Age | Commit message (Collapse) | Author | Files | Lines |
|
get_clean_sp() is only used once in kernel/signal.c .
GCC is smart enough to see that x & 0xffffffff is a nop
calculation on PPC32, no need of a special PPC32 trivial version.
Include the logic from the PPC64 version of get_clean_sp() directly
in get_sigframe().
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/13ef6510ce30a4867e043157b93af5bb8c67fb3b.1597770847.git.christophe.leroy@csgroup.eu
|
|
This access_ok() will soon be performed by user_access_begin().
So move it out of get_sigframe().
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/900b93744732ed0887f28f5b6a40730fb04a43fa.1597770847.git.christophe.leroy@csgroup.eu
|
|
There is already the same BUG_ON() check in do_signal() which
is the only caller of handle_rt_signal64() handle_rt_signal32() and
handle_signal32().
Remove those three redundant BUG_ON().
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/3582e10a341d523c9c3f1ac925c3aaefc9d9293d.1597770847.git.christophe.leroy@csgroup.eu
|
|
The e300c2 core which is embedded in mpc832x CPU doesn't have
an FPU.
Make it possible to not select CONFIG_PPC_FPU when building a
kernel dedicated to that target.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/fcdc60d85baf80eaa0a7f3261d9d889282068216.1597770847.git.christophe.leroy@csgroup.eu
|
|
There is no point in copying floating point regs when there
is no FPU and MATH_EMULATION is not selected.
Create a new CONFIG_PPC_FPU_REGS bool that is selected by
CONFIG_MATH_EMULATION and CONFIG_PPC_FPU, and use it to
opt out everything related to fp_state in thread_struct.
The asm const used only by fpu.S are opted out with CONFIG_PPC_FPU
as fpu.S build is conditionnal to CONFIG_PPC_FPU.
The following app spends approx 8.1 seconds system time on an 8xx
without the patch, and 7.0 seconds with the patch (13.5% reduction).
On an 832x, it spends approx 2.6 seconds system time without
the patch and 2.1 seconds with the patch (19% reduction).
void sigusr1(int sig) { }
int main(int argc, char **argv)
{
int i = 100000;
signal(SIGUSR1, sigusr1);
for (;i--;)
raise(SIGUSR1);
exit(0);
}
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/7569070083e6cd5b279bb5023da601aba3c06f3c.1597770847.git.christophe.leroy@csgroup.eu
|
|
On the same model as ptrace_get_reg() and ptrace_put_reg(),
create ptrace_get_fpr() and ptrace_put_fpr() to get/set
the floating points registers.
We move the boundary checkings in them.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/24a1baedea7f7ae7b6bf27be98bab6d01b5ca2c1.1597770847.git.christophe.leroy@csgroup.eu
|
|
Today we have:
#ifdef CONFIG_PPC32
index = addr >> 2;
if ((addr & 3) || child->thread.regs == NULL)
#else
index = addr >> 3;
if ((addr & 7))
#endif
sizeof(long) has value 4 for PPC32 and value 8 for PPC64.
Dividing by 4 is equivalent to >> 2 and dividing by 8 is equivalent
to >> 3.
And 3 and 7 are respectively (sizeof(long) - 1).
Use sizeof(long) to get rid of the #ifdef CONFIG_PPC32 and consolidate
the calculation and checking.
thread.regs have to be not NULL on both PPC32 and PPC64 so adding
that test on PPC64 is harmless.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/3cd1e284e93c60db981659585e18d1f6bb73ed2f.1597770847.git.christophe.leroy@csgroup.eu
|
|
ptrace_get_reg() and ptrace_set_reg() are only used internally by
ptrace.
Move them in arch/powerpc/kernel/ptrace/ptrace-decl.h
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/376c258267aeae54a4423bc4a2e107a9611f0039.1597770847.git.christophe.leroy@csgroup.eu
|
|
To really be inlined, the functions need to be defined in the
same C file as the caller, or in an included header.
Move functions defined inline from signal .c in signal.h
Fixes: 3dd4eb83a9c0 ("powerpc: move common register copy functions from signal_32.c to signal.c")
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/35b1bd44a1a66f5bcf9b457a1c480ac8d5ef50b2.1597770847.git.christophe.leroy@csgroup.eu
|
|
Provides __kernel_clock_gettime64() on vdso32. This is the
64 bits version of __kernel_clock_gettime() which is
y2038 compliant.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
With the C VDSO, the performance is slightly lower, but it is worth
it as it will ease maintenance and evolution, and also brings clocks
that are not supported with the ASM VDSO.
On an 8xx at 132 MHz, vdsotest with the ASM VDSO:
gettimeofday: vdso: 828 nsec/call
clock-getres-realtime-coarse: vdso: 391 nsec/call
clock-gettime-realtime-coarse: vdso: 614 nsec/call
clock-getres-realtime: vdso: 460 nsec/call
clock-gettime-realtime: vdso: 876 nsec/call
clock-getres-monotonic-coarse: vdso: 399 nsec/call
clock-gettime-monotonic-coarse: vdso: 691 nsec/call
clock-getres-monotonic: vdso: 460 nsec/call
clock-gettime-monotonic: vdso: 1026 nsec/call
On an 8xx at 132 MHz, vdsotest with the C VDSO:
gettimeofday: vdso: 955 nsec/call
clock-getres-realtime-coarse: vdso: 545 nsec/call
clock-gettime-realtime-coarse: vdso: 592 nsec/call
clock-getres-realtime: vdso: 545 nsec/call
clock-gettime-realtime: vdso: 941 nsec/call
clock-getres-monotonic-coarse: vdso: 545 nsec/call
clock-gettime-monotonic-coarse: vdso: 591 nsec/call
clock-getres-monotonic: vdso: 545 nsec/call
clock-gettime-monotonic: vdso: 940 nsec/call
It is even better for gettime with monotonic clocks.
Unsupported clocks with ASM VDSO:
clock-gettime-boottime: vdso: 3851 nsec/call
clock-gettime-tai: vdso: 3852 nsec/call
clock-gettime-monotonic-raw: vdso: 3396 nsec/call
Same clocks with C VDSO:
clock-gettime-tai: vdso: 941 nsec/call
clock-gettime-monotonic-raw: vdso: 1001 nsec/call
clock-gettime-monotonic-coarse: vdso: 591 nsec/call
On an 8321E at 333 MHz, vdsotest with the ASM VDSO:
gettimeofday: vdso: 220 nsec/call
clock-getres-realtime-coarse: vdso: 102 nsec/call
clock-gettime-realtime-coarse: vdso: 178 nsec/call
clock-getres-realtime: vdso: 129 nsec/call
clock-gettime-realtime: vdso: 235 nsec/call
clock-getres-monotonic-coarse: vdso: 105 nsec/call
clock-gettime-monotonic-coarse: vdso: 208 nsec/call
clock-getres-monotonic: vdso: 129 nsec/call
clock-gettime-monotonic: vdso: 274 nsec/call
On an 8321E at 333 MHz, vdsotest with the C VDSO:
gettimeofday: vdso: 272 nsec/call
clock-getres-realtime-coarse: vdso: 160 nsec/call
clock-gettime-realtime-coarse: vdso: 184 nsec/call
clock-getres-realtime: vdso: 166 nsec/call
clock-gettime-realtime: vdso: 281 nsec/call
clock-getres-monotonic-coarse: vdso: 160 nsec/call
clock-gettime-monotonic-coarse: vdso: 184 nsec/call
clock-getres-monotonic: vdso: 169 nsec/call
clock-gettime-monotonic: vdso: 275 nsec/call
On a Power9 Nimbus DD2.2 at 3.8GHz, with the ASM VDSO:
clock-gettime-monotonic: vdso: 35 nsec/call
clock-getres-monotonic: vdso: 16 nsec/call
clock-gettime-monotonic-coarse: vdso: 18 nsec/call
clock-getres-monotonic-coarse: vdso: 522 nsec/call
clock-gettime-monotonic-raw: vdso: 598 nsec/call
clock-getres-monotonic-raw: vdso: 520 nsec/call
clock-gettime-realtime: vdso: 34 nsec/call
clock-getres-realtime: vdso: 16 nsec/call
clock-gettime-realtime-coarse: vdso: 18 nsec/call
clock-getres-realtime-coarse: vdso: 517 nsec/call
getcpu: vdso: 8 nsec/call
gettimeofday: vdso: 25 nsec/call
And with the C VDSO:
clock-gettime-monotonic: vdso: 37 nsec/call
clock-getres-monotonic: vdso: 20 nsec/call
clock-gettime-monotonic-coarse: vdso: 21 nsec/call
clock-getres-monotonic-coarse: vdso: 19 nsec/call
clock-gettime-monotonic-raw: vdso: 38 nsec/call
clock-getres-monotonic-raw: vdso: 20 nsec/call
clock-gettime-realtime: vdso: 37 nsec/call
clock-getres-realtime: vdso: 20 nsec/call
clock-gettime-realtime-coarse: vdso: 20 nsec/call
clock-getres-realtime-coarse: vdso: 19 nsec/call
getcpu: vdso: 8 nsec/call
gettimeofday: vdso: 28 nsec/call
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
On PPC64, the TOC pointer needs to be saved and restored.
Suggested-by: Michael Ellerman <[email protected]>
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Prepare for switching VDSO to generic C implementation in following
patch. Here, we:
- Prepare the helpers to call the C VDSO functions
- Prepare the required callbacks for the C VDSO functions
- Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES
- Add the C trampolines to the generic C VDSO functions
powerpc is a bit special for VDSO as well as system calls in the
way that it requires setting CR SO bit which cannot be done in C.
Therefore, entry/exit needs to be performed in ASM.
Implementing __arch_get_vdso_data() would clobber the link register,
requiring the caller to save it. As the ASM calling function already
has to set a stack frame and saves the link register before calling
the C vdso function, retriving the vdso data pointer there is lighter.
Implement __arch_vdso_capable() and always return true.
Provide vdso_shift_ns(), as the generic x >> s gives the following
bad result:
18: 35 25 ff e0 addic. r9,r5,-32
1c: 41 80 00 10 blt 2c <shift+0x14>
20: 7c 64 4c 30 srw r4,r3,r9
24: 38 60 00 00 li r3,0
...
2c: 54 69 08 3c rlwinm r9,r3,1,0,30
30: 21 45 00 1f subfic r10,r5,31
34: 7c 84 2c 30 srw r4,r4,r5
38: 7d 29 50 30 slw r9,r9,r10
3c: 7c 63 2c 30 srw r3,r3,r5
40: 7d 24 23 78 or r4,r9,r4
In our case the shift is always <= 32. In addition, the upper 32 bits
of the result are likely nul. Lets GCC know it, it also optimises the
following calculations.
With the patch, we get:
0: 21 25 00 20 subfic r9,r5,32
4: 7c 69 48 30 slw r9,r3,r9
8: 7c 84 2c 30 srw r4,r4,r5
c: 7d 24 23 78 or r4,r9,r4
10: 7c 63 2c 30 srw r3,r3,r5
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Currently we use ifdef __powerpc64__ in barrier.h to decide if we
should use lwsync or eieio for SMPWMB which is then used by
__smp_wmb().
That means when we are building the compat VDSO we will use eieio,
because it's 32-bit code, even though we're building a 64-bit kernel
for a 64-bit CPU.
Although eieio should work, it would be cleaner if we always used the
same barrier, even for the 32-bit VDSO.
So change the ifdef to CONFIG_PPC64, so that the selection is made
based on the bitness of the kernel we're building for, not the current
compilation unit.
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When we're building the compat VDSO we are building 32-bit code but in
the context of a 64-bit kernel configuration.
To make this work we need to be careful in some places when using
ifdefs to differentiate between CONFIG_PPC64 and __powerpc64__.
CONFIG_PPC64 indicates the kernel we're building is 64-bit, but it
doesn't tell us that we're currently building 64-bit code - we could
be building 32-bit code for the compat VDSO.
On the other hand __powerpc64__ tells us that we are currently
building 64-bit code (and therefore we must also be building a 64-bit
kernel).
In the case of get_tb() we want to use the 32-bit code sequence
regardless of whether the kernel we're building for is 64-bit or
32-bit, what matters is the word size of the current object. So we
need to check __powerpc64__ to decide if we use mftb() or the
mftbu()/mftb() sequence.
For mftb() the logic for CPU_FTR_CELL_TB_BUG only makes sense if we're
building 64-bit code, so guard that with a __powerpc64__ check.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
In order to easily use get_tb() from C VDSO, move timebase
functions into a new header named asm/vdso/timebase.h
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
cpu_relax() need to be in asm/vdso/processor.h to be used by
the C VDSO generic library.
Move it there.
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
possible features
In order to build VDSO32 for PPC64, we need to have CPU_FTRS_POSSIBLE
and CPU_FTRS_ALWAYS independant of whether we are building the
32 bits VDSO or the 64 bits VDSO.
Use #ifdef CONFIG_PPC64 instead of #ifdef __powerpc64__
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Update the NUMA Kconfig description to match other architectures, and
add some help text. Shamelessly borrowed from x86/arm64.
Signed-off-by: Michael Ellerman <[email protected]>
Reviewed-by: Randy Dunlap <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Our NUMA option is default y for pseries, but not powernv. The bulk of
powernv systems are NUMA, so make NUMA default y for powernv also.
Signed-off-by: Michael Ellerman <[email protected]>
Reviewed-by: Srikar Dronamraju <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Our Kconfig allows NUMA to be enabled without SMP, but none of
our defconfigs use that combination. This means it can easily be
broken inadvertently by code changes, which has happened recently.
Although it's theoretically possible to have a machine with a single
CPU and multiple memory nodes, I can't think of any real systems where
that's the case. Even so if such a system exists, it can just run an
SMP kernel anyway.
So to avoid the need to add extra #ifdefs and/or build breaks, make
NUMA depend on SMP.
Reported-by: kernel test robot <[email protected]>
Reported-by: Randy Dunlap <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Reviewed-by: Srikar Dronamraju <[email protected]>
Reviewed-by: Randy Dunlap <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
ioreadXX()/ioreadXXbe() accessors are equivalent to ppc
in_leXX()/in_be16() accessors but they are not inlined.
Since commit 0eb573682872 ("powerpc/kerenl: Enable EEH for IO
accessors"), the 'le' versions are equivalent to the ones
defined in asm-generic/io.h, allthough the ones there are inlined.
Include asm-generic/io.h to get them. Keep ppc versions of the
'be' ones as they are optimised, but make them inline in ppc io.h.
This reduces the size of ppc64e_defconfig build by 3 kbytes:
text data bss dec hex filename
10160733 4343422 562972 15067127 e5e7f7 vmlinux.before
10159239 4341590 562972 15063801 e5daf9 vmlinux.after
A typical function using ioread and iowrite before the change:
c00000000066a3c4 <.ata_bmdma_stop>:
c00000000066a3c4: 7c 08 02 a6 mflr r0
c00000000066a3c8: fb c1 ff f0 std r30,-16(r1)
c00000000066a3cc: f8 01 00 10 std r0,16(r1)
c00000000066a3d0: fb e1 ff f8 std r31,-8(r1)
c00000000066a3d4: f8 21 ff 81 stdu r1,-128(r1)
c00000000066a3d8: eb e3 00 00 ld r31,0(r3)
c00000000066a3dc: eb df 00 98 ld r30,152(r31)
c00000000066a3e0: 7f c3 f3 78 mr r3,r30
c00000000066a3e4: 4b 9b 6f 7d bl c000000000021360 <.ioread8>
c00000000066a3e8: 60 00 00 00 nop
c00000000066a3ec: 7f c4 f3 78 mr r4,r30
c00000000066a3f0: 54 63 06 3c rlwinm r3,r3,0,24,30
c00000000066a3f4: 4b 9b 70 4d bl c000000000021440 <.iowrite8>
c00000000066a3f8: 60 00 00 00 nop
c00000000066a3fc: 7f e3 fb 78 mr r3,r31
c00000000066a400: 38 21 00 80 addi r1,r1,128
c00000000066a404: e8 01 00 10 ld r0,16(r1)
c00000000066a408: eb c1 ff f0 ld r30,-16(r1)
c00000000066a40c: 7c 08 03 a6 mtlr r0
c00000000066a410: eb e1 ff f8 ld r31,-8(r1)
c00000000066a414: 4b ff ff 8c b c00000000066a3a0 <.ata_sff_dma_pause>
The same function with this patch:
c000000000669cb4 <.ata_bmdma_stop>:
c000000000669cb4: e8 63 00 00 ld r3,0(r3)
c000000000669cb8: e9 43 00 98 ld r10,152(r3)
c000000000669cbc: 7c 00 04 ac hwsync
c000000000669cc0: 89 2a 00 00 lbz r9,0(r10)
c000000000669cc4: 0c 09 00 00 twi 0,r9,0
c000000000669cc8: 4c 00 01 2c isync
c000000000669ccc: 55 29 06 3c rlwinm r9,r9,0,24,30
c000000000669cd0: 7c 00 04 ac hwsync
c000000000669cd4: 99 2a 00 00 stb r9,0(r10)
c000000000669cd8: a1 4d 06 f0 lhz r10,1776(r13)
c000000000669cdc: 2c 2a 00 00 cmpdi r10,0
c000000000669ce0: 41 c2 00 08 beq- c000000000669ce8 <.ata_bmdma_stop+0x34>
c000000000669ce4: b1 4d 06 f2 sth r10,1778(r13)
c000000000669ce8: 4b ff ff a8 b c000000000669c90 <.ata_sff_dma_pause>
Signed-off-by: Christophe Leroy <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/18b357d68c4cde149f75c7a1031c850925cd8128.1605981539.git.christophe.leroy@csgroup.eu
|
|
On systems without any specific PMU driver support registered, running
'perf record' with —intr-regs will crash ( perf record -I <workload> ).
The relevant portion from crash logs and Call Trace:
Unable to handle kernel paging request for data at address 0x00000068
Faulting instruction address: 0xc00000000013eb18
Oops: Kernel access of bad area, sig: 11 [#1]
CPU: 2 PID: 13435 Comm: kill Kdump: loaded Not tainted 4.18.0-193.el8.ppc64le #1
NIP: c00000000013eb18 LR: c000000000139f2c CTR: c000000000393d80
REGS: c0000004a07ab4f0 TRAP: 0300 Not tainted (4.18.0-193.el8.ppc64le)
NIP [c00000000013eb18] is_sier_available+0x18/0x30
LR [c000000000139f2c] perf_reg_value+0x6c/0xb0
Call Trace:
[c0000004a07ab770] [c0000004a07ab7c8] 0xc0000004a07ab7c8 (unreliable)
[c0000004a07ab7a0] [c0000000003aa77c] perf_output_sample+0x60c/0xac0
[c0000004a07ab840] [c0000000003ab3f0] perf_event_output_forward+0x70/0xb0
[c0000004a07ab8c0] [c00000000039e208] __perf_event_overflow+0x88/0x1a0
[c0000004a07ab910] [c00000000039e42c] perf_swevent_hrtimer+0x10c/0x1d0
[c0000004a07abc50] [c000000000228b9c] __hrtimer_run_queues+0x17c/0x480
[c0000004a07abcf0] [c00000000022aaf4] hrtimer_interrupt+0x144/0x520
[c0000004a07abdd0] [c00000000002a864] timer_interrupt+0x104/0x2f0
[c0000004a07abe30] [c0000000000091c4] decrementer_common+0x114/0x120
When perf record session is started with "-I" option, capturing registers
on each sample calls is_sier_available() to check for the
SIER (Sample Instruction Event Register) availability in the platform.
This function in core-book3s accesses 'ppmu->flags'. If a platform specific
PMU driver is not registered, ppmu is set to NULL and accessing its
members results in a crash. Fix the crash by returning false in
is_sier_available() if ppmu is not set.
Fixes: 333804dc3b7a ("powerpc/perf: Update perf_regs structure to include SIER")
Reported-by: Sachin Sant <[email protected]>
Signed-off-by: Athira Rajeev <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Use bcl 20,31,0f rather than plain bl to avoid unbalancing the link
stack.
Update the code to use REL16 relocs, available for ppc64 in 2009 (and
ppc32 in 2005).
Signed-off-by: Alan Modra <[email protected]>
[mpe: Incorporate more detail into the change log]
Signed-off-by: Michael Ellerman <[email protected]>
|
|
ARM64 has non-pagetable aligned large page support with PTE_CONT, when
this bit is set the page is part of a super-page. Match the hugetlb
code and support these super pages for PTE and PMD levels.
This enables PERF_SAMPLE_{DATA,CODE}_PAGE_SIZE to report accurate
pagetable leaf sizes.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Will Deacon <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
The kernel cannot disambiguate when 2+ PEBS counters overflow at the
same time. This is what the comment for this code suggests. However,
I see the comparison is done with the unfiltered p->status which is a
copy of IA32_PERF_GLOBAL_STATUS at the time of the sample. This
register contains more than the PEBS counter overflow bits. It also
includes many other bits which could also be set.
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Stephane Eranian <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
The commit 3966c3feca3f ("x86/perf/amd: Remove need to check "running"
bit in NMI handler") introduced this. It seems x86_pmu_stop can be
called recursively (like when it losts some samples) like below:
x86_pmu_stop
intel_pmu_disable_event (x86_pmu_disable)
intel_pmu_pebs_disable
intel_pmu_drain_pebs_nhm (x86_pmu_drain_pebs_buffer)
x86_pmu_stop
While commit 35d1ce6bec13 ("perf/x86/intel/ds: Fix x86_pmu_stop
warning for large PEBS") fixed it for the normal cases, there's
another path to call x86_pmu_stop() recursively when a PEBS error was
detected (like two or more counters overflowed at the same time).
Like in the Kan's previous fix, we can skip the interrupt accounting
for large PEBS, so check the iregs which is set for PMI only.
Fixes: 3966c3feca3f ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
Reported-by: John Sperbeck <[email protected]>
Suggested-by: Peter Zijlstra <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"I'm sad to say that we've got an unusually large arm64 fixes pull for
rc7 which addresses numerous significant instrumentation issues with
our entry code.
Without these patches, lockdep is hopelessly unreliable in some
configurations [1,2] and syzkaller is therefore not a lot of use
because it's so noisy.
Although much of this has always been broken, it appears to have been
exposed more readily by other changes such as 044d0d6de9f5 ("lockdep:
Only trace IRQ edges") and general lockdep improvements around IRQ
tracing and NMIs.
Fixing this properly required moving much of the instrumentation hooks
from our entry assembly into C, which Mark has been working on for the
last few weeks. We're not quite ready to move to the recently added
generic functions yet, but the code here has been deliberately written
to mimic that closely so we can look at cleaning things up once we
have a bit more breathing room.
Having said all that, the second version of these patches was posted
last week and I pushed it into our CI (kernelci and cki) along with a
commit which forced on PROVE_LOCKING, NOHZ_FULL and
CONTEXT_TRACKING_FORCE. The result? We found a real bug in the
md/raid10 code [3].
Oh, and there's also a really silly typo patch that's unrelated.
Summary:
- Fix numerous issues with instrumentation and exception entry
- Fix hideous typo in unused register field definition"
[1] https://lore.kernel.org/r/CACT4Y+aAzoJ48Mh1wNYD17pJqyEcDnrxGfApir=-j171TnQXhw@mail.gmail.com
[2] https://lore.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mte: Fix typo in macro definition
arm64: entry: fix EL1 debug transitions
arm64: entry: fix NMI {user, kernel}->kernel transitions
arm64: entry: fix non-NMI kernel<->kernel transitions
arm64: ptrace: prepare for EL1 irq/rcu tracking
arm64: entry: fix non-NMI user<->kernel transitions
arm64: entry: move el1 irq/nmi logic to C
arm64: entry: prepare ret_to_user for function call
arm64: entry: move enter_from_user_mode to entry-common.c
arm64: entry: mark entry code as noinstr
arm64: mark idle code as noinstr
arm64: syscall: exit userspace before unmasking exceptions
|
|
The SMDK6410 DTS was incorrectly called mini6410, probably copy-paste
from FriendlyARM Mini6410 board.
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a compatible for SMDK2416 board next to the SoC compatible.
Signed-off-by: Krzysztof Kozlowski <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Now that arm64 no longer uses UAO, remove the vestigal feature detection
code and Kconfig text.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Some code (e.g. futex) needs to make privileged accesses to userspace
memory, and uses uaccess_{enable,disable}_privileged() in order to
permit this. All other uaccess primitives use LDTR/STTR, and never need
to toggle PAN.
Remove the redundant PAN toggling.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now that set_fs() is gone, addr_limit_user_check() is redundant. Remove
the checks and associated thread flag.
To ensure that _TIF_WORK_MASK can be used as an immediate value in an
AND instruction (as it is in `ret_to_user`), TIF_MTE_ASYNC_FAULT is
renumbered to keep the constituent bits of _TIF_WORK_MASK contiguous.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now that the uaccess primitives dont take addr_limit into account, we
have no need to manipulate this via set_fs() and get_fs(). Remove
support for these, along with some infrastructure this renders
redundant.
We no longer need to flip UAO to access kernel memory under KERNEL_DS,
and head.S unconditionally clears UAO for all kernel configurations via
an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO,
nor do we need to context-switch it. However, we still need to adjust
PAN during SDEI entry.
Masking of __user pointers no longer needs to use the dynamic value of
addr_limit, and can use a constant derived from the maximum possible
userspace task size. A new TASK_SIZE_MAX constant is introduced for
this, which is also used by core code. In configurations supporting
52-bit VAs, this may include a region of unusable VA space above a
48-bit TTBR0 limit, but never includes any portion of TTBR1.
Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and
KERNEL_DS were inclusive limits, and is converted to a mask by
subtracting one.
As the SDEI entry code repurposes the otherwise unnecessary
pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted
context, for now we rename that to pt_regs::sdei_ttbr1. In future we can
consider factoring that out.
Signed-off-by: Mark Rutland <[email protected]>
Acked-by: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now the uaccess primitives use LDTR/STTR unconditionally, the
uao_{ldp,stp,user_alternative} asm macros are misnamed, and have a
redundant argument. Let's remove the redundant argument and rename these
to user_{ldp,stp,ldst} respectively to clean this up.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: Robin Murohy <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
This patch separates arm64's user and kernel memory access primitives
into distinct routines, adding new __{get,put}_kernel_nofault() helpers
to access kernel memory, upon which core code builds larger copy
routines.
The kernel access routines (using LDR/STR) are not affected by PAN (when
legitimately accessing kernel memory), nor are they affected by UAO.
Switching to KERNEL_DS may set UAO, but this does not adversely affect
the kernel access routines.
The user access routines (using LDTR/STTR) are not affected by PAN (when
legitimately accessing user memory), but are affected by UAO. As these
are only legitimate to use under USER_DS with UAO clear, this should not
be problematic.
Routines performing atomics to user memory (futex and deprecated
instruction emulation) still need to transiently clear PAN, and these
are left as-is. These are never used on kernel memory.
Subsequent patches will refactor the uaccess helpers to remove redundant
code, and will also remove the redundant PAN/UAO manipulation.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
As a step towards implementing __{get,put}_kernel_nofault(), this patch
splits most user-memory specific logic out of __{get,put}_user(), with
the memory access and fault handling in new __{raw_get,put}_mem()
helpers.
For now the LDR/LDTR patching is left within the *get_mem() helpers, and
will be removed in a subsequent patch.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Currently __copy_user_flushcache() open-codes raw_copy_from_user(), and
doesn't use uaccess_mask_ptr() on the user address. Let's have it call
raw_copy_from_user(), which is both a simplification and ensures that
user pointers are masked under speculation.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: Robin Murphy <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
We currently have many uaccess_*{enable,disable}*() variants, which
subsequent patches will cut down as part of removing set_fs() and
friends. Once this simplification is made, most uaccess routines will
only need to ensure that the user page tables are mapped in TTBR0, as is
currently dealt with by uaccess_ttbr0_{enable,disable}().
The existing uaccess_{enable,disable}() routines ensure that user page
tables are mapped in TTBR0, and also disable PAN protections, which is
necessary to be able to use atomics on user memory, but also permit
unrelated privileged accesses to access user memory.
As preparatory step, let's rename uaccess_{enable,disable}() to
uaccess_{enable,disable}_privileged(), highlighting this caveat and
discouraging wider misuse. Subsequent patches can reuse the
uaccess_{enable,disable}() naming for the common case of ensuring the
user page tables are mapped in TTBR0.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
In preparation for removing addr_limit and set_fs() we must decouple the
SDEI PAN/UAO manipulation from the uaccess code, and explicitly
reinitialize these as required.
SDEI enters the kernel with a non-architectural exception, and prior to
the most recent revision of the specification (ARM DEN 0054B), PSTATE
bits (e.g. PAN, UAO) are not manipulated in the same way as for
architectural exceptions. Notably, older versions of the spec can be
read ambiguously as to whether PSTATE bits are inherited unchanged from
the interrupted context or whether they are generated from scratch, with
TF-A doing the latter.
We have three cases to consider:
1) The existing TF-A implementation of SDEI will clear PAN and clear UAO
(along with other bits in PSTATE) when delivering an SDEI exception.
2) In theory, implementations of SDEI prior to revision B could inherit
PAN and UAO (along with other bits in PSTATE) unchanged from the
interrupted context. However, in practice such implementations do not
exist.
3) Going forward, new implementations of SDEI must clear UAO, and
depending on SCTLR_ELx.SPAN must either inherit or set PAN.
As we can ignore (2) we can assume that upon SDEI entry, UAO is always
clear, though PAN may be clear, inherited, or set per SCTLR_ELx.SPAN.
Therefore, we must explicitly initialize PAN, but do not need to do
anything for UAO.
Considering what we need to do:
* When set_fs() is removed, force_uaccess_begin() will have no HW
side-effects. As this only clears UAO, which we can assume has already
been cleared upon entry, this is not a problem. We do not need to add
code to manipulate UAO explicitly.
* PAN may be cleared upon entry (in case 1 above), so where a kernel is
built to use PAN and this is supported by all CPUs, the kernel must
set PAN upon entry to ensure expected behaviour.
* PAN may be inherited from the interrupted context (in case 3 above),
and so where a kernel is not built to use PAN or where PAN support is
not uniform across CPUs, the kernel must clear PAN to ensure expected
behaviour.
This patch reworks the SDEI code accordingly, explicitly setting PAN to
the expected state in all cases. To cater for the cases where the kernel
does not use PAN or this is not uniformly supported by hardware we add a
new cpu_has_pan() helper which can be used regardless of whether the
kernel is built to use PAN.
The existing system_uses_ttbr0_pan() is redefined in terms of
system_uses_hw_pan() both for clarity and as a minor optimization when
HW PAN is not selected.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: James Morse <[email protected]>
Cc: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
The SDEI support code is split across arch/arm64/ and drivers/firmware/,
largley this is split so that the arch-specific portions are under
arch/arm64, and the management logic is under drivers/firmware/.
However, exception entry fixups are currently under drivers/firmware.
Let's move the exception entry fixups under arch/arm64/. This
de-clutters the management logic, and puts all the arch-specific
portions in one place. Doing this also allows the fixups to be applied
earlier, so things like PAN and UAO will be in a known good state before
we run other logic. This will also make subsequent refactoring easier.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
As with SCTLR_ELx and other control registers, some PSTATE bits are
UNKNOWN out-of-reset, and we may not be able to rely on hardware or
firmware to initialize them to our liking prior to entry to the kernel,
e.g. in the primary/secondary boot paths and return from idle/suspend.
It would be more robust (and easier to reason about) if we consistently
initialized PSTATE to a default value, as we do with control registers.
This will ensure that the kernel is not adversely affected by bits it is
not aware of, e.g. when support for a feature such as PAN/UAO is
disabled.
This patch ensures that PSTATE is consistently initialized at boot time
via an ERET. This is not intended to relax the existing requirements
(e.g. DAIF bits must still be set prior to entering the kernel). For
features detected dynamically (which may require system-wide support),
it is still necessary to subsequently modify PSTATE.
As ERET is not always a Context Synchronization Event, an ISB is placed
before each exception return to ensure updates to control registers have
taken effect. This handles the kernel being entered with SCTLR_ELx.EOS
clear (or any future control bits being in an UNKNOWN state).
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Let's make SCTLR_ELx initialization a bit clearer by using meaningful
names for the initialization values, following the same scheme for
SCTLR_EL1 and SCTLR_EL2.
These definitions will be used more widely in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
For a while now el2_setup has performed some basic initialization of EL1
even when the kernel is booted at EL1, so the name is a little
misleading. Further, some comments are stale as with VHE it doesn't drop
the CPU to EL1.
To clarify things, rename el2_setup to init_kernel_el, and update
comments to be clearer as to the function's purpose.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
To make callsites easier to read, add trivial C wrappers for the
SET_PSTATE_*() helpers, and convert trivial uses over to these. The new
wrappers will be used further in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
For consistency, all tasks have a pt_regs reserved at the highest
portion of their task stack. Among other things, this ensures that a
task's SP is always pointing within its stack rather than pointing
immediately past the end.
While it is never legitimate to ERET from a kthread, we take pains to
initialize pt_regs for kthreads as if this were legitimate. As this is
never legitimate, the effects of an erroneous return are rarely tested.
Let's simplify things by initializing a kthread's pt_regs such that an
ERET is caught as an illegal exception return, and removing the explicit
initialization of other exception context. Note that as
spectre_v4_enable_task_mitigation() only manipulates the PSTATE within
the unused regs this is safe to remove.
As user tasks will have their exception context initialized via
start_thread() or start_compat_thread(), this should only impact cases
where something has gone very wrong and we'd like that to be clearly
indicated.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
The 3 architectures implementing CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
all have their own version of irq time accounting that dispatch the
cputime to the appropriate index: hardirq, softirq, system, idle,
guest... from an all-in-one function.
Instead of having these ad-hoc versions, move the cputime destination
dispatch decision to the core code and leave only the actual per-index
cputime accounting to the architecture.
Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
s390 has its own version of IRQ entry accounting because it doesn't
account the idle time the same way the other architectures do. Only
the actual idle sleep time is accounted as idle time, the rest of the
idle task execution is accounted as system time.
Make the generic IRQ entry accounting aware of architectures that have
their own way of accounting idle time and convert s390 to use it.
This prepares s390 to get involved in further consolidations of IRQ
time accounting.
Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
account_irq_enter_time() and account_irq_exit_time() are not called
from modules. EXPORT_SYMBOL_GPL() can be safely removed from the IRQ
cputime accounting functions called from there.
Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
As part of removing broken pm-support from s390 arch, remove
the pm callbacks from ccw-bus driver.The power-management functions
are unused since the 'commit 394216275c7d ("s390: remove broken
hibernate / power management support")'.
Signed-off-by: Vineeth Vijayan <[email protected]>
Reviewed-by: Peter Oberparleiter <[email protected]>
Signed-off-by: Heiko Carstens <[email protected]>
|