aboutsummaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)AuthorFilesLines
2022-04-29KVM: x86/mmu: pull computation of kvm_mmu_role_regs to kvm_init_mmuPaolo Bonzini1-13/+15
The init_kvm_*mmu functions, with the exception of shadow NPT, do not need to know the full values of CR0/CR4/EFER; they only need to know the bits that make up the "role". This cleanup however will take quite a few incremental steps. As a start, pull the common computation of the struct kvm_mmu_role_regs into their caller: all of them extract the struct from the vcpu as the very first step. Reviewed-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: x86/mmu: constify uses of struct kvm_mmu_role_regsPaolo Bonzini1-11/+15
struct kvm_mmu_role_regs is computed just once and then accessed. Use const to make this clearer, even though the const fields of struct kvm_mmu_role_regs already prevent (or make it harder...) to modify the contents of the struct. Reviewed-by: David Matlack <dmatlack@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: x86/mmu: nested EPT cannot be used in SMMPaolo Bonzini1-3/+5
The role.base.smm flag is always zero when setting up shadow EPT, do not bother copying it over from vcpu->arch.root_mmu. Reviewed-by: David Matlack <dmatlack@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: x86/mmu: Use enable_mmio_caching to track if MMIO caching is enabledSean Christopherson3-3/+8
Clear enable_mmio_caching if hardware can't support MMIO caching and use the dedicated flag to detect if MMIO caching is enabled instead of assuming shadow_mmio_value==0 means MMIO caching is disabled. TDX will use a zero value even when caching is enabled, and is_mmio_spte() isn't so hot that it needs to avoid an extra memory access, i.e. there's no reason to be super clever. And the clever approach may not even be more performant, e.g. gcc-11 lands the extra check on a non-zero value inline, but puts the enable_mmio_caching out-of-line, i.e. avoids the few extra uops for non-MMIO SPTEs. Cc: Isaku Yamahata <isaku.yamahata@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220420002747.3287931-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: x86/mmu: Check for host MMIO exclusion from mem encrypt iff necessarySean Christopherson1-1/+1
When determining whether or not a SPTE needs to have SME/SEV's memory encryption flag set, do the moderately expensive host MMIO pfn check if and only if the memory encryption mask is non-zero. Note, KVM could further optimize the host MMIO checks by making a single call to kvm_is_mmio_pfn(), but the tdp_enabled path (for EPT's memtype handling) will likely be split out to a separate flow[*]. At that point, a better approach would be to shove the call to kvm_is_mmio_pfn() into VMX code so that AMD+NPT without SME doesn't get hit with an unnecessary lookup. [*] https://lkml.kernel.org/r/20220321224358.1305530-3-bgardon@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220415004909.2216670-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX interceptsBabu Moger4-2/+11
The TSC_AUX virtualization feature allows AMD SEV-ES guests to securely use TSC_AUX (auxiliary time stamp counter data) in the RDTSCP and RDPID instructions. The TSC_AUX value is set using the WRMSR instruction to the TSC_AUX MSR (0xC0000103). It is read by the RDMSR, RDTSCP and RDPID instructions. If the read/write of the TSC_AUX MSR is intercepted, then RDTSCP and RDPID must also be intercepted when TSC_AUX virtualization is present. However, the RDPID instruction can't be intercepted. This means that when TSC_AUX virtualization is present, RDTSCP and TSC_AUX MSR read/write must not be intercepted for SEV-ES (or SEV-SNP) guests. Signed-off-by: Babu Moger <babu.moger@amd.com> Message-Id: <165040164424.1399644.13833277687385156344.stgit@bmoger-ubuntu> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29x86/cpufeatures: Add virtual TSC_AUX feature bitBabu Moger1-0/+1
The TSC_AUX Virtualization feature allows AMD SEV-ES guests to securely use TSC_AUX (auxiliary time stamp counter data) MSR in RDTSCP and RDPID instructions. The TSC_AUX MSR is typically initialized to APIC ID or another unique identifier so that software can quickly associate returned TSC value with the logical processor. Add the feature bit and also include it in the kvm for detection. Signed-off-by: Babu Moger <babu.moger@amd.com> Acked-by: Borislav Petkov <bp@suse.de> Message-Id: <165040157111.1399644.6123821125319995316.stgit@bmoger-ubuntu> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29Merge branch 'kvm-fixes-for-5.18-rc5' into HEADPaolo Bonzini6-24/+91
Fixes for (relatively) old bugs, to be merged in both the -rc and next development trees. The merge reconciles the ABI fixes for KVM_EXIT_SYSTEM_EVENT between 5.18 and commit c24a950ec7d6 ("KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata for SEV-ES", 2022-04-13).
2022-04-29Revert "x86/mm: Introduce lookup_address_in_mm()"Sean Christopherson2-15/+0
Drop lookup_address_in_mm() now that KVM is providing it's own variant of lookup_address_in_pgd() that is safe for use with user addresses, e.g. guards against page tables being torn down. A variant that provides a non-init mm is inherently dangerous and flawed, as the only reason to use an mm other than init_mm is to walk a userspace mapping, and lookup_address_in_pgd() does not play nice with userspace mappings, e.g. doesn't disable IRQs to block TLB shootdowns and doesn't use READ_ONCE() to ensure an upper level entry isn't converted to a huge page between checking the PAGE_SIZE bit and grabbing the address of the next level down. This reverts commit 13c72c060f1ba6f4eddd7b1c4f52a8aded43d6d9. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <YmwIi3bXr/1yhYV/@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29Merge branch 'kvm-fixes-for-5.18-rc5' into HEADPaolo Bonzini5-21/+89
Fixes for (relatively) old bugs, to be merged in both the -rc and next development trees: * Fix potential races when walking host page table * Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT * Fix shadow page table leak when KVM runs nested
2022-04-29KVM: x86/mmu: fix potential races when walking host page tableMingwei Zhang1-5/+42
KVM uses lookup_address_in_mm() to detect the hugepage size that the host uses to map a pfn. The function suffers from several issues: - no usage of READ_ONCE(*). This allows multiple dereference of the same page table entry. The TOCTOU problem because of that may cause KVM to incorrectly treat a newly generated leaf entry as a nonleaf one, and dereference the content by using its pfn value. - the information returned does not match what KVM needs; for non-present entries it returns the level at which the walk was terminated, as long as the entry is not 'none'. KVM needs level information of only 'present' entries, otherwise it may regard a non-present PXE entry as a present large page mapping. - the function is not safe for mappings that can be torn down, because it does not disable IRQs and because it returns a PTE pointer which is never safe to dereference after the function returns. So implement the logic for walking host page tables directly in KVM, and stop using lookup_address_in_mm(). Cc: Sean Christopherson <seanjc@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20220429031757.2042406-1-mizhang@google.com> [Inline in host_pfn_mapping_level, ensure no semantic change for its callers. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: fix bad user ABI for KVM_EXIT_SYSTEM_EVENTPaolo Bonzini1-0/+2
When KVM_EXIT_SYSTEM_EVENT was introduced, it included a flags member that at the time was unused. Unfortunately this extensibility mechanism has several issues: - x86 is not writing the member, so it would not be possible to use it on x86 except for new events - the member is not aligned to 64 bits, so the definition of the uAPI struct is incorrect for 32- on 64-bit userspace. This is a problem for RISC-V, which supports CONFIG_KVM_COMPAT, but fortunately usage of flags was only introduced in 5.18. Since padding has to be introduced, place a new field in there that tells if the flags field is valid. To allow further extensibility, in fact, change flags to an array of 16 values, and store how many of the values are valid. The availability of the new ndata field is tied to a system capability; all architectures are changed to fill in the field. To avoid breaking compilation of userspace that was using the flags field, provide a userspace-only union to overlap flags with data[0]. The new field is placed at the same offset for both 32- and 64-bit userspace. Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Peter Gonda <pgonda@google.com> Cc: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reported-by: kernel test robot <lkp@intel.com> Message-Id: <20220422103013.34832-1-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29KVM: x86/mmu: Do not create SPTEs for GFNs that exceed host.MAXPHYADDRSean Christopherson5-16/+45
Disallow memslots and MMIO SPTEs whose gpa range would exceed the host's MAXPHYADDR, i.e. don't create SPTEs for gfns that exceed host.MAXPHYADDR. The TDP MMU bounds its zapping based on host.MAXPHYADDR, and so if the guest, possibly with help from userspace, manages to coerce KVM into creating a SPTE for an "impossible" gfn, KVM will leak the associated shadow pages (page tables): WARNING: CPU: 10 PID: 1122 at arch/x86/kvm/mmu/tdp_mmu.c:57 kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm] Modules linked in: kvm_intel kvm irqbypass CPU: 10 PID: 1122 Comm: set_memory_regi Tainted: G W 5.18.0-rc1+ #293 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm] Call Trace: <TASK> kvm_arch_destroy_vm+0x130/0x1b0 [kvm] kvm_destroy_vm+0x162/0x2d0 [kvm] kvm_vm_release+0x1d/0x30 [kvm] __fput+0x82/0x240 task_work_run+0x5b/0x90 exit_to_user_mode_prepare+0xd2/0xe0 syscall_exit_to_user_mode+0x1d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK> On bare metal, encountering an impossible gpa in the page fault path is well and truly impossible, barring CPU bugs, as the CPU will signal #PF during the gva=>gpa translation (or a similar failure when stuffing a physical address into e.g. the VMCS/VMCB). But if KVM is running as a VM itself, the MAXPHYADDR enumerated to KVM may not be the actual MAXPHYADDR of the underlying hardware, in which case the hardware will not fault on the illegal-from-KVM's-perspective gpa. Alternatively, KVM could continue allowing the dodgy behavior and simply zap the max possible range. But, for hosts with MAXPHYADDR < 52, that's a (minor) waste of cycles, and more importantly, KVM can't reasonably support impossible memslots when running on bare metal (or with an accurate MAXPHYADDR as a VM). Note, limiting the overhead by checking if KVM is running as a guest is not a safe option as the host isn't required to announce itself to the guest in any way, e.g. doesn't need to set the HYPERVISOR CPUID bit. A second alternative to disallowing the memslot behavior would be to disallow creating a VM with guest.MAXPHYADDR > host.MAXPHYADDR. That restriction is undesirable as there are legitimate use cases for doing so, e.g. using the highest host.MAXPHYADDR out of a pool of heterogeneous systems so that VMs can be migrated between hosts with different MAXPHYADDRs without running afoul of the allow_smaller_maxphyaddr mess. Note that any guest.MAXPHYADDR is valid with shadow paging, and it is even useful in order to test KVM with MAXPHYADDR=52 (i.e. without any reserved physical address bits). The now common kvm_mmu_max_gfn() is inclusive instead of exclusive. The memslot and TDP MMU code want an exclusive value, but the name implies the returned value is inclusive, and the MMIO path needs an inclusive check. Fixes: faaf05b00aec ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU") Fixes: 524a1e4e381f ("KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs") Cc: stable@vger.kernel.org Cc: Maxim Levitsky <mlevitsk@redhat.com> Cc: Ben Gardon <bgardon@google.com> Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220428233416.2446833-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29x86/pci/xen: Disable PCI/MSI[-X] masking for XEN_HVM guestsThomas Gleixner1-1/+5
When a XEN_HVM guest uses the XEN PIRQ/Eventchannel mechanism, then PCI/MSI[-X] masking is solely controlled by the hypervisor, but contrary to XEN_PV guests this does not disable PCI/MSI[-X] masking in the PCI/MSI layer. This can lead to a situation where the PCI/MSI layer masks an MSI[-X] interrupt and the hypervisor grants the write despite the fact that it already requested the interrupt. As a consequence interrupt delivery on the affected device is not happening ever. Set pci_msi_ignore_mask to prevent that like it's done for XEN_PV guests already. Fixes: 809f9267bbab ("xen: map MSIs into pirqs") Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Reported-by: Dusty Mabe <dustymabe@redhat.com> Reported-by: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Noah Meyerhans <noahm@debian.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87tuaduxj5.ffs@tglx
2022-04-24Merge tag 'perf_urgent_for_v5.18_rc4' of ↵Linus Torvalds1-3/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Borislav Petkov: - Add Sapphire Rapids CPU support - Fix a perf vmalloc-ed buffer mapping error (PERF_USE_VMALLOC in use) * tag 'perf_urgent_for_v5.18_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/cstate: Add SAPPHIRERAPIDS_X CPU support perf/core: Fix perf_mmap fail when CONFIG_PERF_USE_VMALLOC enabled
2022-04-22Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds13-64/+110
Pull kvm fixes from Paolo Bonzini: "The main and larger change here is a workaround for AMD's lack of cache coherency for encrypted-memory guests. I have another patch pending, but it's waiting for review from the architecture maintainers. RISC-V: - Remove 's' & 'u' as valid ISA extension - Do not allow disabling the base extensions 'i'/'m'/'a'/'c' x86: - Fix NMI watchdog in guests on AMD - Fix for SEV cache incoherency issues - Don't re-acquire SRCU lock in complete_emulated_io() - Avoid NULL pointer deref if VM creation fails - Fix race conditions between APICv disabling and vCPU creation - Bugfixes for disabling of APICv - Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume selftests: - Do not use bitfields larger than 32-bits, they differ between GCC and clang" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: kvm: selftests: introduce and use more page size-related constants kvm: selftests: do not use bitfields larger than 32-bits for PTEs KVM: SEV: add cache flush to solve SEV cache incoherency issues KVM: SVM: Flush when freeing encrypted pages even on SME_COHERENT CPUs KVM: SVM: Simplify and harden helper to flush SEV guest page(s) KVM: selftests: Silence compiler warning in the kvm_page_table_test KVM: x86/pmu: Update AMD PMC sample period to fix guest NMI-watchdog x86/kvm: Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume KVM: SPDX style and spelling fixes KVM: x86: Skip KVM_GUESTDBG_BLOCKIRQ APICv update if APICv is disabled KVM: x86: Pend KVM_REQ_APICV_UPDATE during vCPU creation to fix a race KVM: nVMX: Defer APICv updates while L2 is active until L1 is active KVM: x86: Tag APICv DISABLE inhibit, not ABSENT, if APICv is disabled KVM: Initialize debugfs_dentry when a VM is created to avoid NULL deref KVM: Add helpers to wrap vcpu->srcu_idx and yell if it's abused KVM: RISC-V: Use kvm_vcpu.srcu_idx, drop RISC-V's unnecessary copy KVM: x86: Don't re-acquire SRCU lock in complete_emulated_io() RISC-V: KVM: Restrict the extensions that can be disabled RISC-V: KVM: Remove 's' & 'u' as valid ISA extension
2022-04-21KVM: SEV: add cache flush to solve SEV cache incoherency issuesMingwei Zhang6-0/+18
Flush the CPU caches when memory is reclaimed from an SEV guest (where reclaim also includes it being unmapped from KVM's memslots). Due to lack of coherency for SEV encrypted memory, failure to flush results in silent data corruption if userspace is malicious/broken and doesn't ensure SEV guest memory is properly pinned and unpinned. Cache coherency is not enforced across the VM boundary in SEV (AMD APM vol.2 Section 15.34.7). Confidential cachelines, generated by confidential VM guests have to be explicitly flushed on the host side. If a memory page containing dirty confidential cachelines was released by VM and reallocated to another user, the cachelines may corrupt the new user at a later time. KVM takes a shortcut by assuming all confidential memory remain pinned until the end of VM lifetime. Therefore, KVM does not flush cache at mmu_notifier invalidation events. Because of this incorrect assumption and the lack of cache flushing, malicous userspace can crash the host kernel: creating a malicious VM and continuously allocates/releases unpinned confidential memory pages when the VM is running. Add cache flush operations to mmu_notifier operations to ensure that any physical memory leaving the guest VM get flushed. In particular, hook mmu_notifier_invalidate_range_start and mmu_notifier_release events and flush cache accordingly. The hook after releasing the mmu lock to avoid contention with other vCPUs. Cc: stable@vger.kernel.org Suggested-by: Sean Christpherson <seanjc@google.com> Reported-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20220421031407.2516575-4-mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: SVM: Flush when freeing encrypted pages even on SME_COHERENT CPUsMingwei Zhang1-3/+6
Use clflush_cache_range() to flush the confidential memory when SME_COHERENT is supported in AMD CPU. Cache flush is still needed since SME_COHERENT only support cache invalidation at CPU side. All confidential cache lines are still incoherent with DMA devices. Cc: stable@vger.kerel.org Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA") Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20220421031407.2516575-3-mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: SVM: Simplify and harden helper to flush SEV guest page(s)Sean Christopherson1-34/+20
Rework sev_flush_guest_memory() to explicitly handle only a single page, and harden it to fall back to WBINVD if VM_PAGE_FLUSH fails. Per-page flushing is currently used only to flush the VMSA, and in its current form, the helper is completely broken with respect to flushing actual guest memory, i.e. won't work correctly for an arbitrary memory range. VM_PAGE_FLUSH takes a host virtual address, and is subject to normal page walks, i.e. will fault if the address is not present in the host page tables or does not have the correct permissions. Current AMD CPUs also do not honor SMAP overrides (undocumented in kernel versions of the APM), so passing in a userspace address is completely out of the question. In other words, KVM would need to manually walk the host page tables to get the pfn, ensure the pfn is stable, and then use the direct map to invoke VM_PAGE_FLUSH. And the latter might not even work, e.g. if userspace is particularly evil/clever and backs the guest with Secret Memory (which unmaps memory from the direct map). Signed-off-by: Sean Christopherson <seanjc@google.com> Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA") Reported-by: Mingwei Zhang <mizhang@google.com> Cc: stable@vger.kernel.org Signed-off-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20220421031407.2516575-2-mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: x86/pmu: Update AMD PMC sample period to fix guest NMI-watchdogLike Xu3-6/+12
NMI-watchdog is one of the favorite features of kernel developers, but it does not work in AMD guest even with vPMU enabled and worse, the system misrepresents this capability via /proc. This is a PMC emulation error. KVM does not pass the latest valid value to perf_event in time when guest NMI-watchdog is running, thus the perf_event corresponding to the watchdog counter will enter the old state at some point after the first guest NMI injection, forcing the hardware register PMC0 to be constantly written to 0x800000000001. Meanwhile, the running counter should accurately reflect its new value based on the latest coordinated pmc->counter (from vPMC's point of view) rather than the value written directly by the guest. Fixes: 168d918f2643 ("KVM: x86: Adjust counter sample period after a wrmsr") Reported-by: Dongli Cao <caodongli@kingsoft.com> Signed-off-by: Like Xu <likexu@tencent.com> Reviewed-by: Yanan Wang <wangyanan55@huawei.com> Tested-by: Yanan Wang <wangyanan55@huawei.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20220409015226.38619-1-likexu@tencent.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21x86/kvm: Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resumeWanpeng Li1-0/+13
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to host-side polling after suspend/resume. Non-bootstrap CPUs are restored correctly by the haltpoll driver because they are hot-unplugged during suspend and hot-plugged during resume; however, the BSP is not hotpluggable and remains in host-sde polling mode after the guest resume. The makes the guest pay for the cost of vmexits every time the guest enters idle. Fix it by recording BSP's haltpoll state and resuming it during guest resume. Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: x86: Skip KVM_GUESTDBG_BLOCKIRQ APICv update if APICv is disabledSean Christopherson1-0/+3
Skip the APICv inhibit update for KVM_GUESTDBG_BLOCKIRQ if APICv is disabled at the module level to avoid having to acquire the mutex and potentially process all vCPUs. The DISABLE inhibit will (barring bugs) never be lifted, so piling on more inhibits is unnecessary. Fixes: cae72dcc3b21 ("KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active") Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220420013732.3308816-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: x86: Pend KVM_REQ_APICV_UPDATE during vCPU creation to fix a raceSean Christopherson1-1/+14
Make a KVM_REQ_APICV_UPDATE request when creating a vCPU with an in-kernel local APIC and APICv enabled at the module level. Consuming kvm_apicv_activated() and stuffing vcpu->arch.apicv_active directly can race with __kvm_set_or_clear_apicv_inhibit(), as vCPU creation happens before the vCPU is fully onlined, i.e. it won't get the request made to "all" vCPUs. If APICv is globally inhibited between setting apicv_active and onlining the vCPU, the vCPU will end up running with APICv enabled and trigger KVM's sanity check. Mark APICv as active during vCPU creation if APICv is enabled at the module level, both to be optimistic about it's final state, e.g. to avoid additional VMWRITEs on VMX, and because there are likely bugs lurking since KVM checks apicv_active in multiple vCPU creation paths. While keeping the current behavior of consuming kvm_apicv_activated() is arguably safer from a regression perspective, force apicv_active so that vCPU creation runs with deterministic state and so that if there are bugs, they are found sooner than later, i.e. not when some crazy race condition is hit. WARNING: CPU: 0 PID: 484 at arch/x86/kvm/x86.c:9877 vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877 Modules linked in: CPU: 0 PID: 484 Comm: syz-executor361 Not tainted 5.16.13 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1~cloud0 04/01/2014 RIP: 0010:vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877 Call Trace: <TASK> vcpu_run arch/x86/kvm/x86.c:10039 [inline] kvm_arch_vcpu_ioctl_run+0x337/0x15e0 arch/x86/kvm/x86.c:10234 kvm_vcpu_ioctl+0x4d2/0xc80 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3727 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x16d/0x1d0 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The bug was hit by a syzkaller spamming VM creation with 2 vCPUs and a call to KVM_SET_GUEST_DEBUG. r0 = openat$kvm(0xffffffffffffff9c, &(0x7f0000000000), 0x0, 0x0) r1 = ioctl$KVM_CREATE_VM(r0, 0xae01, 0x0) ioctl$KVM_CAP_SPLIT_IRQCHIP(r1, 0x4068aea3, &(0x7f0000000000)) (async) r2 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x0) (async) r3 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x400000000000002) ioctl$KVM_SET_GUEST_DEBUG(r3, 0x4048ae9b, &(0x7f00000000c0)={0x5dda9c14aa95f5c5}) ioctl$KVM_RUN(r2, 0xae80, 0x0) Reported-by: Gaoning Pan <pgn@zju.edu.cn> Reported-by: Yongkang Jia <kangel@zju.edu.cn> Fixes: 8df14af42f00 ("kvm: x86: Add support for dynamic APICv activation") Cc: stable@vger.kernel.org Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220420013732.3308816-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: nVMX: Defer APICv updates while L2 is active until L1 is activeSean Christopherson3-0/+11
Defer APICv updates that occur while L2 is active until nested VM-Exit, i.e. until L1 regains control. vmx_refresh_apicv_exec_ctrl() assumes L1 is active and (a) stomps all over vmcs02 and (b) neglects to ever updated vmcs01. E.g. if vmcs12 doesn't enable the TPR shadow for L2 (and thus no APICv controls), L1 performs nested VM-Enter APICv inhibited, and APICv becomes unhibited while L2 is active, KVM will set various APICv controls in vmcs02 and trigger a failed VM-Entry. The kicker is that, unless running with nested_early_check=1, KVM blames L1 and chaos ensues. In all cases, ignoring vmcs02 and always deferring the inhibition change to vmcs01 is correct (or at least acceptable). The ABSENT and DISABLE inhibitions cannot truly change while L2 is active (see below). IRQ_BLOCKING can change, but it is firmly a best effort debug feature. Furthermore, only L2's APIC is accelerated/virtualized to the full extent possible, e.g. even if L1 passes through its APIC to L2, normal MMIO/MSR interception will apply to the virtual APIC managed by KVM. The exception is the SELF_IPI register when x2APIC is enabled, but that's an acceptable hole. Lastly, Hyper-V's Auto EOI can technically be toggled if L1 exposes the MSRs to L2, but for that to work in any sane capacity, L1 would need to pass through IRQs to L2 as well, and IRQs must be intercepted to enable virtual interrupt delivery. I.e. exposing Auto EOI to L2 and enabling VID for L2 are, for all intents and purposes, mutually exclusive. Lack of dynamic toggling is also why this scenario is all but impossible to encounter in KVM's current form. But a future patch will pend an APICv update request _during_ vCPU creation to plug a race where a vCPU that's being created doesn't get included in the "all vCPUs request" because it's not yet visible to other vCPUs. If userspaces restores L2 after VM creation (hello, KVM selftests), the first KVM_RUN will occur while L2 is active and thus service the APICv update request made during VM creation. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220420013732.3308816-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: x86: Tag APICv DISABLE inhibit, not ABSENT, if APICv is disabledSean Christopherson1-1/+1
Set the DISABLE inhibit, not the ABSENT inhibit, if APICv is disabled via module param. A recent refactoring to add a wrapper for setting/clearing inhibits unintentionally changed the flag, probably due to a copy+paste goof. Fixes: 4f4c4a3ee53c ("KVM: x86: Trace all APICv inhibit changes and capture overall status") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220420013732.3308816-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: Add helpers to wrap vcpu->srcu_idx and yell if it's abusedSean Christopherson1-15/+13
Add wrappers to acquire/release KVM's SRCU lock when stashing the index in vcpu->src_idx, along with rudimentary detection of illegal usage, e.g. re-acquiring SRCU and thus overwriting vcpu->src_idx. Because the SRCU index is (currently) either 0 or 1, illegal nesting bugs can go unnoticed for quite some time and only cause problems when the nested lock happens to get a different index. Wrap the WARNs in PROVE_RCU=y, and make them ONCE, otherwise KVM will likely yell so loudly that it will bring the kernel to its knees. Signed-off-by: Sean Christopherson <seanjc@google.com> Tested-by: Fabiano Rosas <farosas@linux.ibm.com> Message-Id: <20220415004343.2203171-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21KVM: x86: Don't re-acquire SRCU lock in complete_emulated_io()Sean Christopherson1-6/+1
Don't re-acquire SRCU in complete_emulated_io() now that KVM acquires the lock in kvm_arch_vcpu_ioctl_run(). More importantly, don't overwrite vcpu->srcu_idx. If the index acquired by complete_emulated_io() differs from the one acquired by kvm_arch_vcpu_ioctl_run(), KVM will effectively leak a lock and hang if/when synchronize_srcu() is invoked for the relevant grace period. Fixes: 8d25b7beca7e ("KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220415004343.2203171-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-20x86: __memcpy_flushcache: fix wrong alignment if size > 2^32Mikulas Patocka1-1/+1
The first "if" condition in __memcpy_flushcache is supposed to align the "dest" variable to 8 bytes and copy data up to this alignment. However, this condition may misbehave if "size" is greater than 4GiB. The statement min_t(unsigned, size, ALIGN(dest, 8) - dest); casts both arguments to unsigned int and selects the smaller one. However, the cast truncates high bits in "size" and it results in misbehavior. For example: suppose that size == 0x100000001, dest == 0x200000002 min_t(unsigned, size, ALIGN(dest, 8) - dest) == min_t(0x1, 0xe) == 0x1; ... dest += 0x1; so we copy just one byte "and" dest remains unaligned. This patch fixes the bug by replacing unsigned with size_t. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-19x86/uaccess: Don't jump between functionsJosh Poimboeuf1-35/+52
For unwinding sanity, a function shouldn't jump to the middle of another function. Move the short string user copy code out to a separate non-function code snippet. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/9519e4853148b765e047967708f2b61e56c93186.1649718562.git.jpoimboe@redhat.com
2022-04-19x86/Kconfig: fix the spelling of 'becoming' in X86_KERNEL_IBT configNur Hussein1-1/+1
There is only one m in becoming. Signed-off-by: Nur Hussein <hussein@unixcat.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220417192454.10247-1-hussein@unixcat.org
2022-04-19x86/xen: Add ANNOTATE_NOENDBR to startup_xen()Josh Poimboeuf1-0/+1
The startup_xen() kernel entry point is referenced by the ".note.Xen" section, and is the real entry point of the VM. Control transfer is through IRET, which *could* set NEED_ENDBR, however Xen currently does no such thing. Add ANNOTATE_NOENDBR to silence future objtool warnings. Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com> Link: https://lkml.kernel.org/r/a87bd48b06d11ec4b98122a429e71e489b4e48c3.1650300597.git.jpoimboe@redhat.com
2022-04-19x86/uaccess: Add ENDBR to __put_user_nocheck*()Josh Poimboeuf1-0/+4
The __put_user_nocheck*() inner labels are exported, so in keeping with the "allow exported functions to be indirectly called" policy, add ENDBR. Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/207f02177a23031091d1a608de6049a9e5e8ff80.1650300597.git.jpoimboe@redhat.com
2022-04-19x86/retpoline: Add ANNOTATE_NOENDBR for retpolinesJosh Poimboeuf1-1/+1
The retpolines are exported, so they're referenced by ksymtab sections. But they're never indirect-branched to, so add ANNOTATE_NOENDBR. Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/b6ec963dfd9301b6b1d74ef7758fcb0b540d6c6c.1650300597.git.jpoimboe@redhat.com
2022-04-19x86/static_call: Add ANNOTATE_NOENDBR to static call trampolineJosh Poimboeuf1-0/+1
The static call trampoline is never indirect-branched to, but is referenced by the static call key. Add ANNOTATE_NOENDBR. Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1b5b54aad7d81241dabe5e0c9b40dea64b540b00.1650300597.git.jpoimboe@redhat.com
2022-04-19x86,objtool: Explicitly mark idtentry_body()s tail REACHABLEPeter Zijlstra1-0/+3
Objtool can figure out that some \cfunc()s are noreturn and then complains about certain instances having unreachable tails: vmlinux.o: warning: objtool: asm_exc_xen_unknown_trap()+0x16: unreachable instruction Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220408094718.441854969@infradead.org
2022-04-19x86,xen,objtool: Add UNWIND hintPeter Zijlstra1-0/+1
SYM_CODE_START*() doesn't get auto-validated and needs an UNWIND hint to get checked, add one. vmlinux.o: warning: objtool: pvh_start_xen()+0x0: unreachable Reported-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220408094718.321246297@infradead.org
2022-04-19x86/unwind/orc: Recheck address range after stack info was updatedDmitry Monakhov1-4/+4
A crash was observed in the ORC unwinder: BUG: stack guard page was hit at 000000000dd984a2 (stack is 00000000d1caafca..00000000613712f0) kernel stack overflow (page fault): 0000 [#1] SMP NOPTI CPU: 93 PID: 23787 Comm: context_switch1 Not tainted 5.4.145 #1 RIP: 0010:unwind_next_frame Call Trace: <NMI> perf_callchain_kernel get_perf_callchain perf_callchain perf_prepare_sample perf_event_output_forward __perf_event_overflow perf_ibs_handle_irq perf_ibs_nmi_handler nmi_handle default_do_nmi do_nmi end_repeat_nmi This was really two bugs: 1) The perf IBS code passed inconsistent regs to the unwinder. 2) The unwinder didn't handle the bad input gracefully. Fix the latter bug. The ORC unwinder needs to be immune against bad inputs. The problem is that stack_access_ok() doesn't recheck the validity of the full range of registers after switching to the next valid stack with get_stack_info(). Fix that. [ jpoimboe: rewrote commit log ] Signed-off-by: Dmitry Monakhov <dmtrmonakhov@yandex-team.ru> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/1650353656-956624-1-git-send-email-dmtrmonakhov@yandex-team.ru Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2022-04-19perf/x86/cstate: Add SAPPHIRERAPIDS_X CPU supportZhang Rui1-3/+4
From the perspective of Intel cstate residency counters, SAPPHIRERAPIDS_X is the same as ICELAKE_X. Share the code with it. And update the comments for SAPPHIRERAPIDS_X. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lkml.kernel.org/r/20220415104520.2737004-1-rui.zhang@intel.com
2022-04-19x86/cpu: Load microcode during restore_processor_state()Borislav Petkov3-4/+14
When resuming from system sleep state, restore_processor_state() restores the boot CPU MSRs. These MSRs could be emulated by microcode. If microcode is not loaded yet, writing to emulated MSRs leads to unchecked MSR access error: ... PM: Calling lapic_suspend+0x0/0x210 unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0...0) at rIP: ... (native_write_msr) Call Trace: <TASK> ? restore_processor_state x86_acpi_suspend_lowlevel acpi_suspend_enter suspend_devices_and_enter pm_suspend.cold state_store kobj_attr_store sysfs_kf_write kernfs_fop_write_iter new_sync_write vfs_write ksys_write __x64_sys_write do_syscall_64 entry_SYSCALL_64_after_hwframe RIP: 0033:0x7fda13c260a7 To ensure microcode emulated MSRs are available for restoration, load the microcode on the boot CPU before restoring these MSRs. [ Pawan: write commit message and productize it. ] Fixes: e2a1256b17b1 ("x86/speculation: Restore speculation related MSRs during S3 resume") Reported-by: Kyle D. Pelton <kyle.d.pelton@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Tested-by: Kyle D. Pelton <kyle.d.pelton@intel.com> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=215841 Link: https://lore.kernel.org/r/4350dfbf785cd482d3fafa72b2b49c83102df3ce.1650386317.git.pawan.kumar.gupta@linux.intel.com
2022-04-19x86/cpu: Add new Alderlake and Raptorlake CPU model numbersTony Luck1-0/+3
Intel is subdividing the mobile segment with additional models with the same codename. Using the Intel "N" and "P" suffices for these will be less confusing than trying to map to some different naming convention. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/YlS7n7Xtso9BXZA2@agluck-desk3.sc.intel.com
2022-04-17Merge tag 'x86-urgent-2022-04-17' of ↵Linus Torvalds5-22/+100
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "Two x86 fixes related to TSX: - Use either MSR_TSX_FORCE_ABORT or MSR_IA32_TSX_CTRL to disable TSX to cover all CPUs which allow to disable it. - Disable TSX development mode at boot so that a microcode update which provides TSX development mode does not suddenly make the system vulnerable to TSX Asynchronous Abort" * tag 'x86-urgent-2022-04-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tsx: Disable TSX development mode at boot x86/tsx: Use MSR_TSX_CTRL to clear CPUID bits
2022-04-15mm/vmalloc: fix spinning drain_vmap_work after reading from /proc/vmcoreOmar Sandoval2-3/+0
Commit 3ee48b6af49c ("mm, x86: Saving vmcore with non-lazy freeing of vmas") introduced set_iounmap_nonlazy(), which sets vmap_lazy_nr to lazy_max_pages() + 1, ensuring that any future vunmaps() immediately purge the vmap areas instead of doing it lazily. Commit 690467c81b1a ("mm/vmalloc: Move draining areas out of caller context") moved the purging from the vunmap() caller to a worker thread. Unfortunately, set_iounmap_nonlazy() can cause the worker thread to spin (possibly forever). For example, consider the following scenario: 1. Thread reads from /proc/vmcore. This eventually calls __copy_oldmem_page() -> set_iounmap_nonlazy(), which sets vmap_lazy_nr to lazy_max_pages() + 1. 2. Then it calls free_vmap_area_noflush() (via iounmap()), which adds 2 pages (one page plus the guard page) to the purge list and vmap_lazy_nr. vmap_lazy_nr is now lazy_max_pages() + 3, so the drain_vmap_work is scheduled. 3. Thread returns from the kernel and is scheduled out. 4. Worker thread is scheduled in and calls drain_vmap_area_work(). It frees the 2 pages on the purge list. vmap_lazy_nr is now lazy_max_pages() + 1. 5. This is still over the threshold, so it tries to purge areas again, but doesn't find anything. 6. Repeat 5. If the system is running with only one CPU (which is typicial for kdump) and preemption is disabled, then this will never make forward progress: there aren't any more pages to purge, so it hangs. If there is more than one CPU or preemption is enabled, then the worker thread will spin forever in the background. (Note that if there were already pages to be purged at the time that set_iounmap_nonlazy() was called, this bug is avoided.) This can be reproduced with anything that reads from /proc/vmcore multiple times. E.g., vmcore-dmesg /proc/vmcore. It turns out that improvements to vmap() over the years have obsoleted the need for this "optimization". I benchmarked `dd if=/proc/vmcore of=/dev/null` with 4k and 1M read sizes on a system with a 32GB vmcore. The test was run on 5.17, 5.18-rc1 with a fix that avoided the hang, and 5.18-rc1 with set_iounmap_nonlazy() removed entirely: |5.17 |5.18+fix|5.18+removal 4k|40.86s| 40.09s| 26.73s 1M|24.47s| 23.98s| 21.84s The removal was the fastest (by a wide margin with 4k reads). This patch removes set_iounmap_nonlazy(). Link: https://lkml.kernel.org/r/52f819991051f9b865e9ce25605509bfdbacadcd.1649277321.git.osandov@fb.com Fixes: 690467c81b1a ("mm/vmalloc: Move draining areas out of caller context") Signed-off-by: Omar Sandoval <osandov@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-13KVM: x86: Bail to userspace if emulation of atomic user access faultsSean Christopherson1-1/+1
Exit to userspace when emulating an atomic guest access if the CMPXCHG on the userspace address faults. Emulating the access as a write and thus likely treating it as emulated MMIO is wrong, as KVM has already confirmed there is a valid, writable memslot. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220202004945.2540433-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM: x86: Use __try_cmpxchg_user() to emulate atomic accessesSean Christopherson1-21/+14
Use the recently introduce __try_cmpxchg_user() to emulate atomic guest accesses via the associated userspace address instead of mapping the backing pfn into kernel address space. Using kvm_vcpu_map() is unsafe as it does not coordinate with KVM's mmu_notifier to ensure the hva=>pfn translation isn't changed/unmapped in the memremap() path, i.e. when there's no struct page and thus no elevated refcount. Fixes: 42e35f8072c3 ("KVM/X86: Use kvm_vcpu_map in emulator_cmpxchg_emulated") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220202004945.2540433-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM: x86: Use __try_cmpxchg_user() to update guest PTE A/D bitsSean Christopherson1-37/+1
Use the recently introduced __try_cmpxchg_user() to update guest PTE A/D bits instead of mapping the PTE into kernel address space. The VM_PFNMAP path is broken as it assumes that vm_pgoff is the base pfn of the mapped VMA range, which is conceptually wrong as vm_pgoff is the offset relative to the file and has nothing to do with the pfn. The horrific hack worked for the original use case (backing guest memory with /dev/mem), but leads to accessing "random" pfns for pretty much any other VM_PFNMAP case. Fixes: bd53cb35a3e9 ("X86/KVM: Handle PFNs outside of kernel reach when touching GPTEs") Debugged-by: Tadeusz Struk <tadeusz.struk@linaro.org> Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org> Reported-by: syzbot+6cde2282daa792c49ab8@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220202004945.2540433-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13x86/uaccess: Implement macros for CMPXCHG on user addressesPeter Zijlstra1-0/+142
Add support for CMPXCHG loops on userspace addresses. Provide both an "unsafe" version for tight loops that do their own uaccess begin/end, as well as a "safe" version for use cases where the CMPXCHG is not buried in a loop, e.g. KVM will resume the guest instead of looping when emulation of a guest atomic accesses fails the CMPXCHG. Provide 8-byte versions for 32-bit kernels so that KVM can do CMPXCHG on guest PAE PTEs, which are accessed via userspace addresses. Guard the asm_volatile_goto() variation with CC_HAS_ASM_GOTO_TIED_OUTPUT, the "+m" constraint fails on some compilers that otherwise support CC_HAS_ASM_GOTO_OUTPUT. Cc: stable@vger.kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220202004945.2540433-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata for SEV-ESPeter Gonda1-2/+7
If an SEV-ES guest requests termination, exit to userspace with KVM_EXIT_SYSTEM_EVENT and a dedicated SEV_TERM type instead of -EINVAL so that userspace can take appropriate action. See AMD's GHCB spec section '4.1.13 Termination Request' for more details. Suggested-by: Sean Christopherson <seanjc@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Peter Gonda <pgonda@google.com> Reported-by: kernel test robot <lkp@intel.com> Message-Id: <20220407210233.782250-1-pgonda@google.com> [Add documentatino. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM: nVMX: Clear IDT vectoring on nested VM-Exit for double/triple faultSean Christopherson2-4/+33
Clear the IDT vectoring field in vmcs12 on next VM-Exit due to a double or triple fault. Per the SDM, a VM-Exit isn't considered to occur during event delivery if the exit is due to an intercepted double fault or a triple fault. Opportunistically move the default clearing (no event "pending") into the helper so that it's more obvious that KVM does indeed handle this case. Note, the double fault case is worded rather wierdly in the SDM: The original event results in a double-fault exception that causes the VM exit directly. Temporarily ignoring injected events, double faults can _only_ occur if an exception occurs while attempting to deliver a different exception, i.e. there's _always_ an original event. And for injected double fault, while there's no original event, injected events are never subject to interception. Presumably the SDM is calling out that a the vectoring info will be valid if a different exit occurs after a double fault, e.g. if a #PF occurs and is intercepted while vectoring #DF, then the vectoring info will show the double fault. In other words, the clause can simply be read as: The VM exit is caused by a double-fault exception. Fixes: 4704d0befb07 ("KVM: nVMX: Exiting from L2 to L1") Cc: Chenyi Qiang <chenyi.qiang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220407002315.78092-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM: nVMX: Leave most VM-Exit info fields unmodified on failed VM-EntrySean Christopherson1-5/+10
Don't modify vmcs12 exit fields except EXIT_REASON and EXIT_QUALIFICATION when performing a nested VM-Exit due to failed VM-Entry. Per the SDM, only the two aformentioned fields are filled and "All other VM-exit information fields are unmodified". Fixes: 4704d0befb07 ("KVM: nVMX: Exiting from L2 to L1") Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220407002315.78092-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13KVM: x86: Drop WARNs that assert a triple fault never "escapes" from L2Sean Christopherson2-6/+0
Remove WARNs that sanity check that KVM never lets a triple fault for L2 escape and incorrectly end up in L1. In normal operation, the sanity check is perfectly valid, but it incorrectly assumes that it's impossible for userspace to induce KVM_REQ_TRIPLE_FAULT without bouncing through KVM_RUN (which guarantees kvm_check_nested_state() will see and handle the triple fault). The WARN can currently be triggered if userspace injects a machine check while L2 is active and CR4.MCE=0. And a future fix to allow save/restore of KVM_REQ_TRIPLE_FAULT, e.g. so that a synthesized triple fault isn't lost on migration, will make it trivially easy for userspace to trigger the WARN. Clearing KVM_REQ_TRIPLE_FAULT when forcibly leaving guest mode is tempting, but wrong, especially if/when the request is saved/restored, e.g. if userspace restores events (including a triple fault) and then restores nested state (which may forcibly leave guest mode). Ignoring the fact that KVM doesn't currently provide the necessary APIs, it's userspace's responsibility to manage pending events during save/restore. ------------[ cut here ]------------ WARNING: CPU: 7 PID: 1399 at arch/x86/kvm/vmx/nested.c:4522 nested_vmx_vmexit+0x7fe/0xd90 [kvm_intel] Modules linked in: kvm_intel kvm irqbypass CPU: 7 PID: 1399 Comm: state_test Not tainted 5.17.0-rc3+ #808 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:nested_vmx_vmexit+0x7fe/0xd90 [kvm_intel] Call Trace: <TASK> vmx_leave_nested+0x30/0x40 [kvm_intel] vmx_set_nested_state+0xca/0x3e0 [kvm_intel] kvm_arch_vcpu_ioctl+0xf49/0x13e0 [kvm] kvm_vcpu_ioctl+0x4b9/0x660 [kvm] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK> ---[ end trace 0000000000000000 ]--- Fixes: cb6a32c2b877 ("KVM: x86: Handle triple fault in L2 without killing L1") Cc: stable@vger.kernel.org Cc: Chenyi Qiang <chenyi.qiang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220407002315.78092-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>