aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/btrfs_inode.h
AgeCommit message (Collapse)AuthorFilesLines
2023-08-21btrfs: reduce the number of arguments to btrfs_run_delalloc_rangeChristoph Hellwig1-2/+1
Instead of a separate page_started argument that tells the callers that btrfs_run_delalloc_range already started writeback by itself, overload the return value with a positive 1 in additio to 0 and a negative error code to indicate that is has already started writeback, and remove the nr_written argument as that caller can calculate it directly based on the range, and in fact already does so for the case where writeback wasn't started yet. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-21btrfs: remove btrfs_writepage_endio_finish_orderedChristoph Hellwig1-3/+0
btrfs_writepage_endio_finish_ordered is a small wrapper around btrfs_mark_ordered_io_finished that just changs the argument passing slightly, and adds a tracepoint. Move the tracpoint to btrfs_mark_ordered_io_finished, which means it now also covers the error handling in btrfs_cleanup_ordered_extent and switch all callers to just call btrfs_mark_ordered_io_finished directly. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: tracepoints: also show actual number of the outstanding extentsNaohiro Aota1-1/+1
The btrfs_inode_mod_outstanding_extents trace event only shows the modified number to the number of outstanding extents. It would be helpful if we can see the resulting extent number as well. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: defer splitting of ordered extents until I/O completionChristoph Hellwig1-2/+0
The btrfs zoned completion code currently needs an ordered_extent and extent_map per bio so that it can account for the non-predictable write location from Zone Append. To archive that it currently splits the ordered_extent and extent_map at I/O submission time, and then records the actual physical address in the ->physical field of the ordered_extent. This patch instead switches to record the "original" physical address that the btrfs allocator assigned in spare space in the btrfs_bio, and then rewrites the logical address in the btrfs_ordered_sum structure at I/O completion time. This allows the ordered extent completion handler to simply walk the list of ordered csums and split the ordered extent as needed. This removes an extra ordered extent and extent_map lookup and manipulation during the I/O submission path, and instead batches it in the I/O completion path where we need to touch these anyway. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: move split_flags/combine_flags helpers to inode-item.hJosef Bacik1-16/+0
These are more related to the inode item flags on disk than the in-memory btrfs_inode, move the helpers to inode-item.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: determine synchronous writers from bio or writeback controlChristoph Hellwig1-3/+0
The writeback_control structure already passes down the information about a writeback being synchronous from the core VM code, and thus information is propagated into the bio REQ_SYNC flag through the wbc_to_write_flags helper. Use that information to decide if checksums calculation is offloaded to a workqueue instead of btrfs_inode::sync_writers field that not only bloats the inode but also has too wide scope, being inode wide instead of limited to the actual writeback request. The sync writes were set in: - btrfs_do_write_iter - regular IO, sync status is set - start_ordered_ops - ordered write start, writeback with WB_SYNC_ALL mode - btrfs_write_marked_extents - write marked extents, writeback with WB_SYNC_ALL mode Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: avoid iterating over all indexes when logging directoryFilipe Manana1-5/+27
When logging a directory, after copying all directory index items from the subvolume tree to the log tree, we iterate over the subvolume tree to find all dir index items that are located in leaves COWed (or created) in the current transaction. If we keep logging a directory several times during the same transaction, we end up iterating over the same dir index items everytime we log the directory, wasting time and adding extra lock contention on the subvolume tree. So just keep track of the last logged dir index offset in order to start the search for that index (+1) the next time the directory is logged, as dir index values (key offsets) come from a monotonically increasing counter. The following test measures the difference before and after this change: $ cat test.sh #!/bin/bash DEV=/dev/nullb0 MNT=/mnt/nullb0 umount $DEV &> /dev/null mkfs.btrfs -f $DEV mount -o ssd $DEV $MNT # Time values in milliseconds. declare -a fsync_times # Total number of files added to the test directory. num_files=1000000 # Fsync directory after every N files are added. fsync_period=100 mkdir $MNT/testdir fsync_total_time=0 for ((i = 1; i <= $num_files; i++)); do echo -n > $MNT/testdir/file_$i if [ $((i % fsync_period)) -eq 0 ]; then start=$(date +%s%N) xfs_io -c "fsync" $MNT/testdir end=$(date +%s%N) fsync_total_time=$((fsync_total_time + (end - start))) fsync_times[i]=$(( (end - start) / 1000000 )) echo -n -e "Progress $i / $num_files\r" fi done echo -e "\nHistogram of directory fsync duration in ms:\n" printf '%s\n' "${fsync_times[@]}" | \ perl -MStatistics::Histogram -e '@d = <>; print get_histogram(\@d);' fsync_total_time=$((fsync_total_time / 1000000)) echo -e "\nTotal time spent in fsync: $fsync_total_time ms\n" echo umount $MNT The test was run on a non-debug kernel (Debian's default kernel config) against a 15G null block device. Result before this change: Histogram of directory fsync duration in ms: Count: 10000 Range: 3.000 - 362.000; Mean: 34.556; Median: 31.000; Stddev: 25.751 Percentiles: 90th: 71.000; 95th: 77.000; 99th: 81.000 3.000 - 5.278: 1423 ################################# 5.278 - 8.854: 1173 ########################### 8.854 - 14.467: 591 ############## 14.467 - 23.277: 1025 ####################### 23.277 - 37.105: 1422 ################################# 37.105 - 58.809: 2036 ############################################### 58.809 - 92.876: 2316 ##################################################### 92.876 - 146.346: 6 | 146.346 - 230.271: 6 | 230.271 - 362.000: 2 | Total time spent in fsync: 350527 ms Result after this change: Histogram of directory fsync duration in ms: Count: 10000 Range: 3.000 - 1088.000; Mean: 8.704; Median: 8.000; Stddev: 12.576 Percentiles: 90th: 12.000; 95th: 14.000; 99th: 17.000 3.000 - 6.007: 3222 ################################# 6.007 - 11.276: 5197 ##################################################### 11.276 - 20.506: 1551 ################ 20.506 - 36.674: 24 | 36.674 - 201.552: 1 | 201.552 - 353.841: 4 | 353.841 - 1088.000: 1 | Total time spent in fsync: 92114 ms Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: pass an ordered_extent to btrfs_extract_ordered_extentChristoph Hellwig1-1/+2
To prepare for a new caller that already has the ordered_extent available, change btrfs_extract_ordered_extent to take an argument for it. Add a wrapper for the bio case that still has to do the lookup (for now). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-20Merge tag 'for-6.3-tag' of ↵Linus Torvalds1-19/+3
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The usual mix of performance improvements and new features. The core change is reworking how checksums are processed, with followup cleanups and simplifications. There are two minor changes in block layer and iomap code. Features: - block group allocation class heuristics: - pack files by size (up to 128k, up to 8M, more) to avoid fragmentation in block groups, assuming that file size and life time is correlated, in particular this may help during balance - with tracepoints and extensible in the future Performance: - send: cache directory utimes and only emit the command when necessary - speedup up to 10x - smaller final stream produced (no redundant utimes commands issued) - compatibility not affected - fiemap: skip backref checks for shared leaves - speedup 3x on sample filesystem with all leaves shared (e.g. on snapshots) - micro optimized b-tree key lookup, speedup in metadata operations (sample benchmark: fs_mark +10% of files/sec) Core changes: - change where checksumming is done in the io path: - checksum and read repair does verification at lower layer - cascaded cleanups and simplifications - raid56 refactoring and cleanups Fixes: - sysfs: make sure that a run-time change of a feature is correctly tracked by the feature files - scrub: better reporting of tree block errors Other: - locally enable -Wmaybe-uninitialized after fixing all warnings - misc cleanups, spelling fixes Other code: - block: export bio_split_rw - iomap: remove IOMAP_F_ZONE_APPEND" * tag 'for-6.3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (109 commits) btrfs: make kobj_type structures constant btrfs: remove the bdev argument to btrfs_rmap_block btrfs: don't rely on unchanging ->bi_bdev for zone append remaps btrfs: never return true for reads in btrfs_use_zone_append btrfs: pass a btrfs_bio to btrfs_use_append btrfs: set bbio->file_offset in alloc_new_bio btrfs: use file_offset to limit bios size in calc_bio_boundaries btrfs: do unsigned integer division in the extent buffer binary search loop btrfs: eliminate extra call when doing binary search on extent buffer btrfs: raid56: handle endio in scrub_rbio btrfs: raid56: handle endio in recover_rbio btrfs: raid56: handle endio in rmw_rbio btrfs: raid56: submit the read bios from scrub_assemble_read_bios btrfs: raid56: fold rmw_read_wait_recover into rmw_read_bios btrfs: raid56: fold recover_assemble_read_bios into recover_rbio btrfs: raid56: add a bio_list_put helper btrfs: raid56: wait for I/O completion in submit_read_bios btrfs: raid56: simplify code flow in rmw_rbio btrfs: raid56: simplify error handling and code flow in raid56_parity_write btrfs: replace btrfs_wait_tree_block_writeback by wait_on_extent_buffer_writeback ...
2023-02-15btrfs: remove now spurious bio submission helpersChristoph Hellwig1-3/+0
Call btrfs_submit_bio and btrfs_submit_compressed_read directly from submit_one_bio now that all additional functionality has moved into btrfs_submit_bio. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: handle recording of zoned writes in the storage layerChristoph Hellwig1-0/+1
Move the code that splits the ordered extents and records the physical location for them to the storage layer so that the higher level consumers don't have to care about physical block numbers at all. This will also allow to eventually remove accounting for the zone append write sizes in the upper layer with a little bit more block layer work. Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: open code the submit_bio_start helpersChristoph Hellwig1-4/+0
The submit helpers are now trivial and can be called directly. Note that btree_csum_one_bio has to be moved up in the file a bit to avoid a forward declaration. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: remove the io_failure_record infrastructureChristoph Hellwig1-7/+0
struct io_failure_record and the io_failure_tree tree are unused now, so remove them. This in turn makes struct btrfs_inode smaller by 16 bytes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: remove now unused checksumming helpersChristoph Hellwig1-5/+0
Remove the unused btrfs_verify_data_csum helper, and fold btrfs_check_data_csum into its only caller. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: add a btrfs_data_csum_ok helperChristoph Hellwig1-0/+2
Add a new checksumming helper that wraps btrfs_check_data_csum and does all the checks to if we're dealing with some form of nodatacsum I/O. This helper will be used by the new storage layer checksum validation and repair code. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-19fs: port inode_init_owner() to mnt_idmapChristian Brauner1-1/+1
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-12-05btrfs: pass btrfs_inode to btrfs_add_delayed_iputDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_clear_delalloc_extentDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_split_delalloc_extentDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_set_delalloc_extentDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_merge_delalloc_extentDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_delete_subvolumeDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_check_data_csumDavid Sterba1-3/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_inode_unlockDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_inode_lockDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_submit_dio_repair_bioDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_submit_data_read_bioDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_submit_data_write_bioDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_submit_bio_start_direct_ioDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: pass btrfs_inode to btrfs_submit_bio_startDavid Sterba1-1/+1
The function is for internal interfaces so we should use the btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: simplify btree_submit_bio_start and btrfs_submit_bio_start parametersDavid Sterba1-2/+1
After previous patches the unused parameters can be removed from btree_submit_bio_start and btrfs_submit_bio_start as they don't need to conform to the extent_submit_bio_start_t typedef. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: change how submit bio callback is passed to btrfs_wq_submit_bioDavid Sterba1-0/+5
There's a callback function parameter for btrfs_wq_submit_bio that can be one of: metadata, buffered data, direct io data. The callback abstraction is unnecessary as we have all functions available. Replace the parameter with a command that leads to a direct call in run_one_async_start. The called functions can be then simplified and we can also remove the extent_submit_bio_start_t typedef. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: drop parameter compression_type from btrfs_submit_dio_repair_bioDavid Sterba1-3/+1
Compression and direct io don't work together so the compression parameter can be dropped after previous patch that changed the call to direct. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: change how repair action is passed to btrfs_repair_one_sectorDavid Sterba1-0/+3
There's a function pointer passed to btrfs_repair_one_sector that will submit the right bio for repair. However there are only two callbacks, for buffered and for direct IO. This can be simplified to a bool-based switch and call either function, indirect calls in this case is an unnecessary abstraction. This allows to remove the submit_bio_hook_t typedef. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move inode prototypes to btrfs_inode.hJosef Bacik1-0/+136
I initially wanted to make a new header file for this, but these prototypes do naturally fit into btrfs_inode.h. If we want to extract vfs from pure btrfs code in the future we may need to split this up, but btrfs_inode embeds the vfs_inode, so it makes sense to put the prototypes in this header for now. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_print_data_csum_error into inode.cJosef Bacik1-26/+0
This isn't used outside of inode.c, there's no reason to define it in btrfs_inode.h. Drop the inline and add __cold as it's for errors that are not in any hot path. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: use a runtime flag to indicate an inode is a free space inodeJosef Bacik1-7/+3
We always check the root of an inode as well as it's inode number to determine if it's a free space inode. This is problematic as the helper is in a header file where it doesn't have the fs_info definition. To avoid this and make the check a little cleaner simply add a flag to the runtime_flags to indicate that the inode is a free space inode, set that when we create the inode, and then change the helper to check for this flag. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: open code and remove btrfs_insert_inode_hash helperJosef Bacik1-7/+0
This exists to insert the btree_inode in the super blocks inode hash table. Since it's only used for the btree inode move the code to where we use it in disk-io.c and remove the helper. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: open code and remove btrfs_inode_sectorsize helperJosef Bacik1-5/+0
This is defined in btrfs_inode.h, and dereferences btrfs_root and btrfs_fs_info, both of which aren't defined in btrfs_inode.h. Additionally, in many places we already have root or fs_info, so this helper often makes the code harder to read. So delete the helper and simply open code it in the few places that we use it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26btrfs: convert the io_failure_tree to a plain rb_treeJosef Bacik1-1/+2
We still have this oddity of stashing the io_failure_record in the extent state for the io_failure_tree, which is leftover from when we used to stuff private pointers in extent_io_trees. However this doesn't make a lot of sense for the io failure records, we can simply use a normal rb_tree for this. This will allow us to further simplify the extent_io_tree code by removing the io_failure_rec pointer from the extent state. Convert the io_failure_tree to an rb tree + spinlock in the inode, and then use our rb tree simple helpers to insert and find failed records. This greatly cleans up this code and makes it easier to separate out the extent_io_tree code. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: add optimized btrfs_ino() version for 64 bits systemsFilipe Manana1-0/+15
Currently btrfs_ino() tries to use first the objectid of the inode's location key. This is to avoid truncation of the inode number on 32 bits platforms because the i_ino field of struct inode has the unsigned long type, while the objectid is a 64 bits unsigned type (u64) on every system. This logic was added in commit 33345d01522f81 ("Btrfs: Always use 64bit inode number"). However if we are running on a 64 bits system, we can always directly return the i_ino value from struct inode, which eliminates the need for he special if statement that tests for a location key type of BTRFS_ROOT_ITEM_KEY - in which case i_ino may not have the same value as the objectid in the inode's location objectid, it may have a value of BTRFS_EMPTY_SUBVOL_DIR_OBJECTID, for the case of snapshots of trees with subvolumes/snapshots inside them. So add a special version for 64 bits system that directly returns i_ino of struct inode. This eliminates one branch and reduces the overall code size, since btrfs_ino() is an inline function that is extensively used. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1612028 189180 29032 1830240 1bed60 fs/btrfs/btrfs.ko Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: set the objectid of the btree inode's location keyFilipe Manana1-5/+2
We currently don't use the location key of the btree inode, its content is set to zeroes, as it's a special inode that is not persisted (it has no inode item stored in any btree). At btrfs_ino(), an inline function used extensively in btrfs, we have this special check if the given inode's location objectid is 0, and if it is, we return the value stored in the VFS' inode i_ino field instead (which is BTRFS_BTREE_INODE_OBJECTID for the btree inode). To reduce the code at btrfs_ino(), we can simply set the objectid of the btree inode to the value BTRFS_BTREE_INODE_OBJECTID. This eliminates the need to check for the special case of the objectid being zero, with the side effect of reducing the overall code size and having less code to execute, as btrfs_ino() is an inline function. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: remove the inode cache check at btrfs_is_free_space_inode()Filipe Manana1-2/+1
The inode cache feature was removed in kernel 5.11, and we no longer have any code that reads from or writes to inode caches. We may still mount a filesystem that has inode caches, but they are ignored. Remove the check for an inode cache from btrfs_is_free_space_inode(), since we no longer have code to trigger reads from an inode cache or writes to an inode cache. The check at send.c is still needed, because in case we find a filesystem with an inode cache, we must ignore it. Also leave the checks at tree-checker.c, as they are sanity checks. This eliminates a dead branch and reduces the amount of code since it's in an inline function. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620662 189240 29032 1838934 1c0f56 fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move struct btrfs_dio_private to inode.cChristoph Hellwig1-24/+0
The btrfs_dio_private structure is only used in inode.c, so move the definition there. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove the disk_bytenr in struct btrfs_dio_privateChristoph Hellwig1-1/+0
This field is never used, so remove it. Last use was probably in 23ea8e5a0767 ("Btrfs: load checksum data once when submitting a direct read io"). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27btrfs: export a helper for compression hard checkChung-Chiang Cheng1-0/+11
inode_can_compress will be used outside of inode.c to check the availability of setting compression flag by xattr. This patch moves this function as an internal helper and renames it to btrfs_inode_can_compress. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14btrfs: reset last_reflink_trans after fsyncing inodeFilipe Manana1-0/+30
When an inode has a last_reflink_trans matching the current transaction, we have to take special care when logging its checksums in order to avoid getting checksum items with overlapping ranges in a log tree, which could result in missing checksums after log replay (more on that in the changelogs of commit 40e046acbd2f36 ("Btrfs: fix missing data checksums after replaying a log tree") and commit e289f03ea79bbc ("btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents")). We also need to make sure a full fsync will copy all old file extent items it finds in modified leaves, because they might have been copied from some other inode. However once we fsync an inode, we don't need to keep paying the price of that extra special care in future fsyncs done in the same transaction, unless the inode is used for another reflink operation or the full sync flag is set on it (truncate, failure to allocate extent maps for holes, and other exceptional and infrequent cases). So after we fsync an inode reset its last_unlink_trans to zero. In case another reflink happens, we continue to update the last_reflink_trans of the inode, just as before. Also set last_reflink_trans to the generation of the last transaction that modified the inode whenever we need to set the full sync flag on the inode, just like when we need to load an inode from disk after eviction. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14btrfs: put initial index value of a directory in a constantFilipe Manana1-2/+10
At btrfs_set_inode_index_count() we refer twice to the number 2 as the initial index value for a directory (when it's empty), with a proper comment explaining the reason for that value. In the next patch I'll have to use that magic value in the directory logging code, so put the value in a #define at btrfs_inode.h, to avoid hardcoding the magic value again at tree-log.c. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03btrfs: only copy dir index keys when logging a directoryFilipe Manana1-13/+5
Currently, when logging a directory, we copy both dir items and dir index items from the fs/subvolume tree to the log tree. Both items have exactly the same data (same struct btrfs_dir_item), the difference lies in the key values, where a dir index key contains the index number of a directory entry while the dir item key does not, as it's used for doing fast lookups of an entry by name, while the former is used for sorting entries when listing a directory. We can exploit that and log only the dir index items, since they contain all the information needed to correctly add, replace and delete directory entries when replaying a log tree. Logging only the dir index items is also backward and forward compatible: an unpatched kernel (without this change) can correctly replay a log tree generated by a patched kernel (with this patch), and a patched kernel can correctly replay a log tree generated by an unpatched kernel. The backward compatibility is ensured because: 1) For inserting a new dentry: a dentry is only inserted when we find a new dir index key - we can only insert if we know the dir index offset, which is encoded in the dir index key's offset; 2) For deleting dentries: during log replay, before adding or replacing dentries, we first replay dentry deletions. Whenever we find a dir item key or a dir index key in the subvolume/fs tree that is not logged in a range for which the log tree is authoritative, we do the unlink of the dentry, which removes both the existing dir item key and the dir index key. Therefore logging just dir index keys is enough to ensure dentry deletions are correctly replayed; 3) For dentry replacements: they work when we log only dir index keys and this is mostly due to a combination of 1) and 2). If we replace a dentry with name "foobar" to point from inode A to inode B, then we know the dir index key for the new dentry is different from the old one, as it has an index number (key offset) larger than the old one. This results in replaying a deletion, through replay_dir_deletes(), that causes the old dentry to be removed, both the dir item key and the dir index key, as mentioned at 2). Then when processing the new dir index key, we add the new dentry, adding both a new dir item key and a new index key pointing to inode B, as stated in 1). The forward compatibility, the ability for a patched kernel to replay a log created by an older, unpatched kernel, comes from the changes required for making sure we are able to replay a log that only contains dir index keys - we simply ignore every dir item key we find. So modify directory logging to log only dir index items, and modify the log replay process to ignore dir item keys, from log trees created by an unpatched kernel, and process only with dir index keys. This reduces the amount of logged metadata by about half, and therefore the time spent logging or fsyncing large directories (less CPU time and less IO). The following test script was used to measure this change: #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/nvme0n1 NUM_NEW_FILES=1000000 NUM_FILE_DELETES=10000 mkfs.btrfs -f $DEV mount -o ssd $DEV $MNT mkdir $MNT/testdir for ((i = 1; i <= $NUM_NEW_FILES; i++)); do echo -n > $MNT/testdir/file_$i done start=$(date +%s%N) xfs_io -c "fsync" $MNT/testdir end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "dir fsync took $dur ms after adding $NUM_NEW_FILES files" # sync to force transaction commit and wipeout the log. sync del_inc=$(( $NUM_NEW_FILES / $NUM_FILE_DELETES )) for ((i = 1; i <= $NUM_NEW_FILES; i += $del_inc)); do rm -f $MNT/testdir/file_$i done start=$(date +%s%N) xfs_io -c "fsync" $MNT/testdir end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "dir fsync took $dur ms after deleting $NUM_FILE_DELETES files" echo umount $MNT The tests were run on a physical machine, with a non-debug kernel (Debian's default kernel config), for different values of $NUM_NEW_FILES and $NUM_FILE_DELETES, and the results were the following: ** Before patch, NUM_NEW_FILES = 1 000 000, NUM_DELETE_FILES = 10 000 ** dir fsync took 8412 ms after adding 1000000 files dir fsync took 500 ms after deleting 10000 files ** After patch, NUM_NEW_FILES = 1 000 000, NUM_DELETE_FILES = 10 000 ** dir fsync took 4252 ms after adding 1000000 files (-49.5%) dir fsync took 269 ms after deleting 10000 files (-46.2%) ** Before patch, NUM_NEW_FILES = 100 000, NUM_DELETE_FILES = 1 000 ** dir fsync took 745 ms after adding 100000 files dir fsync took 59 ms after deleting 1000 files ** After patch, NUM_NEW_FILES = 100 000, NUM_DELETE_FILES = 1 000 ** dir fsync took 404 ms after adding 100000 files (-45.8%) dir fsync took 31 ms after deleting 1000 files (-47.5%) ** Before patch, NUM_NEW_FILES = 10 000, NUM_DELETE_FILES = 1 000 ** dir fsync took 67 ms after adding 10000 files dir fsync took 9 ms after deleting 1000 files ** After patch, NUM_NEW_FILES = 10 000, NUM_DELETE_FILES = 1 000 ** dir fsync took 36 ms after adding 10000 files (-46.3%) dir fsync took 5 ms after deleting 1000 files (-44.4%) ** Before patch, NUM_NEW_FILES = 1 000, NUM_DELETE_FILES = 100 ** dir fsync took 9 ms after adding 1000 files dir fsync took 4 ms after deleting 100 files ** After patch, NUM_NEW_FILES = 1 000, NUM_DELETE_FILES = 100 ** dir fsync took 7 ms after adding 1000 files (-22.2%) dir fsync took 3 ms after deleting 100 files (-25.0%) Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: rename btrfs_dio_private::logical_offset to file_offsetQu Wenruo1-1/+6
The naming of "logical_offset" can be confused with logical bytenr of the dio range. In fact it's file offset, and the naming "file_offset" is already widely used in all other sites. Just do the rename to avoid confusion. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>