aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)AuthorFilesLines
2024-05-23KVM: VMX: Don't kill the VM on an unexpected #VESean Christopherson1-2/+2
Don't terminate the VM on an unexpected #VE, as it's extremely unlikely the #VE is fatal to the guest, and even less likely that it presents a danger to the host. Simply resume the guest on "failure", as the #VE info page's BUSY field will prevent converting any more EPT Violations to #VEs for the vCPU (at least, that's what the BUSY field is supposed to do). Signed-off-by: Sean Christopherson <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-23KVM: x86/mmu: Use SHADOW_NONPRESENT_VALUE for atomic zap in TDP MMUIsaku Yamahata1-1/+1
Use SHADOW_NONPRESENT_VALUE when zapping TDP MMU SPTEs with mmu_lock held for read, tdp_mmu_zap_spte_atomic() was simply missed during the initial development. Fixes: 7f01cab84928 ("KVM: x86/mmu: Allow non-zero value for non-present SPTE and removed SPTE") Signed-off-by: Isaku Yamahata <[email protected]> [sean: write changelog] Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-22tracing/treewide: Remove second parameter of __assign_str()Steven Rostedt (Google)1-1/+1
With the rework of how the __string() handles dynamic strings where it saves off the source string in field in the helper structure[1], the assignment of that value to the trace event field is stored in the helper value and does not need to be passed in again. This means that with: __string(field, mystring) Which use to be assigned with __assign_str(field, mystring), no longer needs the second parameter and it is unused. With this, __assign_str() will now only get a single parameter. There's over 700 users of __assign_str() and because coccinelle does not handle the TRACE_EVENT() macro I ended up using the following sed script: git grep -l __assign_str | while read a ; do sed -e 's/\(__assign_str([^,]*[^ ,]\) *,[^;]*/\1)/' $a > /tmp/test-file; mv /tmp/test-file $a; done I then searched for __assign_str() that did not end with ';' as those were multi line assignments that the sed script above would fail to catch. Note, the same updates will need to be done for: __assign_str_len() __assign_rel_str() __assign_rel_str_len() I tested this with both an allmodconfig and an allyesconfig (build only for both). [1] https://lore.kernel.org/linux-trace-kernel/[email protected]/ Link: https://lore.kernel.org/linux-trace-kernel/[email protected] Cc: Masami Hiramatsu <[email protected]> Cc: Mathieu Desnoyers <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Julia Lawall <[email protected]> Signed-off-by: Steven Rostedt (Google) <[email protected]> Acked-by: Jani Nikula <[email protected]> Acked-by: Christian König <[email protected]> for the amdgpu parts. Acked-by: Thomas Hellström <[email protected]> #for Acked-by: Rafael J. Wysocki <[email protected]> # for thermal Acked-by: Takashi Iwai <[email protected]> Acked-by: Darrick J. Wong <[email protected]> # xfs Tested-by: Guenter Roeck <[email protected]>
2024-05-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds26-776/+1333
Pull KVM updates from Paolo Bonzini: "ARM: - Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. - Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greatly simplified. - Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. - A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! - Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. - Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. - Preserve vcpu-specific ID registers across a vcpu reset. - Various minor cleanups and improvements. LoongArch: - Add ParaVirt IPI support - Add software breakpoint support - Add mmio trace events support RISC-V: - Support guest breakpoints using ebreak - Introduce per-VCPU mp_state_lock and reset_cntx_lock - Virtualize SBI PMU snapshot and counter overflow interrupts - New selftests for SBI PMU and Guest ebreak - Some preparatory work for both TDX and SNP page fault handling. This also cleans up the page fault path, so that the priorities of various kinds of fauls (private page, no memory, write to read-only slot, etc.) are easier to follow. x86: - Minimize amount of time that shadow PTEs remain in the special REMOVED_SPTE state. This is a state where the mmu_lock is held for reading but concurrent accesses to the PTE have to spin; shortening its use allows other vCPUs to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is defined by hardware but left for software use. This lets KVM communicate its inability to map GPAs that set bits 51:48 on hosts without 5-level nested page tables. Guest firmware is expected to use the information when mapping BARs; this avoids that they end up at a legal, but unmappable, GPA. - Fixed a bug where KVM would not reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. - As usual, a bunch of code cleanups. x86 (AMD): - Implement a new and improved API to initialize SEV and SEV-ES VMs, which will also be extendable to SEV-SNP. The new API specifies the desired encryption in KVM_CREATE_VM and then separately initializes the VM. The new API also allows customizing the desired set of VMSA features; the features affect the measurement of the VM's initial state, and therefore enabling them cannot be done tout court by the hypervisor. While at it, the new API includes two bugfixes that couldn't be applied to the old one without a flag day in userspace or without affecting the initial measurement. When a SEV-ES VM is created with the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected once the VMSA has been encrypted. Also, the FPU and AVX state will be synchronized and encrypted too. - Support for GHCB version 2 as applicable to SEV-ES guests. This, once more, is only accessible when using the new KVM_SEV_INIT2 flow for initialization of SEV-ES VMs. x86 (Intel): - An initial bunch of prerequisite patches for Intel TDX were merged. They generally don't do anything interesting. The only somewhat user visible change is a new debugging mode that checks that KVM's MMU never triggers a #VE virtualization exception in the guest. - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. Generic: - Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). - Remove .change_pte() MMU notifier - the changes to non-KVM code are small and Andrew Morton asked that I also take those through the KVM tree. The callback was only ever implemented by KVM (which was also the original user of MMU notifiers) but it had been nonfunctional ever since calls to set_pte_at_notify were wrapped with invalidate_range_start and invalidate_range_end... in 2012. Selftests: - Enhance the demand paging test to allow for better reporting and stressing of UFFD performance. - Convert the steal time test to generate TAP-friendly output. - Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed time across two different clock domains. - Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT. - Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell script, to play nice with running in a minimal userspace environment. - Allow skipping the RSEQ test's sanity check that the vCPU was able to complete a reasonable number of KVM_RUNs, as the assert can fail on a completely valid setup. If the test is run on a large-ish system that is otherwise idle, and the test isn't affined to a low-ish number of CPUs, the vCPU task can be repeatedly migrated to CPUs that are in deep sleep states, which results in the vCPU having very little net runtime before the next migration due to high wakeup latencies. - Define _GNU_SOURCE for all selftests to fix a warning that was introduced by a change to kselftest_harness.h late in the 6.9 cycle, and because forcing every test to #define _GNU_SOURCE is painful. - Provide a global pseudo-RNG instance for all tests, so that library code can generate random, but determinstic numbers. - Use the global pRNG to randomly force emulation of select writes from guest code on x86, e.g. to help validate KVM's emulation of locked accesses. - Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception handlers at VM creation, instead of forcing tests to manually trigger the related setup. Documentation: - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits) selftests/kvm: remove dead file KVM: selftests: arm64: Test vCPU-scoped feature ID registers KVM: selftests: arm64: Test that feature ID regs survive a reset KVM: selftests: arm64: Store expected register value in set_id_regs KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope KVM: arm64: Only reset vCPU-scoped feature ID regs once KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs() KVM: arm64: Rename is_id_reg() to imply VM scope KVM: arm64: Destroy mpidr_data for 'late' vCPU creation KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support KVM: arm64: Fix hvhe/nvhe early alias parsing KVM: SEV: Allow per-guest configuration of GHCB protocol version KVM: SEV: Add GHCB handling for termination requests KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests KVM: SEV: Add support to handle AP reset MSR protocol KVM: x86: Explicitly zero kvm_caps during vendor module load KVM: x86: Fully re-initialize supported_mce_cap on vendor module load KVM: x86: Fully re-initialize supported_vm_types on vendor module load KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values ...
2024-05-12KVM: SVM: Add module parameter to enable SEV-SNPBrijesh Singh1-1/+2
Add a module parameter than can be used to enable or disable the SEV-SNP feature. Now that KVM contains the support for the SNP set the GHCB hypervisor feature flag to indicate that SNP is supported. Signed-off-by: Brijesh Singh <[email protected]> Reviewed-by: Paolo Bonzini <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Avoid WBINVD for HVA-based MMU notifications for SNPAshish Kalra1-1/+7
With SNP/guest_memfd, private/encrypted memory should not be mappable, and MMU notifications for HVA-mapped memory will only be relevant to unencrypted guest memory. Therefore, the rationale behind issuing a wbinvd_on_all_cpus() in sev_guest_memory_reclaimed() should not apply for SNP guests and can be ignored. Signed-off-by: Ashish Kalra <[email protected]> Reviewed-by: Paolo Bonzini <[email protected]> [mdr: Add some clarifications in commit] Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: x86: Implement hook for determining max NPT mapping levelMichael Roth3-0/+21
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a 2MB mapping in the guest's nested page table depends on whether or not any subpages within the range have already been initialized as private in the RMP table. The existing mixed-attribute tracking in KVM is insufficient here, for instance: - gmem allocates 2MB page - guest issues PVALIDATE on 2MB page - guest later converts a subpage to shared - SNP host code issues PSMASH to split 2MB RMP mapping to 4K - KVM MMU splits NPT mapping to 4K - guest later converts that shared page back to private At this point there are no mixed attributes, and KVM would normally allow for 2MB NPT mappings again, but this is actually not allowed because the RMP table mappings are 4K and cannot be promoted on the hypervisor side, so the NPT mappings must still be limited to 4K to match this. Implement a kvm_x86_ops.private_max_mapping_level() hook for SEV that checks for this condition and adjusts the mapping level accordingly. Reviewed-by: Paolo Bonzini <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Implement gmem hook for invalidating private pagesMichael Roth4-0/+68
Implement a platform hook to do the work of restoring the direct map entries of gmem-managed pages and transitioning the corresponding RMP table entries back to the default shared/hypervisor-owned state. Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Implement gmem hook for initializing private pagesMichael Roth5-0/+111
This will handle the RMP table updates needed to put a page into a private state before mapping it into an SEV-SNP guest. Reviewed-by: Paolo Bonzini <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Support SEV-SNP AP Creation NAE eventTom Lendacky4-3/+259
Add support for the SEV-SNP AP Creation NAE event. This allows SEV-SNP guests to alter the register state of the APs on their own. This allows the guest a way of simulating INIT-SIPI. A new event, KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, is created and used so as to avoid updating the VMSA pointer while the vCPU is running. For CREATE The guest supplies the GPA of the VMSA to be used for the vCPU with the specified APIC ID. The GPA is saved in the svm struct of the target vCPU, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added to the vCPU and then the vCPU is kicked. For CREATE_ON_INIT: The guest supplies the GPA of the VMSA to be used for the vCPU with the specified APIC ID the next time an INIT is performed. The GPA is saved in the svm struct of the target vCPU. For DESTROY: The guest indicates it wishes to stop the vCPU. The GPA is cleared from the svm struct, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added to vCPU and then the vCPU is kicked. The KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event handler will be invoked as a result of the event or as a result of an INIT. If a new VMSA is to be installed, the VMSA guest page is set as the VMSA in the vCPU VMCB and the vCPU state is set to KVM_MP_STATE_RUNNABLE. If a new VMSA is not to be installed, the VMSA is cleared in the vCPU VMCB and the vCPU state is set to KVM_MP_STATE_HALTED to prevent it from being run. Signed-off-by: Tom Lendacky <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add support to handle RMP nested page faultsBrijesh Singh7-6/+155
When SEV-SNP is enabled in the guest, the hardware places restrictions on all memory accesses based on the contents of the RMP table. When hardware encounters RMP check failure caused by the guest memory access it raises the #NPF. The error code contains additional information on the access type. See the APM volume 2 for additional information. When using gmem, RMP faults resulting from mismatches between the state in the RMP table vs. what the guest expects via its page table result in KVM_EXIT_MEMORY_FAULTs being forwarded to userspace to handle. This means the only expected case that needs to be handled in the kernel is when the page size of the entry in the RMP table is larger than the mapping in the nested page table, in which case a PSMASH instruction needs to be issued to split the large RMP entry into individual 4K entries so that subsequent accesses can succeed. Signed-off-by: Brijesh Singh <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add support to handle Page State Change VMGEXITMichael Roth2-0/+193
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP table to be private or shared using the Page State Change NAE event as defined in the GHCB specification version 2. Forward these requests to userspace as KVM_EXIT_VMGEXITs, similar to how it is done for requests that don't use a GHCB page. As with the MSR-based page-state changes, use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to userspace via KVM_EXIT_HYPERCALL. Signed-off-by: Michael Roth <[email protected]> Co-developed-by: Brijesh Singh <[email protected]> Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Co-developed-by: Paolo Bonzini <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add support to handle MSR based Page State Change VMGEXITMichael Roth1-0/+48
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP table to be private or shared using the Page State Change MSR protocol as defined in the GHCB specification. When using gmem, private/shared memory is allocated through separate pools, and KVM relies on userspace issuing a KVM_SET_MEMORY_ATTRIBUTES KVM ioctl to tell the KVM MMU whether or not a particular GFN should be backed by private memory or not. Forward these page state change requests to userspace so that it can issue the expected KVM ioctls. The KVM MMU will handle updating the RMP entries when it is ready to map a private page into a guest. Use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to userspace via KVM_EXIT_HYPERCALL. Signed-off-by: Michael Roth <[email protected]> Co-developed-by: Brijesh Singh <[email protected]> Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add support to handle GHCB GPA register VMGEXITBrijesh Singh2-6/+49
SEV-SNP guests are required to perform a GHCB GPA registration. Before using a GHCB GPA for a vCPU the first time, a guest must register the vCPU GHCB GPA. If hypervisor can work with the guest requested GPA then it must respond back with the same GPA otherwise return -1. On VMEXIT, verify that the GHCB GPA matches with the registered value. If a mismatch is detected, then abort the guest. Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_FINISH commandBrijesh Singh1-0/+127
Add a KVM_SEV_SNP_LAUNCH_FINISH command to finalize the cryptographic launch digest which stores the measurement of the guest at launch time. Also extend the existing SNP firmware data structures to support disabling the use of Versioned Chip Endorsement Keys (VCEK) by guests as part of this command. While finalizing the launch flow, the code also issues the LAUNCH_UPDATE SNP firmware commands to encrypt/measure the initial VMSA pages for each configured vCPU, which requires setting the RMP entries for those pages to private, so also add handling to clean up the RMP entries for these pages whening freeing vCPUs during shutdown. Signed-off-by: Brijesh Singh <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Harald Hoyer <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_UPDATE commandBrijesh Singh1-0/+230
A key aspect of a launching an SNP guest is initializing it with a known/measured payload which is then encrypted into guest memory as pre-validated private pages and then measured into the cryptographic launch context created with KVM_SEV_SNP_LAUNCH_START so that the guest can attest itself after booting. Since all private pages are provided by guest_memfd, make use of the kvm_gmem_populate() interface to handle this. The general flow is that guest_memfd will handle allocating the pages associated with the GPA ranges being initialized by each particular call of KVM_SEV_SNP_LAUNCH_UPDATE, copying data from userspace into those pages, and then the post_populate callback will do the work of setting the RMP entries for these pages to private and issuing the SNP firmware calls to encrypt/measure them. For more information see the SEV-SNP specification. Signed-off-by: Brijesh Singh <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_START commandBrijesh Singh2-3/+174
KVM_SEV_SNP_LAUNCH_START begins the launch process for an SEV-SNP guest. The command initializes a cryptographic digest context used to construct the measurement of the guest. Other commands can then at that point be used to load/encrypt data into the guest's initial launch image. For more information see the SEV-SNP specification. Signed-off-by: Brijesh Singh <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Add initial SEV-SNP supportBrijesh Singh3-2/+39
SEV-SNP builds upon existing SEV and SEV-ES functionality while adding new hardware-based security protection. SEV-SNP adds strong memory encryption and integrity protection to help prevent malicious hypervisor-based attacks such as data replay, memory re-mapping, and more, to create an isolated execution environment. Define a new KVM_X86_SNP_VM type which makes use of these capabilities and extend the KVM_SEV_INIT2 ioctl to support it. Also add a basic helper to check whether SNP is enabled and set PFERR_PRIVATE_ACCESS for private #NPFs so they are handled appropriately by KVM MMU. Signed-off-by: Brijesh Singh <[email protected]> Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Reviewed-by: Paolo Bonzini <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: SEV: Select KVM_GENERIC_PRIVATE_MEM when CONFIG_KVM_AMD_SEV=yMichael Roth1-0/+1
SEV-SNP relies on private memory support to run guests, so make sure to enable that support via the CONFIG_KVM_GENERIC_PRIVATE_MEM config option. Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12KVM: MMU: Disable fast path if KVM_EXIT_MEMORY_FAULT is neededMichael Roth1-2/+22
For hardware-protected VMs like SEV-SNP guests, certain conditions like attempting to perform a write to a page which is not in the state that the guest expects it to be in can result in a nested/extended #PF which can only be satisfied by the host performing an implicit page state change to transition the page into the expected shared/private state. This is generally handled by generating a KVM_EXIT_MEMORY_FAULT event that gets forwarded to userspace to handle via KVM_SET_MEMORY_ATTRIBUTES. However, the fast_page_fault() code might misconstrue this situation as being the result of a write-protected access, and treat it as a spurious case when it sees that writes are already allowed for the sPTE. This results in the KVM MMU trying to resume the guest rather than taking any action to satisfy the real source of the #PF such as generating a KVM_EXIT_MEMORY_FAULT, resulting in the guest spinning on nested #PFs. Check for this condition and bail out of the fast path if it is detected. Suggested-by: Paolo Bonzini <[email protected]> Suggested-by: Sean Christopherson <[email protected]> Cc: Isaku Yamahata <[email protected]> Reviewed-by: Isaku Yamahata <[email protected]> Signed-off-by: Michael Roth <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-12Merge branch 'kvm-coco-hooks' into HEADPaolo Bonzini2-2/+34
Common patches for the target-independent functionality and hooks that are needed by SEV-SNP and TDX.
2024-05-12Merge tag 'kvm-x86-misc-6.10' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini6-30/+52
KVM x86 misc changes for 6.10: - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is unused by hardware, so that KVM can communicate its inability to map GPAs that set bits 51:48 due to lack of 5-level paging. Guest firmware is expected to use the information to safely remap BARs in the uppermost GPA space, i.e to avoid placing a BAR at a legal, but unmappable, GPA. - Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). - Don't completely ignore same-value writes to immutable feature MSRs, as doing so results in KVM failing to reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. - Don't mark APICv as being inhibited due to ABSENT if APICv is disabled KVM-wide to avoid confusing debuggers (KVM will never bother clearing the ABSENT inhibit, even if userspace enables in-kernel local APIC).
2024-05-12Merge tag 'kvm-x86-mmu-6.10' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2-29/+66
KVM x86 MMU changes for 6.10: - Process TDP MMU SPTEs that are are zapped while holding mmu_lock for read after replacing REMOVED_SPTE with '0' and flushing remote TLBs, which allows vCPU tasks to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. - Fix a longstanding, likely benign-in-practice race where KVM could fail to detect a write from kvm_mmu_track_write() to a shadowed GPTE if the GPTE is first page table being shadowed.
2024-05-12Merge tag 'kvm-x86-vmx-6.10' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini4-13/+34
KVM VMX changes for 6.10: - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. - Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is used only when synthesizing nested EPT violation, i.e. it's not the vCPU's "real" exit_qualification, which is tracked elsewhere. - Add a sanity check to assert that EPT Violations are the only sources of nested PML Full VM-Exits.
2024-05-10Merge tag 'loongarch-kvm-6.10' of ↵Paolo Bonzini17-115/+159
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.10 1. Add ParaVirt IPI support. 2. Add software breakpoint support. 3. Add mmio trace events support.
2024-05-10Merge branch 'kvm-sev-es-ghcbv2' into HEADPaolo Bonzini2-11/+102
While the main additions from GHCB protocol version 1 to version 2 revolve mostly around SEV-SNP support, there are a number of changes applicable to SEV-ES guests as well. Pluck a handful patches from the SNP hypervisor patchset for GHCB-related changes that are also applicable to SEV-ES. A KVM_SEV_INIT2 field lets userspace can control the maximum GHCB protocol version advertised to guests and manage compatibility across kernels/versions.
2024-05-10Merge branch 'kvm-coco-pagefault-prep' into HEADPaolo Bonzini5-77/+149
A combination of prep work for TDX and SNP, and a clean up of the page fault path to (hopefully) make it easier to follow the rules for private memory, noslot faults, writes to read-only slots, etc.
2024-05-10Merge branch 'kvm-vmx-ve' into HEADPaolo Bonzini9-41/+137
Allow a non-zero value for non-present SPTE and removed SPTE, so that TDX can set the "suppress VE" bit.
2024-05-10KVM: x86: Add hook for determining max NPT mapping levelMichael Roth1-2/+21
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a 2MB mapping in the guest's nested page table depends on whether or not any subpages within the range have already been initialized as private in the RMP table. The existing mixed-attribute tracking in KVM is insufficient here, for instance: - gmem allocates 2MB page - guest issues PVALIDATE on 2MB page - guest later converts a subpage to shared - SNP host code issues PSMASH to split 2MB RMP mapping to 4K - KVM MMU splits NPT mapping to 4K - guest later converts that shared page back to private At this point there are no mixed attributes, and KVM would normally allow for 2MB NPT mappings again, but this is actually not allowed because the RMP table mappings are 4K and cannot be promoted on the hypervisor side, so the NPT mappings must still be limited to 4K to match this. Add a hook to determine the max NPT mapping size in situations like this. Suggested-by: Sean Christopherson <[email protected]> Signed-off-by: Michael Roth <[email protected]> Reviewed-by: Isaku Yamahata <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-10KVM: guest_memfd: Add hook for invalidating memoryMichael Roth1-0/+7
In some cases, like with SEV-SNP, guest memory needs to be updated in a platform-specific manner before it can be safely freed back to the host. Wire up arch-defined hooks to the .free_folio kvm_gmem_aops callback to allow for special handling of this sort when freeing memory in response to FALLOC_FL_PUNCH_HOLE operations and when releasing the inode, and go ahead and define an arch-specific hook for x86 since it will be needed for handling memory used for SEV-SNP guests. Signed-off-by: Michael Roth <[email protected]> Message-Id: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-10KVM: guest_memfd: Add hook for initializing memoryPaolo Bonzini1-0/+6
guest_memfd pages are generally expected to be in some arch-defined initial state prior to using them for guest memory. For SEV-SNP this initial state is 'private', or 'guest-owned', and requires additional operations to move these pages into a 'private' state by updating the corresponding entries the RMP table. Allow for an arch-defined hook to handle updates of this sort, and go ahead and implement one for x86 so KVM implementations like AMD SVM can register a kvm_x86_ops callback to handle these updates for SEV-SNP guests. The preparation callback is always called when allocating/grabbing folios via gmem, and it is up to the architecture to keep track of whether or not the pages are already in the expected state (e.g. the RMP table in the case of SEV-SNP). In some cases, it is necessary to defer the preparation of the pages to handle things like in-place encryption of initial guest memory payloads before marking these pages as 'private'/'guest-owned'. Add an argument (always true for now) to kvm_gmem_get_folio() that allows for the preparation callback to be bypassed. To detect possible issues in the way userspace initializes memory, it is only possible to add an unprepared page if it is not already included in the filemap. Link: https://lore.kernel.org/lkml/[email protected]/ Co-developed-by: Michael Roth <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-Id: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: SEV: Allow per-guest configuration of GHCB protocol versionMichael Roth2-3/+30
The GHCB protocol version may be different from one guest to the next. Add a field to track it for each KVM instance and extend KVM_SEV_INIT2 to allow it to be configured by userspace. Now that all SEV-ES support for GHCB protocol version 2 is in place, go ahead and default to it when creating SEV-ES guests through the new KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface restricted to GHCB protocol version 1. Suggested-by: Sean Christopherson <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: SEV: Add GHCB handling for termination requestsMichael Roth1-0/+9
GHCB version 2 adds support for a GHCB-based termination request that a guest can issue when it reaches an error state and wishes to inform the hypervisor that it should be terminated. Implement support for that similarly to GHCB MSR-based termination requests that are already available to SEV-ES guests via earlier versions of the GHCB protocol. See 'Termination Request' in the 'Invoking VMGEXIT' section of the GHCB specification for more details. Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: SEV: Add GHCB handling for Hypervisor Feature Support requestsBrijesh Singh1-0/+14
Version 2 of the GHCB specification introduced advertisement of features that are supported by the Hypervisor. Now that KVM supports version 2 of the GHCB specification, bump the maximum supported protocol version. Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: SEV: Add support to handle AP reset MSR protocolTom Lendacky2-8/+49
Add support for AP Reset Hold being invoked using the GHCB MSR protocol, available in version 2 of the GHCB specification. Signed-off-by: Tom Lendacky <[email protected]> Signed-off-by: Brijesh Singh <[email protected]> Signed-off-by: Ashish Kalra <[email protected]> Signed-off-by: Michael Roth <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86: Explicitly zero kvm_caps during vendor module loadSean Christopherson1-0/+7
Zero out all of kvm_caps when loading a new vendor module to ensure that KVM can't inadvertently rely on global initialization of a field, and add a comment above the definition of kvm_caps to call out that all fields needs to be explicitly computed during vendor module load. Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Xiaoyao Li <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86: Fully re-initialize supported_mce_cap on vendor module loadSean Christopherson1-3/+2
Effectively reset supported_mce_cap on vendor module load to ensure that capabilities aren't unintentionally preserved across module reload, e.g. if kvm-intel.ko added a module param to control LMCE support, or if someone somehow managed to load a vendor module that doesn't support LMCE after loading and unloading kvm-intel.ko. Practically speaking, this bug is a non-issue as kvm-intel.ko doesn't have a module param for LMCE, and there is no system in the world that supports both kvm-intel.ko and kvm-amd.ko. Fixes: c45dcc71b794 ("KVM: VMX: enable guest access to LMCE related MSRs") Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Xiaoyao Li <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86: Fully re-initialize supported_vm_types on vendor module loadSean Christopherson1-1/+2
Recompute the entire set of supported VM types when a vendor module is loaded, as preserving supported_vm_types across vendor module unload and reload can result in VM types being incorrectly treated as supported. E.g. if a vendor module is loaded with TDP enabled, unloaded, and then reloaded with TDP disabled, KVM_X86_SW_PROTECTED_VM will be incorrectly retained. Ditto for SEV_VM and SEV_ES_VM and their respective module params in kvm-amd.ko. Fixes: 2a955c4db1dd ("KVM: x86: Add supported_vm_types to kvm_caps") Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Xiaoyao Li <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfnsSean Christopherson1-1/+1
WARN if __kvm_faultin_pfn() generates a "no slot" pfn, and gracefully handle the unexpected behavior instead of continuing on with dangerous state, e.g. tdp_mmu_map_handle_target_level() _only_ checks fault->slot, and so could install a bogus PFN into the guest. The existing code is functionally ok, because kvm_faultin_pfn() pre-checks all of the cases that result in KVM_PFN_NOSLOT, but it is unnecessarily unsafe as it relies on __gfn_to_pfn_memslot() getting the _exact_ same memslot, i.e. not a re-retrieved pointer with KVM_MEMSLOT_INVALID set. And checking only fault->slot would fall apart if KVM ever added a flag or condition that forced emulation, similar to how KVM handles writes to read-only memslots. Cc: David Matlack <[email protected]> Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error valuesSean Christopherson1-0/+3
Explicitly set "pfn" and "hva" to error values in kvm_mmu_do_page_fault() to harden KVM against using "uninitialized" values. In quotes because the fields are actually zero-initialized, and zero is a legal value for both page frame numbers and virtual addresses. E.g. failure to set "pfn" prior to creating an SPTE could result in KVM pointing at physical address '0', which is far less desirable than KVM generating a SPTE with reserved PA bits set and thus effectively killing the VM. Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Set kvm_page_fault.hva to KVM_HVA_ERR_BAD for "no slot" faultsSean Christopherson1-0/+1
Explicitly set fault->hva to KVM_HVA_ERR_BAD when handling a "no slot" fault to ensure that KVM doesn't use a bogus virtual address, e.g. if there *was* a slot but it's unusable (APIC access page), or if there really was no slot, in which case fault->hva will be '0' (which is a legal address for x86). Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Handle no-slot faults at the beginning of kvm_faultin_pfn()Sean Christopherson1-12/+17
Handle the "no memslot" case at the beginning of kvm_faultin_pfn(), just after the private versus shared check, so that there's no need to repeatedly query whether or not a slot exists. This also makes it more obvious that, except for private vs. shared attributes, the process of faulting in a pfn simply doesn't apply to gfns without a slot. Opportunistically stuff @fault's metadata in kvm_handle_noslot_fault() so that it doesn't need to be duplicated in all paths that invoke kvm_handle_noslot_fault(), and to minimize the probability of not stuffing the right fields. Leave the existing handle behind, but convert it to a WARN, to guard against __kvm_faultin_pfn() unexpectedly nullifying fault->slot. Cc: David Matlack <[email protected]> Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Move slot checks from __kvm_faultin_pfn() to kvm_faultin_pfn()Sean Christopherson1-43/+44
Move the checks related to the validity of an access to a memslot from the inner __kvm_faultin_pfn() to its sole caller, kvm_faultin_pfn(). This allows emulating accesses to the APIC access page, which don't need to resolve a pfn, even if there is a relevant in-progress mmu_notifier invalidation. Ditto for accesses to KVM internal memslots from L2, which KVM also treats as emulated MMIO. More importantly, this will allow for future cleanup by having the "no memslot" case bail from kvm_faultin_pfn() very early on. Go to rather extreme and gross lengths to make the change a glorified nop, e.g. call into __kvm_faultin_pfn() even when there is no slot, as the related code is very subtle. E.g. fault->slot can be nullified if it points at the APIC access page, some flows in KVM x86 expect fault->pfn to be KVM_PFN_NOSLOT, while others check only fault->slot, etc. No functional change intended. Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Explicitly disallow private accesses to emulated MMIOSean Christopherson1-0/+5
Explicitly detect and disallow private accesses to emulated MMIO in kvm_handle_noslot_fault() instead of relying on kvm_faultin_pfn_private() to perform the check. This will allow the page fault path to go straight to kvm_handle_noslot_fault() without bouncing through __kvm_faultin_pfn(). Signed-off-by: Sean Christopherson <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Don't force emulation of L2 accesses to non-APIC internal slotsSean Christopherson1-4/+13
Allow mapping KVM's internal memslots used for EPT without unrestricted guest into L2, i.e. allow mapping the hidden TSS and the identity mapped page tables into L2. Unlike the APIC access page, there is no correctness issue with letting L2 access the "hidden" memory. Allowing these memslots to be mapped into L2 fixes a largely theoretical bug where KVM could incorrectly emulate subsequent _L1_ accesses as MMIO, and also ensures consistent KVM behavior for L2. If KVM is using TDP, but L1 is using shadow paging for L2, then routing through kvm_handle_noslot_fault() will incorrectly cache the gfn as MMIO, and create an MMIO SPTE. Creating an MMIO SPTE is ok, but only because kvm_mmu_page_role.guest_mode ensure KVM uses different roots for L1 vs. L2. But vcpu->arch.mmio_gfn will remain valid, and could cause KVM to incorrectly treat an L1 access to the hidden TSS or identity mapped page tables as MMIO. Furthermore, forcing L2 accesses to be treated as "no slot" faults doesn't actually prevent exposing KVM's internal memslots to L2, it simply forces KVM to emulate the access. In most cases, that will trigger MMIO, amusingly due to filling vcpu->arch.mmio_gfn, but also because vcpu_is_mmio_gpa() unconditionally treats APIC accesses as MMIO, i.e. APIC accesses are ok. But the hidden TSS and identity mapped page tables could go either way (MMIO or access the private memslot's backing memory). Alternatively, the inconsistent emulator behavior could be addressed by forcing MMIO emulation for L2 access to all internal memslots, not just to the APIC. But that's arguably less correct than letting L2 access the hidden TSS and identity mapped page tables, not to mention that it's *extremely* unlikely anyone cares what KVM does in this case. From L1's perspective there is R/W memory at those memslots, the memory just happens to be initialized with non-zero data. Making the memory disappear when it is accessed by L2 is far more magical and arbitrary than the memory existing in the first place. The APIC access page is special because KVM _must_ emulate the access to do the right thing (emulate an APIC access instead of reading/writing the APIC access page). And despite what commit 3a2936dedd20 ("kvm: mmu: Don't expose private memslots to L2") said, it's not just necessary when L1 is accelerating L2's virtual APIC, it's just as important (likely *more* imporant for correctness when L1 is passing through its own APIC to L2. Fixes: 3a2936dedd20 ("kvm: mmu: Don't expose private memslots to L2") Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Move private vs. shared check above slot validity checksSean Christopherson1-5/+15
Prioritize private vs. shared gfn attribute checks above slot validity checks to ensure a consistent userspace ABI. E.g. as is, KVM will exit to userspace if there is no memslot, but emulate accesses to the APIC access page even if the attributes mismatch. Fixes: 8dd2eee9d526 ("KVM: x86/mmu: Handle page fault for private memory") Cc: Yu Zhang <[email protected]> Cc: Chao Peng <[email protected]> Cc: Fuad Tabba <[email protected]> Cc: Michael Roth <[email protected]> Cc: Isaku Yamahata <[email protected]> Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: WARN and skip MMIO cache on private, reserved page faultsSean Christopherson1-0/+3
WARN and skip the emulated MMIO fastpath if a private, reserved page fault is encountered, as private+reserved should be an impossible combination (KVM should never create an MMIO SPTE for a private access). Signed-off-by: Sean Christopherson <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: check for invalid async page faults involving private memoryPaolo Bonzini1-7/+11
Right now the error code is not used when an async page fault is completed. This is not a problem in the current code, but it is untidy. For protected VMs, we will also need to check that the page attributes match the current state of the page, because asynchronous page faults can only occur on shared pages (private pages go through kvm_faultin_pfn_private() instead of __gfn_to_pfn_memslot()). Start by piping the error code from kvm_arch_setup_async_pf() to kvm_arch_async_page_ready() via the architecture-specific async page fault data. For now, it can be used to assert that there are no async page faults on private memory. Extracted from a patch by Isaku Yamahata. Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: Use synthetic page fault error code to indicate private faultsSean Christopherson2-1/+15
Add and use a synthetic, KVM-defined page fault error code to indicate whether a fault is to private vs. shared memory. TDX and SNP have different mechanisms for reporting private vs. shared, and KVM's software-protected VMs have no mechanism at all. Usurp an error code flag to avoid having to plumb another parameter to kvm_mmu_page_fault() and friends. Alternatively, KVM could borrow AMD's PFERR_GUEST_ENC_MASK, i.e. set it for TDX and software-protected VMs as appropriate, but that would require *clearing* the flag for SEV and SEV-ES VMs, which support encrypted memory at the hardware layer, but don't utilize private memory at the KVM layer. Opportunistically add a comment to call out that the logic for software- protected VMs is (and was before this commit) broken for nested MMUs, i.e. for nested TDP, as the GPA is an L2 GPA. Punt on trying to play nice with nested MMUs as there is a _lot_ of functionality that simply doesn't work for software-protected VMs, e.g. all of the paths where KVM accesses guest memory need to be updated to be aware of private vs. shared memory. Signed-off-by: Sean Christopherson <[email protected]> Message-Id: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
2024-05-07KVM: x86/mmu: WARN if upper 32 bits of legacy #PF error code are non-zeroSean Christopherson1-0/+7
WARN if bits 63:32 are non-zero when handling an intercepted legacy #PF, as the error code for #PF is limited to 32 bits (and in practice, 16 bits on Intel CPUS). This behavior is architectural, is part of KVM's ABI (see kvm_vcpu_events.error_code), and is explicitly documented as being preserved for intecerpted #PF in both the APM: The error code saved in EXITINFO1 is the same as would be pushed onto the stack by a non-intercepted #PF exception in protected mode. and even more explicitly in the SDM as VMCS.VM_EXIT_INTR_ERROR_CODE is a 32-bit field. Simply drop the upper bits if hardware provides garbage, as spurious information should do no harm (though in all likelihood hardware is buggy and the kernel is doomed). Handling all upper 32 bits in the #PF path will allow moving the sanity check on synthetic checks from kvm_mmu_page_fault() to npf_interception(), which in turn will allow deriving PFERR_PRIVATE_ACCESS from AMD's PFERR_GUEST_ENC_MASK without running afoul of the sanity check. Note, this is also why Intel uses bit 15 for SGX (highest bit on Intel CPUs) and AMD uses bit 31 for RMP (highest bit on AMD CPUs); using the highest bit minimizes the probability of a collision with the "other" vendor, without needing to plumb more bits through microcode. Signed-off-by: Sean Christopherson <[email protected]> Reviewed-by: Kai Huang <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>