Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
"Enumeration:
- Squash portdrv_{core,pci}.c into portdrv.c to ease maintenance and
make more things static.
- Make portdrv bind to Switch Ports that have AER. Previously, if
these Ports lacked MSI/MSI-X, portdrv failed to bind, which meant
the Ports couldn't be suspended to low-power states. AER on these
Ports doesn't use interrupts, and the AER driver doesn't need to
claim them.
- Assign PCI domain IDs using ida_alloc(), which makes host bridge
add/remove work better.
Resource management:
- To work better with recent BIOSes that use EfiMemoryMappedIO for
PCI host bridge apertures, remove those regions from the E820 map
(E820 entries normally prevent us from allocating BARs). In v5.19,
we added some quirks to disable E820 checking, but that's not very
maintainable. EfiMemoryMappedIO means the OS needs to map the
region for use by EFI runtime services; it shouldn't prevent OS
from using it.
PCIe native device hotplug:
- Build pciehp by default if USB4 is enabled, since Thunderbolt/USB4
PCIe tunneling depends on native PCIe hotplug.
- Enable Command Completed Interrupt only if supported to avoid user
confusion from lspci output that says this is enabled but not
supported.
- Prevent pciehp from binding to Switch Upstream Ports; this happened
because of interaction with acpiphp and caused devices below the
Upstream Port to disappear.
Power management:
- Convert AGP drivers to generic power management. We hope to remove
legacy power management from the PCI core eventually.
Virtualization:
- Fix pci_device_is_present(), which previously always returned
"false" for VFs, causing virtio hangs when unbinding the driver.
Miscellaneous:
- Convert drivers to gpiod API to prepare for dropping some legacy
code.
- Fix DOE fencepost error for the maximum data object length.
Baikal-T1 PCIe controller driver:
- Add driver and DT bindings.
Broadcom STB PCIe controller driver:
- Enable Multi-MSI.
- Delay 100ms after PERST# deassert to allow power and clocks to
stabilize.
- Configure Read Completion Boundary to 64 bytes.
Freescale i.MX6 PCIe controller driver:
- Initialize PHY before deasserting core reset to fix a regression in
v6.0 on boards where the PHY provides the reference.
- Fix imx6sx and imx8mq clock names in DT schema.
Intel VMD host bridge driver:
- Fix Secondary Bus Reset on VMD bridges, which allows reset of NVMe
SSDs in VT-d pass-through scenarios.
- Disable MSI remapping, which gets re-enabled by firmware during
suspend/resume.
MediaTek PCIe Gen3 controller driver:
- Add MT7986 and MT8195 support.
Qualcomm PCIe controller driver:
- Add SC8280XP/SA8540P basic interconnect support.
Rockchip DesignWare PCIe controller driver:
- Base DT schema on common Synopsys schema.
Synopsys DesignWare PCIe core:
- Collect DT items shared between Root Port and Endpoint (PERST GPIO,
PHY info, clocks, resets, link speed, number of lanes, number of
iATU windows, interrupt info, etc) to snps,dw-pcie-common.yaml.
- Add dma-ranges support for Root Ports and Endpoints.
- Consolidate DT resource retrieval for "dbi", "dbi2", "atu", etc. to
reduce code duplication.
- Add generic names for clocks and resets to encourage more
consistent naming across drivers using DesignWare IP.
- Stop advertising PTM Responder role for Endpoints, which aren't
allowed to be responders.
TI J721E PCIe driver:
- Add j721s2 host mode ID to DT schema.
- Add interrupt properties to DT schema.
Toshiba Visconti PCIe controller driver:
- Fix interrupts array max constraints in DT schema"
* tag 'pci-v6.2-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (95 commits)
x86/PCI: Use pr_info() when possible
x86/PCI: Fix log message typo
x86/PCI: Tidy E820 removal messages
PCI: Skip allocate_resource() if too little space available
efi/x86: Remove EfiMemoryMappedIO from E820 map
PCI/portdrv: Allow AER service only for Root Ports & RCECs
PCI: xilinx-nwl: Fix coding style violations
PCI: mvebu: Switch to using gpiod API
PCI: pciehp: Enable Command Completed Interrupt only if supported
PCI: aardvark: Switch to using devm_gpiod_get_optional()
dt-bindings: PCI: mediatek-gen3: add support for mt7986
dt-bindings: PCI: mediatek-gen3: add SoC based clock config
dt-bindings: PCI: qcom: Allow 'dma-coherent' property
PCI: mt7621: Add sentinel to quirks table
PCI: vmd: Fix secondary bus reset for Intel bridges
PCI: endpoint: pci-epf-vntb: Fix sparse ntb->reg build warning
PCI: endpoint: pci-epf-vntb: Fix sparse build warning for epf_db
PCI: endpoint: pci-epf-vntb: Replace hardcoded 4 with sizeof(u32)
PCI: endpoint: pci-epf-vntb: Remove unused epf_db_phy struct member
PCI: endpoint: pci-epf-vntb: Fix call pci_epc_mem_free_addr() in error path
...
|
|
Firmware can use EfiMemoryMappedIO to request that MMIO regions be mapped
by the OS so they can be accessed by EFI runtime services, but should have
no other significance to the OS (UEFI r2.10, sec 7.2). However, most
bootloaders and EFI stubs convert EfiMemoryMappedIO regions to
E820_TYPE_RESERVED entries, which prevent Linux from allocating space from
them (see remove_e820_regions()).
Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and PCI
host bridge windows, which means Linux can't allocate BAR space for
hot-added devices.
Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
problem.
Leave small (< 256KB) EfiMemoryMappedIO regions alone because on some
platforms, these describe non-window space that's included in host bridge
_CRS. If we assign that space to PCI devices, they don't work. On the
Lenovo X1 Carbon, this leads to suspend/resume failures.
The previous solution to the problem of allocating BARs in these regions
was to add pci_crs_quirks[] entries to disable E820 checking for these
machines (see d341838d776a ("x86/PCI: Disable E820 reserved region clipping
via quirks")):
Acer DMI_PRODUCT_NAME Spin SP513-54N
Clevo DMI_BOARD_NAME X170KM-G
Lenovo DMI_PRODUCT_VERSION *IIL*
Florent reported the BAR allocation issue on the Clevo NL4XLU. We could
add another quirk for the NL4XLU, but I hope this generic change can solve
it for many machines without having to add quirks.
This change has been tested on Clevo X170KM-G (Konrad) and Lenovo Ideapad
Slim 3 (Matt) and solves the problem even when overriding the existing
quirks by booting with "pci=use_e820".
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216565 Clevo NL4XLU
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206459#c78 Clevo X170KM-G
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1868899 Ideapad Slim 3
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2029207 X1 Carbon
Link: https://lore.kernel.org/r/[email protected]
Reported-by: Florent DELAHAYE <[email protected]>
Tested-by: Konrad J Hambrick <[email protected]>
Tested-by: Matt Hansen <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Acked-by: Hans de Goede <[email protected]>
|
|
The EFI runtime map code is only wired up on x86, which is the only
architecture that has a need for it in its implementation of kexec.
So let's move this code under arch/x86 and drop all references to it
from generic code. To ensure that the efi_runtime_map_init() is invoked
at the appropriate time use a 'sync' subsys_initcall() that will be
called right after the EFI initcall made from generic code where the
original invocation of efi_runtime_map_init() resided.
Signed-off-by: Ard Biesheuvel <[email protected]>
Reviewed-by: Dave Young <[email protected]>
|
|
Currently, the EFI_PARAVIRT flag is only used by Xen dom0 boot on x86,
even though other architectures also support pseudo-EFI boot, where the
core kernel is invoked directly and provided with a set of data tables
that resemble the ones constructed by the EFI stub, which never actually
runs in that case.
Let's fix this inconsistency, and always set this flag when booting dom0
via the EFI boot path. Note that Xen on x86 does not provide the EFI
memory map in this case, whereas other architectures do, so move the
associated EFI_PARAVIRT check into the x86 platform code.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
The EFI memory map is a description of the memory layout as provided by
the firmware, and only x86 manipulates it in various different ways for
its own memory bookkeeping. So let's move the memmap routines that are
only used by x86 into the x86 arch tree.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
The EFI fake memmap support is specific to x86, which manipulates the
EFI memory map in various different ways after receiving it from the EFI
stub. On other architectures, we have managed to push back on this, and
the EFI memory map is kept pristine.
So let's move the fake memmap code into the x86 arch tree, where it
arguably belongs.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A bit more going on than usual in the EFI subsystem. The main driver
for this has been the introduction of the LoonArch architecture last
cycle, which inspired some cleanup and refactoring of the EFI code.
Another driver for EFI changes this cycle and in the future is
confidential compute.
The LoongArch architecture does not use either struct bootparams or DT
natively [yet], and so passing information between the EFI stub and
the core kernel using either of those is undesirable. And in general,
overloading DT has been a source of issues on arm64, so using DT for
this on new architectures is a to avoid for the time being (even if we
might converge on something DT based for non-x86 architectures in the
future). For this reason, in addition to the patch that enables EFI
boot for LoongArch, there are a number of refactoring patches applied
on top of which separate the DT bits from the generic EFI stub bits.
These changes are on a separate topich branch that has been shared
with the LoongArch maintainers, who will include it in their pull
request as well. This is not ideal, but the best way to manage the
conflicts without stalling LoongArch for another cycle.
Another development inspired by LoongArch is the newly added support
for EFI based decompressors. Instead of adding yet another
arch-specific incarnation of this pattern for LoongArch, we are
introducing an EFI app based on the existing EFI libstub
infrastructure that encapulates the decompression code we use on other
architectures, but in a way that is fully generic. This has been
developed and tested in collaboration with distro and systemd folks,
who are eager to start using this for systemd-boot and also for arm64
secure boot on Fedora. Note that the EFI zimage files this introduces
can also be decompressed by non-EFI bootloaders if needed, as the
image header describes the location of the payload inside the image,
and the type of compression that was used. (Note that Fedora's arm64
GRUB is buggy [0] so you'll need a recent version or switch to
systemd-boot in order to use this.)
Finally, we are adding TPM measurement of the kernel command line
provided by EFI. There is an oversight in the TCG spec which results
in a blind spot for command line arguments passed to loaded images,
which means that either the loader or the stub needs to take the
measurement. Given the combinatorial explosion I am anticipating when
it comes to firmware/bootloader stacks and firmware based attestation
protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
when it comes to EFI measured boot, which is that the kernel measures
the initrd and command line. Intermediate loaders can measure
additional assets if needed, but with the baseline in place, we can
deploy measured boot in a meaningful way even if you boot into Linux
straight from the EFI firmware.
Summary:
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured
size of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables"
* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
efi: zboot: create MemoryMapped() device path for the parent if needed
efi: libstub: fix up the last remaining open coded boot service call
efi/arm: libstub: move ARM specific code out of generic routines
efi/libstub: measure EFI LoadOptions
efi/libstub: refactor the initrd measuring functions
efi/loongarch: libstub: remove dependency on flattened DT
efi: libstub: install boot-time memory map as config table
efi: libstub: remove DT dependency from generic stub
efi: libstub: unify initrd loading between architectures
efi: libstub: remove pointless goto kludge
efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
efi: libstub: avoid efi_get_memory_map() for allocating the virt map
efi: libstub: drop pointless get_memory_map() call
efi: libstub: fix type confusion for load_options_size
arm64: efi: enable generic EFI compressed boot
loongarch: efi: enable generic EFI compressed boot
riscv: efi: enable generic EFI compressed boot
efi/libstub: implement generic EFI zboot
efi/libstub: move efi_system_table global var into separate object
...
|
|
Move the EFI mixed mode return trampoline RET into .rodata, so it is
normally mapped without executable permissions. And given that this
snippet of code is really the only kernel code that we ever execute via
this 1:1 mapping, let's unmap the 1:1 mapping of the kernel .text, and
only map the page that covers the return trampoline with executable
permissions.
Note that the remainder of .rodata needs to remain mapped into the 1:1
mapping with RO/NX permissions, as literal GUIDs and strings may be
passed to the variable routines.
Acked-by: Borislav Petkov <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
[ mingo: Consolidated 4 very similar patches into one, it's silly to spread this out. ]
Signed-off-by: Jason Wang <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
- Enable mirrored memory for arm64
- Fix up several abuses of the efivar API
- Refactor the efivar API in preparation for moving the 'business
logic' part of it into efivarfs
- Enable ACPI PRM on arm64
* tag 'efi-next-for-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
ACPI: Move PRM config option under the main ACPI config
ACPI: Enable Platform Runtime Mechanism(PRM) support on ARM64
ACPI: PRM: Change handler_addr type to void pointer
efi: Simplify arch_efi_call_virt() macro
drivers: fix typo in firmware/efi/memmap.c
efi: vars: Drop __efivar_entry_iter() helper which is no longer used
efi: vars: Use locking version to iterate over efivars linked lists
efi: pstore: Omit efivars caching EFI varstore access layer
efi: vars: Add thin wrapper around EFI get/set variable interface
efi: vars: Don't drop lock in the middle of efivar_init()
pstore: Add priv field to pstore_record for backend specific use
Input: applespi - avoid efivars API and invoke EFI services directly
selftests/kexec: remove broken EFI_VARS secure boot fallback check
brcmfmac: Switch to appropriate helper to load EFI variable contents
iwlwifi: Switch to proper EFI variable store interface
media: atomisp_gmin_platform: stop abusing efivar API
efi: efibc: avoid efivar API for setting variables
efi: avoid efivars layer when loading SSDTs from variables
efi: Correct comment on efi_memmap_alloc
memblock: Disable mirror feature if kernelcore is not specified
...
|
|
When running with return thunks enabled under 32-bit EFI, the system
crashes with:
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle page fault for address: 000000005bc02900
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0011) - permissions violation
PGD 18f7063 P4D 18f7063 PUD 18ff063 PMD 190e063 PTE 800000005bc02063
Oops: 0011 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.19.0-rc6+ #166
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:0x5bc02900
Code: Unable to access opcode bytes at RIP 0x5bc028d6.
RSP: 0018:ffffffffb3203e10 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000048
RDX: 000000000190dfac RSI: 0000000000001710 RDI: 000000007eae823b
RBP: ffffffffb3203e70 R08: 0000000001970000 R09: ffffffffb3203e28
R10: 747563657865206c R11: 6c6977203a696665 R12: 0000000000001710
R13: 0000000000000030 R14: 0000000001970000 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8e013ca00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0018 ES: 0018 CR0: 0000000080050033
CR2: 000000005bc02900 CR3: 0000000001930000 CR4: 00000000000006f0
Call Trace:
? efi_set_virtual_address_map+0x9c/0x175
efi_enter_virtual_mode+0x4a6/0x53e
start_kernel+0x67c/0x71e
x86_64_start_reservations+0x24/0x2a
x86_64_start_kernel+0xe9/0xf4
secondary_startup_64_no_verify+0xe5/0xeb
That's because it cannot jump to the return thunk from the 32-bit code.
Using a naked RET and marking it as safe allows the system to proceed
booting.
Fixes: aa3d480315ba ("x86: Use return-thunk in asm code")
Reported-by: Guenter Roeck <[email protected]>
Signed-off-by: Thadeu Lima de Souza Cascardo <[email protected]>
Cc: Peter Zijlstra (Intel) <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: <[email protected]>
Tested-by: Guenter Roeck <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Commit b05b9f5f9dcf ("x86, mirror: x86 enabling - find mirrored memory
ranges") introduce the efi_find_mirror() function on x86. In order to reuse
the API we make it public.
Arm64 can support mirrored memory too, so function efi_find_mirror() is added to
efi_init() to this support for arm64.
Since efi_init() is shared by ARM, arm64 and riscv, this patch will bring
mirror memory support for these architectures, but this support is only tested
in arm64.
Signed-off-by: Ma Wupeng <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
[ardb: fix subject to better reflect the payload]
Acked-by: Mike Rapoport <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
Rather than waiting for the bots to fix these one-by-one,
fix all occurences of "the the" throughout arch/x86.
Signed-off-by: Bo Liu <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Cc: Paolo Bonzini <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
Virtualization) allows a guest owner to inject secrets into the VMs
memory without the host/hypervisor being able to read them.
Firmware support for secret injection is available in OVMF, which
reserves a memory area for secret injection and includes a pointer to it
the in EFI config table entry LINUX_EFI_COCO_SECRET_TABLE_GUID.
If EFI exposes such a table entry, uefi_init() will keep a pointer to
the EFI config table entry in efi.coco_secret, so it can be used later
by the kernel (specifically drivers/virt/coco/efi_secret). It will also
appear in the kernel log as "CocoSecret=ADDRESS"; for example:
[ 0.000000] efi: EFI v2.70 by EDK II
[ 0.000000] efi: CocoSecret=0x7f22e680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea0c018
The new functionality can be enabled with CONFIG_EFI_COCO_SECRET=y.
Signed-off-by: Dov Murik <[email protected]>
Reviewed-by: Gerd Hoffmann <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
The current annotation relies on not running objtool on the file; this
won't work when running objtool on vmlinux.o. Instead explicitly mark
__efi64_thunk() to be ignored.
This preserves the status quo, which is somewhat unfortunate. Luckily
this code is hardly ever used.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Josh Poimboeuf <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Get rid of all the .fixup sections because this generates
misleading/wrong stacktraces and confuse RELIABLE_STACKTRACE and
LIVEPATCH as the backtrace misses the function which is being fixed
up.
- Add Straight Line Speculation mitigation support which uses a new
compiler switch -mharden-sls= which sticks an INT3 after a RET or an
indirect branch in order to block speculation after them. Reportedly,
CPUs do speculate behind such insns.
- The usual set of cleanups and improvements
* tag 'x86_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/entry_32: Fix segment exceptions
objtool: Remove .fixup handling
x86: Remove .fixup section
x86/word-at-a-time: Remove .fixup usage
x86/usercopy: Remove .fixup usage
x86/usercopy_32: Simplify __copy_user_intel_nocache()
x86/sgx: Remove .fixup usage
x86/checksum_32: Remove .fixup usage
x86/vmx: Remove .fixup usage
x86/kvm: Remove .fixup usage
x86/segment: Remove .fixup usage
x86/fpu: Remove .fixup usage
x86/xen: Remove .fixup usage
x86/uaccess: Remove .fixup usage
x86/futex: Remove .fixup usage
x86/msr: Remove .fixup usage
x86/extable: Extend extable functionality
x86/entry_32: Remove .fixup usage
x86/entry_64: Remove .fixup usage
x86/copy_mc_64: Remove .fixup usage
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
- support taking the measurement of the initrd when loaded via the
LoadFile2 protocol
- kobject API cleanup from Greg
- some header file whitespace fixes
* tag 'efi-next-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi: use default_groups in kobj_type
efi/libstub: measure loaded initrd info into the TPM
efi/libstub: consolidate initrd handling across architectures
efi/libstub: x86/mixed: increase supported argument count
efi/libstub: add prototype of efi_tcg2_protocol::hash_log_extend_event()
include/linux/efi.h: Remove unneeded whitespaces before tabs
|
|
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.
find arch/x86/ -name \*.S | while read file
do
sed -i 's/\<ret[q]*\>/RET/' $file
done
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Reserving memory using efi_mem_reserve() calls into the x86
efi_arch_mem_reserve() function. This function will insert a new EFI
memory descriptor into the EFI memory map representing the area of
memory to be reserved and marking it as EFI runtime memory. As part
of adding this new entry, a new EFI memory map is allocated and mapped.
The mapping is where a problem can occur. This new memory map is mapped
using early_memremap() and generally mapped encrypted, unless the new
memory for the mapping happens to come from an area of memory that is
marked as EFI_BOOT_SERVICES_DATA memory. In this case, the new memory will
be mapped unencrypted. However, during replacement of the old memory map,
efi_mem_type() is disabled, so the new memory map will now be long-term
mapped encrypted (in efi.memmap), resulting in the map containing invalid
data and causing the kernel boot to crash.
Since it is known that the area will be mapped encrypted going forward,
explicitly map the new memory map as encrypted using early_memremap_prot().
Cc: <[email protected]> # 4.14.x
Fixes: 8f716c9b5feb ("x86/mm: Add support to access boot related data in the clear")
Link: https://lore.kernel.org/all/ebf1eb2940405438a09d51d121ec0d02c8755558.1634752931.git.thomas.lendacky@amd.com/
Signed-off-by: Tom Lendacky <[email protected]>
[ardb: incorporate Kconfig fix by Arnd]
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
Increase the number of arguments supported by mixed mode calls, so that
we will be able to call into the TCG2 protocol to measure the initrd
and extend the associated PCR. This involves the TCG2 protocol's
hash_log_extend_event() method, which takes five arguments, three of
which are u64 and need to be split, producing a total of 8 outgoing
Signed-off-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Ilias Apalodimas <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
Replace uses of sev_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_GUEST_MEM_ENCRYPT
can be updated, as required.
Signed-off-by: Tom Lendacky <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ingo Molnar:
"Two driver API cleanups, and a log message tweak"
* tag 'efi-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Log 32/64-bit mismatch with kernel as an error
efi/dev-path-parser: Switch to use for_each_acpi_dev_match()
efi/apple-properties: Handle device properties with software node API
|
|
There are BIOSes that are known to corrupt the memory under 1M, or more
precisely under 640K because the memory above 640K is anyway reserved
for the EGA/VGA frame buffer and BIOS.
To prevent usage of the memory that will be potentially clobbered by the
kernel, the beginning of the memory is always reserved. The exact size
of the reserved area is determined by CONFIG_X86_RESERVE_LOW build time
and the "reservelow=" command line option. The reserved range may be
from 4K to 640K with the default of 64K. There are also configurations
that reserve the entire 1M range, like machines with SandyBridge graphic
devices or systems that enable crash kernel.
In addition to the potentially clobbered memory, EBDA of unknown size may
be as low as 128K and the memory above that EBDA start is also reserved
early.
It would have been possible to reserve the entire range under 1M unless for
the real mode trampoline that must reside in that area.
To accommodate placement of the real mode trampoline and keep the memory
safe from being clobbered by BIOS, reserve the first 64K of RAM before
memory allocations are possible and then, after the real mode trampoline
is allocated, reserve the entire range from 0 to 1M.
Update trim_snb_memory() and reserve_real_mode() to avoid redundant
reservations of the same memory range.
Also make sure the memory under 1M is not getting freed by
efi_free_boot_services().
[ bp: Massage commit message and comments. ]
Fixes: a799c2bd29d1 ("x86/setup: Consolidate early memory reservations")
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Tested-by: Hugh Dickins <[email protected]>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213177
Link: https://lkml.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
Pull EFI updates for v5.14 from Ard Biesheuvel:
"First microbatch of EFI updates - not a lot going on these days."
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Log the message
No EFI runtime due to 32/64-bit mismatch with kernel
as an error condition, as several things like efivarfs won’t work
without the EFI runtime.
Signed-off-by: Paul Menzel <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
SEV-SNP builds upon the SEV-ES functionality while adding new hardware
protection. Version 2 of the GHCB specification adds new NAE events that
are SEV-SNP specific. Rename the sev-es.{ch} to sev.{ch} so that all
SEV* functionality can be consolidated in one place.
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Acked-by: Joerg Roedel <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.
Signed-off-by: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Paolo Bonzini <[email protected]>
Cc: Bjorn Helgaas <[email protected]>
Cc: [email protected]
|
|
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Paolo Bonzini <[email protected]>
Cc: Bjorn Helgaas <[email protected]>
Cc: [email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Borislav Petkov:
"x86 fpu usage optimization and cleanups:
- make 64-bit kernel code which uses 387 insns request a x87 init
(FNINIT) explicitly when using the FPU
- misc cleanups"
* tag 'x86_fpu_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu/xstate: Use sizeof() instead of a constant
x86/fpu/64: Don't FNINIT in kernel_fpu_begin()
x86/fpu: Make the EFI FPU calling convention explicit
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm cleanups from Borislav Petkov:
- PTRACE_GETREGS/PTRACE_PUTREGS regset selection cleanup
- Another initial cleanup - more to follow - to the fault handling
code.
- Other minor cleanups and corrections.
* tag 'x86_mm_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/{fault,efi}: Fix and rename efi_recover_from_page_fault()
x86/fault: Don't run fixups for SMAP violations
x86/fault: Don't look for extable entries for SMEP violations
x86/fault: Rename no_context() to kernelmode_fixup_or_oops()
x86/fault: Bypass no_context() for implicit kernel faults from usermode
x86/fault: Split the OOPS code out from no_context()
x86/fault: Improve kernel-executing-user-memory handling
x86/fault: Correct a few user vs kernel checks wrt WRUSS
x86/fault: Document the locking in the fault_signal_pending() path
x86/fault/32: Move is_f00f_bug() to do_kern_addr_fault()
x86/fault: Fold mm_fault_error() into do_user_addr_fault()
x86/fault: Skip the AMD erratum #91 workaround on unaffected CPUs
x86/fault: Fix AMD erratum #91 errata fixup for user code
x86/Kconfig: Remove HPET_EMULATE_RTC depends on RTC
x86/asm: Fixup TASK_SIZE_MAX comment
x86/ptrace: Clean up PTRACE_GETREGS/PTRACE_PUTREGS regset selection
x86/vm86/32: Remove VM86_SCREEN_BITMAP support
x86: Remove definition of DEBUG
x86/entry: Remove now unused do_IRQ() declaration
x86/mm: Remove duplicate definition of _PAGE_PAT_LARGE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ard Biesheuvel via Borislav Petkov:
"A few cleanups left and right, some of which were part of a initrd
measured boot series that needs some more work, and so only the
cleanup patches have been included for this release"
* tag 'efi-next-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/arm64: Update debug prints to reflect other entropy sources
efi: x86: clean up previous struct mm switching
efi: x86: move mixed mode stack PA variable out of 'efi_scratch'
efi/libstub: move TPM related prototypes into efistub.h
efi/libstub: fix prototype of efi_tcg2_protocol::get_event_log()
efi/libstub: whitespace cleanup
efi: ia64: move IA64-only declarations to new asm/efi.h header
|
|
efi_recover_from_page_fault() doesn't recover -- it does a special EFI
mini-oops. Rename it to make it clear that it crashes.
While renaming it, I noticed a blatant bug: a page fault oops in a
different thread happening concurrently with an EFI runtime service call
would be misinterpreted as an EFI page fault. Fix that.
This isn't quite exact. The situation could be improved by using a
special CS for calls into EFI.
[ bp: Massage commit message and simplify in interrupt check. ]
Signed-off-by: Andy Lutomirski <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lkml.kernel.org/r/f43b1e80830dc78ed60ed8b0826f4f189254570c.1612924255.git.luto@kernel.org
|
|
With CONFIG_X86_5LEVEL, CONFIG_UBSAN and CONFIG_UBSAN_UNSIGNED_OVERFLOW
enabled, clang fails the build with
x86_64-linux-ld: arch/x86/platform/efi/efi_64.o: in function `efi_sync_low_kernel_mappings':
efi_64.c:(.text+0x22c): undefined reference to `__compiletime_assert_354'
which happens due to -fsanitize=unsigned-integer-overflow being enabled:
-fsanitize=unsigned-integer-overflow: Unsigned integer overflow, where
the result of an unsigned integer computation cannot be represented
in its type. Unlike signed integer overflow, this is not undefined
behavior, but it is often unintentional. This sanitizer does not check
for lossy implicit conversions performed before such a computation
(see -fsanitize=implicit-conversion).
and that fires when the (intentional) EFI_VA_START/END defines overflow
an unsigned long, leading to the assertion expressions not getting
optimized away (on GCC they do)...
However, those checks are superfluous: the runtime services mapping
code already makes sure the ranges don't overshoot EFI_VA_END as the
EFI mapping range is hardcoded. On each runtime services call, it is
switched to the EFI-specific PGD and even if mappings manage to escape
that last PGD, this won't remain unnoticed for long.
So rip them out.
See https://github.com/ClangBuiltLinux/linux/issues/256 for more info.
Reported-by: Arnd Bergmann <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Nathan Chancellor <[email protected]>
Acked-by: Ard Biesheuvel <[email protected]>
Tested-by: Nick Desaulniers <[email protected]>
Tested-by: Nathan Chancellor <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
|
|
EFI uses kernel_fpu_begin() to conform to the UEFI calling convention.
This specifically requires initializing FCW (FPU Control Word), whereas
no sane 64-bit kernel code should use legacy 387 operations that
reference FCW.
This should allow to safely change the default semantics of
kernel_fpu_begin() to stop initializing FCW on 64-bit kernels.
[ bp: Massage commit message a little. ]
Signed-off-by: Andy Lutomirski <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lkml.kernel.org/r/25d392fff64680e0f4bb8cf0b1003314dc29eafe.1611205691.git.luto@kernel.org
|
|
EFI on x86_64 keeps track of the process's MM pointer by storing it
in a global struct called 'efi_scratch', which also used to contain
the mixed mode stack pointer. Let's clean this up a little bit, by
getting rid of the struct, and pushing the mm handling into the
callees entirely.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
As a first step to removing the awkward 'struct efi_scratch' definition
that conveniently combines the storage of the mixed mode stack pointer
with the MM pointer variable that records the task's MM pointer while it
is being replaced with the EFI MM one, move the mixed mode stack pointer
into a separate variable.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
Commit
d9e9a6418065 ("x86/mm/pti: Allocate a separate user PGD")
changed the PGD allocation to allocate PGD_ALLOCATION_ORDER pages, so in
the error path it should be freed using free_pages() rather than
free_page().
Commit
06ace26f4e6f ("x86/efi: Free efi_pgd with free_pages()")
fixed one instance of this, but missed another.
Move the freeing out-of-line to avoid code duplication and fix this bug.
Fixes: d9e9a6418065 ("x86/mm/pti: Allocate a separate user PGD")
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arvind Sankar <[email protected]>
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
|
|
These fixes missed the v5.9 merge window, pick them up for early v5.10 merge.
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Because of system-specific EFI firmware limitations, EFI volatile
variables may not be capable of holding the required contents of
the Machine Owner Key (MOK) certificate store when the certificate
list grows above some size. Therefore, an EFI boot loader may pass
the MOK certs via a EFI configuration table created specifically for
this purpose to avoid this firmware limitation.
An EFI configuration table is a much more primitive mechanism
compared to EFI variables and is well suited for one-way passage
of static information from a pre-OS environment to the kernel.
This patch adds initial kernel support to recognize, parse,
and validate the EFI MOK configuration table, where named
entries contain the same data that would otherwise be provided
in similarly named EFI variables.
Additionally, this patch creates a sysfs binary file for each
EFI MOK configuration table entry found. These files are read-only
to root and are provided for use by user space utilities such as
mokutil.
A subsequent patch will load MOK certs into the trusted platform
key ring using this infrastructure.
Signed-off-by: Lenny Szubowicz <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
Calling down to EFI runtime services can result in the firmware
performing VMGEXIT calls. The firmware is likely to use the GHCB of the
OS (e.g., for setting EFI variables), so each GHCB in the system needs
to be identity-mapped in the EFI page tables, as unencrypted, to avoid
page faults.
Signed-off-by: Tom Lendacky <[email protected]>
[ [email protected]: Moved GHCB mapping loop to sev-es.c ]
Signed-off-by: Joerg Roedel <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Acked-by: Ard Biesheuvel <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
Now that the old memmap code has been removed, some code that was left
behind in arch/x86/platform/efi/efi.c is only used for 32-bit builds,
which means it can live in efi_32.c as well. So move it over.
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
When remapping the kernel rodata section RO in the EFI pagetables, the
protection flags that were used for the text section are being reused,
but the rodata section should not be marked executable.
Cc: <[email protected]>
Signed-off-by: Arvind Sankar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Ard Biesheuvel <[email protected]>
|
|
With UV1 removed, EFI_UV1_MEMMAP is not longer used. Remove the code used
by it and the related code in EFI.
Signed-off-by: Steve Wahl <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
In removing UV1 support, efi_have_uv1_memmap is no longer used.
Signed-off-by: Steve Wahl <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
As a part of UV1 platform removal, don't try to recognize the platform
through DMI to set the EFI_UV1_MEMMAP bit.
Signed-off-by: Steve Wahl <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]
|
|
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Cain <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Greentime Hu <[email protected]>
Cc: Greg Ungerer <[email protected]>
Cc: Guan Xuetao <[email protected]>
Cc: Guo Ren <[email protected]>
Cc: Heiko Carstens <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Ley Foon Tan <[email protected]>
Cc: Mark Salter <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Matt Turner <[email protected]>
Cc: Max Filippov <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Michal Simek <[email protected]>
Cc: Nick Hu <[email protected]>
Cc: Paul Walmsley <[email protected]>
Cc: Richard Weinberger <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: Russell King <[email protected]>
Cc: Stafford Horne <[email protected]>
Cc: Thomas Bogendoerfer <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tony Luck <[email protected]>
Cc: Vincent Chen <[email protected]>
Cc: Vineet Gupta <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Cain <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Greentime Hu <[email protected]>
Cc: Greg Ungerer <[email protected]>
Cc: Guan Xuetao <[email protected]>
Cc: Guo Ren <[email protected]>
Cc: Heiko Carstens <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Ley Foon Tan <[email protected]>
Cc: Mark Salter <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Matt Turner <[email protected]>
Cc: Max Filippov <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Michal Simek <[email protected]>
Cc: Nick Hu <[email protected]>
Cc: Paul Walmsley <[email protected]>
Cc: Richard Weinberger <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: Russell King <[email protected]>
Cc: Stafford Horne <[email protected]>
Cc: Thomas Bogendoerfer <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tony Luck <[email protected]>
Cc: Vincent Chen <[email protected]>
Cc: Vineet Gupta <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Cain <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Greentime Hu <[email protected]>
Cc: Greg Ungerer <[email protected]>
Cc: Guan Xuetao <[email protected]>
Cc: Guo Ren <[email protected]>
Cc: Heiko Carstens <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Ley Foon Tan <[email protected]>
Cc: Mark Salter <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Matt Turner <[email protected]>
Cc: Max Filippov <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Michal Simek <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Nick Hu <[email protected]>
Cc: Paul Walmsley <[email protected]>
Cc: Richard Weinberger <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: Russell King <[email protected]>
Cc: Stafford Horne <[email protected]>
Cc: Thomas Bogendoerfer <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tony Luck <[email protected]>
Cc: Vincent Chen <[email protected]>
Cc: Vineet Gupta <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ingo Molnar:
"The EFI changes for this cycle are:
- preliminary changes for RISC-V
- Add support for setting the resolution on the EFI framebuffer
- Simplify kernel image loading for arm64
- Move .bss into .data via the linker script instead of relying on
symbol annotations.
- Get rid of __pure getters to access global variables
- Clean up the config table matching arrays
- Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them
consistently
- Simplify and unify initrd loading
- Parse the builtin command line on x86 (if provided)
- Implement printk() support, including support for wide character
strings
- Simplify GDT handling in early mixed mode thunking code
- Some other minor fixes and cleanups"
* tag 'efi-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
efi/x86: Don't blow away existing initrd
efi/x86: Drop the special GDT for the EFI thunk
efi/libstub: Add missing prototype for PE/COFF entry point
efi/efivars: Add missing kobject_put() in sysfs entry creation error path
efi/libstub: Use pool allocation for the command line
efi/libstub: Don't parse overlong command lines
efi/libstub: Use snprintf with %ls to convert the command line
efi/libstub: Get the exact UTF-8 length
efi/libstub: Use %ls for filename
efi/libstub: Add UTF-8 decoding to efi_puts
efi/printf: Add support for wchar_t (UTF-16)
efi/gop: Add an option to list out the available GOP modes
efi/libstub: Add definitions for console input and events
efi/libstub: Implement printk-style logging
efi/printf: Turn vsprintf into vsnprintf
efi/printf: Abort on invalid format
efi/printf: Refactor code to consolidate padding and output
efi/printf: Handle null string input
efi/printf: Factor out integer argument retrieval
efi/printf: Factor out width/precision parsing
...
|