Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd into devel
|
|
So far, we're always writing all possible LRs, setting the empty
ones with a zero value. This is obvious doing a low of work for
nothing, and we're better off clearing those we've actually
dirtied on the exit path (it is very rare to inject more than one
interrupt at a time anyway).
Reviewed-by: Christoffer Dall <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
In order to let the GICv3 code be more lazy in the way it
accesses the LRs, it is necessary to start with a clean slate.
Let's reset the LRs on each CPU when the vgic is probed (which
includes a round trip to EL2...).
Reviewed-by: Christoffer Dall <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
On exit, any empty LR will be signaled in ICH_ELRSR_EL2. Which
means that we do not have to save it, and we can just clear
its state in the in-memory copy.
Reviewed-by: Christoffer Dall <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Next on our list of useless accesses is the maintenance interrupt
status registers (ICH_MISR_EL2, ICH_EISR_EL2).
It is pointless to save them if we haven't asked for a maintenance
interrupt the first place, which can only happen for two reasons:
- Underflow: ICH_HCR_UIE will be set,
- EOI: ICH_LR_EOI will be set.
These conditions can be checked on the in-memory copies of the regs.
Should any of these two condition be valid, we must read GICH_MISR.
We can then check for ICH_MISR_EOI, and only when set read
ICH_EISR_EL2.
This means that in most case, we don't have to save them at all.
Reviewed-by: Christoffer Dall <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Just like on GICv2, we're a bit hammer-happy with GICv3, and access
them more often than we should.
Adopt a policy similar to what we do for GICv2, only save/restoring
the minimal set of registers. As we don't access the registers
linearly anymore (we may skip some), the convoluted accessors become
slightly simpler, and we can drop the ugly indexing macro that
tended to confuse the reviewers.
Reviewed-by: Christoffer Dall <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
The hcalls introduced for cxl use a possible new value:
H_STATE (invalid state).
Co-authored-by: Frederic Barrat <[email protected]>
Signed-off-by: Frederic Barrat <[email protected]>
Signed-off-by: Christophe Lombard <[email protected]>
Reviewed-by: Manoj Kumar <[email protected]>
Acked-by: Ian Munsie <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
In eeh_pci_enable(), after making the request to set the new options, we
call eeh_ops->wait_state() to check that the request finished successfully.
At the moment, if eeh_ops->wait_state() returns 0, we return 0 without
checking that it reflects the expected outcome. This can lead to callers
further up the chain incorrectly assuming the slot has been successfully
unfrozen and continuing to attempt recovery.
On powernv, this will occur if pnv_eeh_get_pe_state() or
pnv_eeh_get_phb_state() return 0, which in turn occurs if the relevant OPAL
call returns OPAL_EEH_STOPPED_MMIO_DMA_FREEZE or
OPAL_EEH_PHB_ERROR respectively.
On pseries, this will occur if pseries_eeh_get_state() returns 0, which in
turn occurs if RTAS reports that the PE is in the MMIO Stopped and DMA
Stopped states.
Obviously, none of these cases represent a successful completion of a
request to thaw MMIO or DMA.
Fix the check so that a wait_state() return value of 0 won't be considered
successful for the EEH_OPT_THAW_MMIO or EEH_OPT_THAW_DMA cases.
Signed-off-by: Andrew Donnellan <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Reviewed-by: Daniel Axtens <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
When eeh_dump_pe_log() is only called by eeh_slot_error_detail(),
we already have the check that the PE isn't in PCI config blocked
state in eeh_slot_error_detail(). So we needn't the duplicated
check in eeh_dump_pe_log().
This removes the duplicated check in eeh_dump_pe_log(). No logical
changes introduced.
Signed-off-by: Gavin Shan <[email protected]>
Reviewed-by: Andrew Donnellan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
When passing through SRIOV VFs to guest, we possibly encounter EEH
error on PF. In this case, the VF PEs are put into frozen state.
The error could be reported to guest before it's captured by the
host. That means the guest could attempt to recover errors on VFs
before host gets chance to recover errors on PFs. The VFs won't be
recovered successfully.
This enforces the recovery order for above case: the recovery on
child PE in guest is hold until the recovery on parent PE in host
is completed.
Signed-off-by: Gavin Shan <[email protected]>
Reviewed-by: Russell Currey <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
When we have partial hotplug as part of the error recovery on PF,
the VFs that are bound with vfio-pci driver will experience hotplug.
That's not allowed.
This checks if the VF PE is passed or not. If it does, we leave
the VF without removing it.
Signed-off-by: Gavin Shan <[email protected]>
Reviewed-by: Russell Currey <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
When EEH error happened to the parent PE of those PEs that have
been passed through to guest, the error is propagated to guest
domain and the VFIO driver's error handlers are called. It's not
correct as the error in the host domain shouldn't be propagated
to guests and affect them.
This adds one more limitation when calling EEH error handlers.
If the PE has been passed through to guest, the error handlers
won't be called.
Signed-off-by: Gavin Shan <[email protected]>
Reviewed-by: Russell Currey <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
PFs are enumerated on PCI bus, while VFs are created by PF's driver.
In EEH recovery, it has two cases:
1. Device and driver is EEH aware, error handlers are called.
2. Device and driver is not EEH aware, un-plug the device and plug it again
by enumerating it.
The special thing happens on the second case. For a PF, we could use the
original pci core to enumerate the bus, while for VF we need to record the
VFs which aer un-plugged then plug it again.
Also The patch caches the VF index in pci_dn, which can be used to
calculate VF's bus, device and function number. Those information helps to
locate the VF's PCI device instance when doing hotplug during EEH recovery
if necessary.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
After PE reset, OPAL API opal_pci_reinit() is called on all devices
contained in the PE to reinitialize them. While skiboot is not aware of
VFs, we have to implement the function in kernel to reinitialize VFs after
reset on PE for VFs.
In this patch, two functions pnv_pci_fixup_vf_mps() and
pnv_eeh_restore_vf_config() both manipulate the MPS of the VF, since for a
VF it has three cases.
1. Normal creation for a VF
In this case, pnv_pci_fixup_vf_mps() is called to make the MPS a proper
value compared with its parent.
2. EEH recovery without VF removed
In this case, MPS is stored in pci_dn and pnv_eeh_restore_vf_config() is
called to restore it and reinitialize other part.
3. EEH recovery with VF removed
In this case, VF will be removed then re-created. Both functions are
called. First pnv_pci_fixup_vf_mps() is called to store the proper MPS
to pci_dn and then pnv_eeh_restore_vf_config() is called to do proper
thing.
This introduces two functions: pnv_pci_fixup_vf_mps() to fixup the VF's
MPS to make sure it is equal to parent's and store this value in pci_dn
for future use. pnv_eeh_restore_vf_config() to re-initialize on VF by
restoring MPS, disabling completion timeout, enabling SERR, etc.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
PEs for VFs don't have primary bus. So they have to have their own reset
backend, which is used during EEH recovery. The patch implements the reset
backend for VF's PE by issuing FLR or AF FLR to the VFs, which are contained
in the PE.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
This creates PEs for VFs in the weak function pcibios_bus_add_device().
Those PEs for VFs are identified with newly introduced flag EEH_PE_VF
so that we treat them differently during EEH recovery.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
VFs and their corresponding pdn are created and released dynamically
when their PF's SRIOV capability is enabled and disabled. This creates
and releases EEH devices for VFs when creating and releasing their pdn
instances, which means EEH devices and pdn instances have same life
cycle. Also, VF's EEH device is identified by (struct eeh_dev::physfn).
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
This restricts the EEH address cache to use only the first 7 BARs. This
makes __eeh_addr_cache_insert_dev() ignore PCI bridge window and IOV BARs.
As the result of this change, eeh_addr_cache_get_dev() will return VFs from
VF's resource addresses instead of parent PFs.
This also removes PCI bridge check as we limit __eeh_addr_cache_insert_dev()
to 7 BARs and this effectively excludes PCI bridges from being cached.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
As commit ac205b7bb72f ("PCI: make sriov work with hotplug remove")
indicates, VFs which is on the same PCI bus as their PF, should be
removed before the PF. Otherwise, we might run into kernel crash
at PCI unplugging time.
This applies the above pattern to powerpc PCI hotplug path.
Signed-off-by: Wei Yang <[email protected]>
Acked-by: Gavin Shan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
The original implementation is ugly: unnecessary if statements and
"out" tag. This reworks the function to avoid above weaknesses. No
functional changes introduced.
Signed-off-by: Gavin Shan <[email protected]>
Reviewed-by: Andrew Donnellan <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
|
|
Include pci/hotplug/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/hotplug/Kconfig.
Note that this effectively adds pci/hotplug/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/hotplug/Kconfig:
alpha
arm
avr32
frv
m68k
microblaze
mn10300
sparc
unicore32
Inspired-by-patch-from: Bogicevic Sasa <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
|
|
Include pci/pcie/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/pcie/Kconfig.
Note that this effectively adds pci/pcie/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/pcie/Kconfig:
alpha
avr32
blackfin
frv
m32r
m68k
microblaze
mn10300
parisc
sparc
unicore32
xtensa
[bhelgaas: changelog, source pci/pcie/Kconfig at top of pci/Kconfig, whitespace]
Signed-off-by: Sasa Bogicevic <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
|
|
Modify the Microblaze PCI subsystem to work with the generic
drivers/pci/host/pcie-xilinx.c driver on Microblaze and Zynq.
[bhelgaas: changelog]
Signed-off-by: Bharat Kumar Gogada <[email protected]>
Signed-off-by: Ravi Kiran Gummaluri <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Acked-by: Michal Simek <[email protected]>
|
|
The header file is used by the SPI and I2C variant of the driver.
Therefore, move it to a more generic place under platform_data.
Signed-off-by: Stefan Agner <[email protected]>
Signed-off-by: Dmitry Torokhov <[email protected]>
|
|
IORESOURCE_ROM_SHADOW means there is a copy of a device's option ROM in
RAM. The existence of such a copy and its location are arch-specific.
Previously the IORESOURCE_ROM_SHADOW flag was set in arch code, but the
0xC0000-0xDFFFF location was hard-coded into the PCI core.
If we're using a shadow copy in RAM, disable the ROM BAR and release the
address space it was consuming. Move the location information from the PCI
core to the arch code that sets IORESOURCE_ROM_SHADOW. Save the location
of the RAM copy in the struct resource for PCI_ROM_RESOURCE.
After this change, pci_map_rom() will call pci_assign_resource() and
pci_enable_rom() for these IORESOURCE_ROM_SHADOW resources, which we did
not do before. This is safe because:
- pci_assign_resource() will do nothing because the resource is marked
IORESOURCE_PCI_FIXED, which means we can't move it, and
- pci_enable_rom() will not turn on the ROM BAR's enable bit because the
resource is marked IORESOURCE_ROM_SHADOW, which means it is in RAM
rather than in PCI memory space.
Storing the location in the struct resource means "lspci" will show the
shadow location, not the value from the ROM BAR.
Signed-off-by: Bjorn Helgaas <[email protected]>
|
|
A shadow copy of an option ROM is placed by the BIOS as a fixed address.
Set IORESOURCE_PCI_FIXED to indicate that we can't move the shadow copy.
This prevents warnings like the following when we assign resources:
BAR 6: [??? 0x00000000 flags 0x2] has bogus alignment
This warning is emitted by pdev_sort_resources(), which already ignores
IORESOURCE_PCI_FIXED resources.
Link: http://lkml.kernel.org/r/CA+55aFyVMfTBB0oz_yx8+eQOEJnzGtCsYSj9QuhEpdZ9BHdq5A@mail.gmail.com
Signed-off-by: Bjorn Helgaas <[email protected]>
|
|
The Home Agent and PCU PCI devices in Broadwell-EP have a non-BAR register
where a BAR should be. We don't know what the side effects of sizing the
"BAR" would be, and we don't know what address space the "BAR" might appear
to describe.
Mark these devices as having non-compliant BARs so the PCI core doesn't
touch them.
Signed-off-by: Bjorn Helgaas <[email protected]>
Tested-by: Andi Kleen <[email protected]>
CC: [email protected]
|
|
HAVE_ARCH_PCI_SET_DMA_MASK is unused, so remove the #define for it.
Signed-off-by: Bjorn Helgaas <[email protected]>
Acked-by: GUAN Xuetao <[email protected]>
|
|
Several cases of overlapping changes, as well as one instance
(vxlan) of a bug fix in 'net' overlapping with code movement
in 'net-next'.
Signed-off-by: David S. Miller <[email protected]>
|
|
Make use of the EXTABLE_FAULT exception table entries to write
a kernel copy routine that doesn't crash the system if it
encounters a machine check. Prime use case for this is to copy
from large arrays of non-volatile memory used as storage.
We have to use an unrolled copy loop for now because current
hardware implementations treat a machine check in "rep mov"
as fatal. When that is fixed we can simplify.
Return type is a "bool". True means that we copied OK, false means
that it didn't.
Signed-off-by: Tony Luck <[email protected]>
Cc: Andrew Morton <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tony Luck <[email protected]>
Link: http://lkml.kernel.org/r/a44e1055efc2d2a9473307b22c91caa437aa3f8b.1456439214.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Drop the quirk() function pointer in favor of a simple boolean which
says whether the quirk should be applied or not. Update comment while at
it.
Signed-off-by: Borislav Petkov <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Arnaldo Carvalho de Melo <[email protected]>
Cc: Harish Chegondi <[email protected]>
Cc: Jacob Pan <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Vince Weaver <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Signed-off-by: Adam Buchbinder <[email protected]>
Signed-off-by: Heiko Carstens <[email protected]>
Signed-off-by: Martin Schwidefsky <[email protected]>
|
|
The pgtable.c file is quite big, before it grows any larger split it
into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related
header definitions into the new gmap.h header and all of the pgste
helpers from pgtable.h to pgtable.c.
Signed-off-by: Martin Schwidefsky <[email protected]>
|
|
The pmdp_xxx function are smaller than their ptep_xxx counterparts
but to keep things symmetrical unline them as well.
Signed-off-by: Martin Schwidefsky <[email protected]>
|
|
The code in the various ptep_xxx functions has grown quite large,
consolidate them to four out-of-line functions:
ptep_xchg_direct to exchange a pte with another with immediate flushing
ptep_xchg_lazy to exchange a pte with another in a batched update
ptep_modify_prot_start to begin a protection flags update
ptep_modify_prot_commit to commit a protection flags update
Signed-off-by: Martin Schwidefsky <[email protected]>
|
|
Commit fa38a82096a1 ("scripts/dtc: Update to upstream version
53bf130b1cdd") added warnings on node name unit-address presence/absence
mismatch in device trees.
This patch fixes those warning on all the juno/vexpress platforms where
unit-address is present in node name while the reg/ranges property is
not present. It also adds unit-address to all smb bus node.
Signed-off-by: Sudeep Holla <[email protected]>
|
|
Signed-off-by: Ingo Molnar <[email protected]>
|
|
It no longer has any users.
Signed-off-by: Andy Lutomirski <[email protected]>
Reviewed-by: Borislav Petkov <[email protected]>
Cc: Andrew Cooper <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Gerst <[email protected]>
Cc: Denys Vlasenko <[email protected]>
Cc: H. Peter Anvin <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Luis R. Rodriguez <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
x86_64 has very clean espfix handling on paravirt: espfix64 is set
up in native_iret, so paravirt systems that override iret bypass
espfix64 automatically. This is robust and straightforward.
x86_32 is messier. espfix is set up before the IRET paravirt patch
point, so it can't be directly conditionalized on whether we use
native_iret. We also can't easily move it into native_iret without
regressing performance due to a bizarre consideration. Specifically,
on 64-bit kernels, the logic is:
if (regs->ss & 0x4)
setup_espfix;
On 32-bit kernels, the logic is:
if ((regs->ss & 0x4) && (regs->cs & 0x3) == 3 &&
(regs->flags & X86_EFLAGS_VM) == 0)
setup_espfix;
The performance of setup_espfix itself is essentially irrelevant, but
the comparison happens on every IRET so its performance matters. On
x86_64, there's no need for any registers except flags to implement
the comparison, so we fold the whole thing into native_iret. On
x86_32, we don't do that because we need a free register to
implement the comparison efficiently. We therefore do espfix setup
before restoring registers on x86_32.
This patch gets rid of the explicit paravirt_enabled check by
introducing X86_BUG_ESPFIX on 32-bit systems and using an ALTERNATIVE
to skip espfix on paravirt systems where iret != native_iret. This is
also messy, but it's at least in line with other things we do.
This improves espfix performance by removing a branch, but no one
cares. More importantly, it removes a paravirt_enabled user, which is
good because paravirt_enabled is ill-defined and is going away.
Signed-off-by: Andy Lutomirski <[email protected]>
Reviewed-by: Borislav Petkov <[email protected]>
Cc: Andrew Cooper <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Gerst <[email protected]>
Cc: Denys Vlasenko <[email protected]>
Cc: H. Peter Anvin <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Luis R. Rodriguez <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
We can fit the 2k for the STFLE interpretation and the crypto
control block into one DMA page. As we now only have to allocate
one DMA page, we can clean up the code a bit.
As a nice side effect, this also fixes a problem with crycbd alignment in
case special allocation debug options are enabled, debugged by Sascha
Silbe.
Acked-by: Christian Borntraeger <[email protected]>
Reviewed-by: Dominik Dingel <[email protected]>
Acked-by: Cornelia Huck <[email protected]>
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
Not setting the facility list designation disables STFLE interpretation,
this is what we want if the guest was told to not have it.
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
When the VCPU cpu timer expires, we have to wake up just like when the ckc
triggers. For now, setting up a cpu timer in the guest and going into
enabled wait will never lead to a wakeup. This patch fixes this problem.
Just as for the ckc, we have to take care of waking up too early. We
have to recalculate the sleep time and go back to sleep.
Please note that the timer callback calls kvm_s390_get_cpu_timer() from
interrupt context. As the timer is canceled when leaving handle_wait(),
and we don't do any VCPU cpu timer writes/updates in that function, we can
be sure that we will never try to read the VCPU cpu timer from the same cpu
that is currentyl updating the timer (deadlock).
Reported-by: Sascha Silbe <[email protected]>
Tested-by: Sascha Silbe <[email protected]>
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
The cpu timer is a mean to measure task execution time. We want
to account everything for a VCPU for which it is responsible. Therefore,
if the VCPU wants to sleep, it shall be accounted for it.
We can easily get this done by not disabling cpu timer accounting when
scheduled out while sleeping because of enabled wait.
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
For now, only the owning VCPU thread (that has loaded the VCPU) can get a
consistent cpu timer value when calculating the delta. However, other
threads might also be interested in a more recent, consistent value. Of
special interest will be the timer callback of a VCPU that executes without
having the VCPU loaded and could run in parallel with the VCPU thread.
The cpu timer has a nice property: it is only updated by the owning VCPU
thread. And speaking about accounting, a consistent value can only be
calculated by looking at cputm_start and the cpu timer itself in
one shot, otherwise the result might be wrong.
As we only have one writing thread at a time (owning VCPU thread), we can
use a seqcount instead of a seqlock and retry if the VCPU refreshed its
cpu timer. This avoids any heavy locking and only introduces a counter
update/check plus a handful of smp_wmb().
The owning VCPU thread should never have to retry on reads, and also for
other threads this might be a very rare scenario.
Please note that we have to use the raw_* variants for locking the seqcount
as lockdep will produce false warnings otherwise. The rq->lock held during
vcpu_load/put is also acquired from hardirq context. Lockdep cannot know
that we avoid potential deadlocks by disabling preemption and thereby
disable concurrent write locking attempts (via vcpu_put/load).
Reviewed-by: Christian Borntraeger <[email protected]>
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
Architecturally we should only provide steal time if we are scheduled
away, and not if the host interprets a guest exit. We have to step
the guest CPU timer in these cases.
In the first shot, we will step the VCPU timer only during the kvm_run
ioctl. Therefore all time spent e.g. in interception handlers or on irq
delivery will be accounted for that VCPU.
We have to take care of a few special cases:
- Other VCPUs can test for pending irqs. We can only report a consistent
value for the VCPU thread itself when adding the delta.
- We have to take care of STP sync, therefore we have to extend
kvm_clock_sync() and disable preemption accordingly
- During any call to disable/enable/start/stop we could get premeempted
and therefore get start/stop calls. Therefore we have to make sure we
don't get into an inconsistent state.
Whenever a VCPU is scheduled out, sleeping, in user space or just about
to enter the SIE, the guest cpu timer isn't stepped.
Please note that all primitives are prepared to be called from both
environments (cpu timer accounting enabled or not), although not completely
used in this patch yet (e.g. kvm_s390_set_cpu_timer() will never be called
while cpu timer accounting is enabled).
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
We want to manually step the cpu timer in certain scenarios in the future.
Let's abstract any access to the cpu timer, so we can hide the complexity
internally.
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
By storing the cpu id, we have a way to verify if the current cpu is
owning a VCPU.
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
DIAG 0x288 may occur now. Let's add its code to the diag table in
sie.h.
Signed-off-by: Alexander Yarygin <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
|
|
ignore_nmis is used in two distinct places:
1. modified through {stop,restart}_nmi by alternative_instructions
2. read by do_nmi to determine if default_do_nmi should be called or not
thus the access pattern conforms to __read_mostly and do_nmi() is a fastpath.
Signed-off-by: Kostenzer Felix <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
With MACHINE_HAS_VX, we convert the floating point registers from the
vector registeres when storing the status. For other VCPUs, these are
stored to vcpu->run->s.regs.vrs, but we are using current->thread.fpu.vxrs,
which resolves to the currently loaded VCPU.
So kvm_s390_store_status_unloaded() currently writes the wrong floating
point registers (converted from the vector registers) when called from
another VCPU on a z13.
This is only the case for old user space not handling SIGP STORE STATUS and
SIGP STOP AND STORE STATUS, but relying on the kernel implementation. All
other calls come from the loaded VCPU via kvm_s390_store_status().
Fixes: 9abc2a08a7d6 (KVM: s390: fix memory overwrites when vx is disabled)
Reviewed-by: Christian Borntraeger <[email protected]>
Cc: [email protected] # v4.4+
Signed-off-by: David Hildenbrand <[email protected]>
Signed-off-by: Christian Borntraeger <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|