were created since they were cached (for not shared extent buffers) or no roots were dropped since they were cached (for shared extent buffers). This greatly reduces the time spent by fiemap for files with thousands of extents and/or large extent and subvolume b+trees. Example performance test: $ cat fiemap-perf-test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount -o compress=lzo $DEV $MNT # 40G gives 327680 128K file extents (due to compression). xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata not cached)" start=$(date +%s%N) filefrag $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "fiemap took $dur milliseconds (metadata cached)" umount $MNT Before this patch: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 3597 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 2107 milliseconds (metadata cached) After this patch: $ ./fiemap-perf-test.sh (...) /mnt/sdi/foobar: 327680 extents found fiemap took 1646 milliseconds (metadata not cached) /mnt/sdi/foobar: 327680 extents found fiemap took 698 milliseconds (metadata cached) That's about 2.2x faster when no metadata is cached, and about 3x faster when all metadata is cached. On a real filesystem with many other files, data, directories, etc, the b+trees will be 2 or 3 levels higher, therefore this optimization will have a higher impact. Several reports of a slow fiemap show up often, the two Link tags below refer to two recent reports of such slowness. This patch, together with the next ones in the series, is meant to address that. Link: https://lore.kernel.org/linux-btrfs/21dd32c6-f1f9-f44a-466a-e18fdc6788a7@virtuozzo.com/ Link: https://lore.kernel.org/linux-btrfs/Ysace25wh5BbLd5f@atmark-techno.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: separate BLOCK_GROUP_TREE compat RO flag from EXTENT_TREE_V2Qu Wenruo1-1/+2
The problem of long mount time caused by block group item search is already known for some time, and the solution of block group tree has been proposed. There is really no need to bound this feature into extent tree v2, just introduce compat RO flag, BLOCK_GROUP_TREE, to correctly solve the problem. All the code handling block group root is already in the upstream kernel, thus this patch really only needs to introduce the new compat RO flag. This patch introduces one extra artificial limitation on block group tree feature, that free space cache v2 and no-holes feature must be enabled to use this new compat RO feature. This artificial requirement is mostly to reduce the test combinations, and can be a guideline for future features, to mostly rely on the latest default features. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: don't save block group root into super blockQu Wenruo1-25/+2
The extent tree v2 needs a new root for storing all block group items, the whole feature hasn't been finished yet so we can afford to do some changes. My initial proposal years ago just added a new tree rootid, and load it from tree root, just like what we did for quota/free space tree/uuid/extent roots. But the extent tree v2 patches introduced a completely new way to store block group tree root into super block which is arguably wasteful. Currently there are only 3 trees stored in super blocks, and they all have their valid reasons: - Chunk root Needed for bootstrap. - Tree root Really the entry point for all trees. - Log root This is special as log root has to be updated out of existing transaction mechanism. There is not even any reason to put block group root into super blocks, the block group tree is updated at the same time as the old extent tree, no need for extra bootstrap/out-of-transaction update. So just move block group root from super block into tree root. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: dump all space infos if we abort transaction due to ENOSPCQu Wenruo1-2/+4
We have hit some transaction abort due to -ENOSPC internally. Normally we should always reserve enough space for metadata for every transaction, thus hitting -ENOSPC should really indicate some cases we didn't expect. But unfortunately current error reporting will only give a kernel warning and stack trace, not really helpful to debug what's causing the problem. And mount option debug_enospc can only help when user can reproduce the problem, but under most cases, such transaction abort by -ENOSPC is really hard to reproduce. So this patch will dump all space infos (data, metadata, system) when we abort the first transaction with -ENOSPC. This should at least provide some clue to us. The example of a dump would look like this: BTRFS: Transaction aborted (error -28) WARNING: CPU: 8 PID: 3366 at fs/btrfs/transaction.c:2137 btrfs_commit_transaction+0xf81/0xfb0 [btrfs] <call trace skipped> ---[ end trace 0000000000000000 ]--- BTRFS info (device dm-1: state A): dumping space info: BTRFS info (device dm-1: state A): space_info DATA has 6791168 free, is not full BTRFS info (device dm-1: state A): space_info total=8388608, used=1597440, pinned=0, reserved=0, may_use=0, readonly=0 zone_unusable=0 BTRFS info (device dm-1: state A): space_info METADATA has 257114112 free, is not full BTRFS info (device dm-1: state A): space_info total=268435456, used=131072, pinned=180224, reserved=65536, may_use=10878976, readonly=65536 zone_unusable=0 BTRFS info (device dm-1: state A): space_info SYSTEM has 8372224 free, is not full BTRFS info (device dm-1: state A): space_info total=8388608, used=16384, pinned=0, reserved=0, may_use=0, readonly=0 zone_unusable=0 BTRFS info (device dm-1: state A): global_block_rsv: size 3670016 reserved 3670016 BTRFS info (device dm-1: state A): trans_block_rsv: size 0 reserved 0 BTRFS info (device dm-1: state A): chunk_block_rsv: size 0 reserved 0 BTRFS info (device dm-1: state A): delayed_block_rsv: size 4063232 reserved 4063232 BTRFS info (device dm-1: state A): delayed_refs_rsv: size 3145728 reserved 3145728 BTRFS: error (device dm-1: state A) in btrfs_commit_transaction:2137: errno=-28 No space left BTRFS info (device dm-1: state EA): forced readonly Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: don't take a bio_counter reference for cloned biosChristoph Hellwig1-1/+0
Stop grabbing an extra bio_counter reference for each clone bio in a mirrored write and instead just release the one original reference in btrfs_end_bioc once all the bios for a single btrfs_bio have completed instead of at the end of btrfs_submit_bio once all bios have been submitted. This means the reference is now carried by the "upper" btrfs_bio only instead of each lower bio. Also remove the now unused btrfs_bio_counter_inc_noblocked helper. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: sysfs: show discard stats and tunables in non-debug buildDavid Sterba1-1/+1
When discard=async was introduced there were also sysfs knobs and stats for debugging and tuning, hidden under CONFIG_BTRFS_DEBUG. The defaults have been set and so far seem to satisfy all users on a range of workloads. As there are not only tunables (like iops or kbps) but also stats tracking amount of discardable bytes, that should be available when the async discard is on (otherwise it's not). The stats are moved from the per-fs debug directory, so it's under /sys/fs/btrfs/FSID/discard - discard_bitmap_bytes - amount of discarded bytes from data tracked as bitmaps - discard_extent_bytes - dtto but as extents - discard_bytes_saved - - discardable_bytes - amount of bytes that can be discarded - discardable_extents - number of extents to be discarded - iops_limit - tunable limit of number of discard IOs to be issued - kbps_limit - tunable limit of kilobytes per second issued as discard IO - max_discard_size - tunable limit for size of one IO discard request Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: send: add support for fs-verityBoris Burkov1-0/+7
Preserve the fs-verity status of a btrfs file across send/recv. There is no facility for installing the Merkle tree contents directly on the receiving filesystem, so we package up the parameters used to enable verity found in the verity descriptor. This gives the receive side enough information to properly enable verity again. Note that this means that receive will have to re-compute the whole Merkle tree, similar to how compression worked before encoded_write. Since the file becomes read-only after verity is enabled, it is important that verity is added to the send stream after any file writes. Therefore, when we process a verity item, merely note that it happened, then actually create the command in the send stream during 'finish_inode_if_needed'. This also creates V3 of the send stream format, without any format changes besides adding the new commands and attributes. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: rename btrfs_insert_file_extent() to btrfs_insert_hole_extent()Omar Sandoval1-6/+3
btrfs_insert_file_extent() is only ever used to insert holes, so rename it and remove the redundant parameters. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: add lockdep annotations for the ordered extents wait eventIoannis Angelakopoulos1-0/+1
This wait event is very similar to the pending ordered wait event in the sense that it occurs in a different context than the condition signaling for the event. The signaling occurs in btrfs_remove_ordered_extent() while the wait event is implemented in btrfs_start_ordered_extent() in fs/btrfs/ordered-data.c However, in this case a thread must not acquire the lockdep map for the ordered extents wait event when the ordered extent is related to a free space inode. That is because lockdep creates dependencies between locks acquired both in execution paths related to normal inodes and paths related to free space inodes, thus leading to false positives. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Ioannis Angelakopoulos <iangelak@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: add lockdep annotations for pending_ordered wait eventIoannis Angelakopoulos1-0/+1
In contrast to the num_writers and num_extwriters wait events, the condition for the pending ordered wait event is signaled in a different context from the wait event itself. The condition signaling occurs in btrfs_remove_ordered_extent() in fs/btrfs/ordered-data.c while the wait event is implemented in btrfs_commit_transaction() in fs/btrfs/transaction.c Thus the thread signaling the condition has to acquire the lockdep map as a reader at the start of btrfs_remove_ordered_extent() and release it after it has signaled the condition. In this case some dependencies might be left out due to the placement of the annotation, but it is better than no annotation at all. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Ioannis Angelakopoulos <iangelak@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: add lockdep annotations for transaction states wait eventsIoannis Angelakopoulos1-0/+32
Add lockdep annotations for the transaction states that have wait events; 1) TRANS_STATE_COMMIT_START 2) TRANS_STATE_UNBLOCKED 3) TRANS_STATE_SUPER_COMMITTED 4) TRANS_STATE_COMPLETED The new macros introduced here to annotate the transaction states wait events have the same effect as the generic lockdep annotation macros. With the exception of the lockdep annotation for TRANS_STATE_COMMIT_START the transaction thread has to acquire the lockdep maps for the transaction states as reader after the lockdep map for num_writers is released so that lockdep does not complain. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Ioannis Angelakopoulos <iangelak@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>