Age | Commit message (Collapse) | Author | Files | Lines |
|
Linux 4.13-rc5
There's a really nasty nouveau collision, hopefully someone can take a look
once I pushed this out.
|
|
We want the firmware, and other changes, in here as well.
Signed-off-by: Greg Kroah-Hartman <[email protected]>
|
|
Currently we have pqr_state and rdt_default_state which store the cached
CLOSID/RMIDs and the user configured cpu default values respectively. We
touch both of these during context switch. Put all of them in one
structure so that we can spare a cache line.
Reported-by: Thomas Gleixner <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
The user configured per cpu default RMID is not cleared during cpu
hotplug. This may lead to incorrect RMID values after a cpu goes offline
and again comes back online. Clear the per cpu default RMID during cpu
offline and online handling.
Reported-by: Prakyha Sai Praneeth <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
The newly introduced function is only used when CONFIG_SMP is set:
arch/x86/kernel/cpu/amd.c:305:13: warning: 'legacy_fixup_core_id' defined but not used
This moves the existing #ifdef around the caller so it covers
legacy_fixup_core_id() as well.
Signed-off-by: Arnd Bergmann <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Emanuel Czirai <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Suravee Suthikulpanit <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Tom Lendacky <[email protected]>
Cc: Yazen Ghannam <[email protected]>
Fixes: b89b41d0b841 ("x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h")
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
According to Intel 64 and IA-32 Architectures SDM, Volume 3,
Chapter 14.2, "Software needs to exercise care to avoid delays
between the two RDMSRs (for example interrupts)".
So, disable interrupts during reading MSRs IA32_APERF and IA32_MPERF.
See also: commit 4ab60c3f32c7 (cpufreq: intel_pstate: Disable
interrupts during MSRs reading).
Signed-off-by: Doug Smythies <[email protected]>
Reviewed-by: Len Brown <[email protected]>
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
Hyper-V host can suggest us to use hypercall for doing remote TLB flush,
this is supposed to work faster than IPIs.
Implementation details: to do HvFlushVirtualAddress{Space,List} hypercalls
we need to put the input somewhere in memory and we don't really want to
have memory allocation on each call so we pre-allocate per cpu memory areas
on boot.
pv_ops patching is happening very early so we need to separate
hyperv_setup_mmu_ops() and hyper_alloc_mmu().
It is possible and easy to implement local TLB flushing too and there is
even a hint for that. However, I don't see a room for optimization on the
host side as both hypercall and native tlb flush will result in vmexit. The
hint is also not set on modern Hyper-V versions.
Signed-off-by: Vitaly Kuznetsov <[email protected]>
Reviewed-by: Andy Shevchenko <[email protected]>
Reviewed-by: Stephen Hemminger <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Haiyang Zhang <[email protected]>
Cc: Jork Loeser <[email protected]>
Cc: K. Y. Srinivasan <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Simon Xiao <[email protected]>
Cc: Steven Rostedt <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
For systems with X86_FEATURE_TOPOEXT, current logic uses the APIC ID
to calculate shared_cpu_map. However, APIC IDs are not guaranteed to
be contiguous for cores across different L3s (e.g. family17h system
w/ downcore configuration). This breaks the logic, and results in an
incorrect L3 shared_cpu_map.
Instead, always use the previously calculated cpu_llc_shared_mask of
each CPU to derive the L3 shared_cpu_map.
Signed-off-by: Suravee Suthikulpanit <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Current cpu_core_id fixup causes downcored F17h configurations to be
incorrect:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 0
NODE: 1
processor 6 core id : 2
processor 7 core id : 3
processor 8 core id : 4
processor 9 core id : 0
processor 10 core id : 1
processor 11 core id : 2
Code that relies on the cpu_core_id, like match_smt(), for example,
which builds the thread siblings masks used by the scheduler, is
mislead.
So, limit the fixup to pre-F17h machines. The new value for cpu_core_id
for F17h and later will represent the CPUID_Fn8000001E_EBX[CoreId],
which is guaranteed to be unique for each core within a socket.
This way we have:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 6
NODE: 1
processor 6 core id : 8
processor 7 core id : 9
processor 8 core id : 10
processor 9 core id : 12
processor 10 core id : 13
processor 11 core id : 14
Signed-off-by: Suravee Suthikulpanit <[email protected]>
[ Heavily massaged. ]
Signed-off-by: Borislav Petkov <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Yazen Ghannam <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
So I was looking at text_poke_bp() today and I couldn't make sense of
the barriers there.
How's for something like so?
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Steven Rostedt (VMware) <[email protected]>
Acked-by: Jiri Kosina <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Switching FS and GS is a mess, and the current code is still subtly
wrong: it assumes that "Loading a nonzero value into FS sets the
index and base", which is false on AMD CPUs if the value being
loaded is 1, 2, or 3.
(The current code came from commit 3e2b68d752c9 ("x86/asm,
sched/x86: Rewrite the FS and GS context switch code"), which made
it better but didn't fully fix it.)
Rewrite it to be much simpler and more obviously correct. This
should fix it fully on AMD CPUs and shouldn't adversely affect
performance.
Signed-off-by: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Gerst <[email protected]>
Cc: Chang Seok <[email protected]>
Cc: Denys Vlasenko <[email protected]>
Cc: H. Peter Anvin <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
execve used to leak FSBASE and GSBASE on AMD CPUs. Fix it.
The security impact of this bug is small but not quite zero -- it
could weaken ASLR when a privileged task execs a less privileged
program, but only if program changed bitness across the exec, or the
child binary was highly unusual or actively malicious. A child
program that was compromised after the exec would not have access to
the leaked base.
Signed-off-by: Andy Lutomirski <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Gerst <[email protected]>
Cc: Chang Seok <[email protected]>
Cc: Denys Vlasenko <[email protected]>
Cc: H. Peter Anvin <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
A hang on CPU0 onlining after a preceding offlining is observed. Trace
shows that CPU0 is stuck in check_tsc_sync_target() waiting for source
CPU to run check_tsc_sync_source() but this never happens. Source CPU,
in its turn, is stuck on synchronize_sched() which is called from
native_cpu_up() -> do_boot_cpu() -> unregister_nmi_handler().
So it's a classic ABBA deadlock, due to the use of synchronize_sched() in
unregister_nmi_handler().
Fix the bug by moving unregister_nmi_handler() from do_boot_cpu() to
native_cpu_up() after cpu onlining is done.
Signed-off-by: Vitaly Kuznetsov <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Since the kernel segment registers are not prepared at the
entry of irq-entry code, if a kprobe on such code is
jump-optimized, accessing per-CPU variables may cause a
kernel panic.
However, if the kprobe is not optimized, it triggers an int3
exception and sets segment registers correctly.
With this patch we check the probe-address and if it is in the
irq-entry code, it prohibits optimizing such kprobes.
This means we can continue probing such interrupt handlers by kprobes
but it is not optimized anymore.
Reported-by: Francis Deslauriers <[email protected]>
Tested-by: Francis Deslauriers <[email protected]>
Signed-off-by: Masami Hiramatsu <[email protected]>
Cc: Ananth N Mavinakayanahalli <[email protected]>
Cc: Anil S Keshavamurthy <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: David S . Miller <[email protected]>
Cc: Jesper Nilsson <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Max Filippov <[email protected]>
Cc: Mikael Starvik <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/150172795654.27216.9824039077047777477.stgit@devbox
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Generate irqentry and softirqentry text sections without
any Kconfig dependencies. This will add extra sections, but
there should be no performace impact.
Suggested-by: Ingo Molnar <[email protected]>
Signed-off-by: Masami Hiramatsu <[email protected]>
Cc: Ananth N Mavinakayanahalli <[email protected]>
Cc: Anil S Keshavamurthy <[email protected]>
Cc: Chris Zankel <[email protected]>
Cc: David S . Miller <[email protected]>
Cc: Francis Deslauriers <[email protected]>
Cc: Jesper Nilsson <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Max Filippov <[email protected]>
Cc: Mikael Starvik <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/150172789110.27216.3955739126693102122.stgit@devbox
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Pull KVM fixes from Radim Krčmář:
"ARM:
- Yet another race with VM destruction plugged
- A set of small vgic fixes
x86:
- Preserve pending INIT
- RCU fixes in paravirtual async pf, VM teardown, and VMXOFF
emulation
- nVMX interrupt injection and dirty tracking fixes
- initialize to make UBSAN happy"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: arm/arm64: vgic: Use READ_ONCE fo cmpxchg
KVM: nVMX: Fix interrupt window request with "Acknowledge interrupt on exit"
KVM: nVMX: mark vmcs12 pages dirty on L2 exit
kvm: nVMX: don't flush VMCS12 during VMXOFF or VCPU teardown
KVM: nVMX: do not pin the VMCS12
KVM: avoid using rcu_dereference_protected
KVM: X86: init irq->level in kvm_pv_kick_cpu_op
KVM: X86: Fix loss of pending INIT due to race
KVM: async_pf: make rcu irq exit if not triggered from idle task
KVM: nVMX: fixes to nested virt interrupt injection
KVM: nVMX: do not fill vm_exit_intr_error_code in prepare_vmcs12
KVM: arm/arm64: Handle hva aging while destroying the vm
KVM: arm/arm64: PMU: Fix overflow interrupt injection
KVM: arm/arm64: Fix bug in advertising KVM_CAP_MSI_DEVID capability
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Thomas Gleixner:
"The recent irq core changes unearthed API abuse in the HPET code,
which manifested itself in a suspend/resume regression.
The fix replaces the cruft with the proper function calls and cures
the regression"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hpet: Cure interface abuse in the resume path
|
|
We're about to amend ACPI bus scan with DMI checks whether we're running
on a Mac to support Apple device properties in AML. The DMI checks are
performed for every single device, adding overhead for everything x86
that isn't Apple, which is the majority. Rafael and Andy therefore
request to perform the DMI match only once and cache the result.
Outside of ACPI various other Apple DMI checks exist and it seems
reasonable to use the cached value there as well. Rafael, Andy and
Darren suggest performing the DMI check in arch code and making it
available with a header in include/linux/platform_data/x86/.
To this end, add early_platform_quirks() to arch/x86/kernel/quirks.c
to perform the DMI check and invoke it from setup_arch(). Switch over
all existing Apple DMI checks, thereby fixing two deficiencies:
* They are now #defined to false on non-x86 arches and can thus be
optimized away if they're located in cross-arch code.
* Some of them only match "Apple Inc." but not "Apple Computer, Inc.",
which is used by BIOSes released between January 2006 (when the first
x86 Macs started shipping) and January 2007 (when the company name
changed upon introduction of the iPhone).
Suggested-by: Andy Shevchenko <[email protected]>
Suggested-by: Rafael J. Wysocki <[email protected]>
Suggested-by: Darren Hart <[email protected]>
Signed-off-by: Lukas Wunner <[email protected]>
Acked-by: Mika Westerberg <[email protected]>
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
* pm-cpufreq-x86:
cpufreq: x86: Make scaling_cur_freq behave more as expected
* pm-cpufreq-docs:
cpufreq: docs: Add missing cpuinfo_cur_freq description
* intel_pstate:
cpufreq: intel_pstate: Drop ->get from intel_pstate structure
|
|
CPUID.(EAX=0x10, ECX=res#):EBX[31:0] reports a bit mask for a resource.
Each set bit within the length of the CBM indicates the corresponding
unit of the resource allocation may be used by other entities in the
platform (e.g. an integrated graphics engine or hardware units outside
the processor core and have direct access to the resource). Each
cleared bit within the length of the CBM indicates the corresponding
allocation unit can be configured to implement a priority-based
allocation scheme without interference with other hardware agents in
the system. Bits outside the length of the CBM are reserved.
More details on the bit mask are described in x86 Software Developer's
Manual.
The bitmask is shown in "info" directory for each resource. It's
up to user to decide how to use the bitmask within a CBM in a partition
to share or isolate a resource with other executing units.
Suggested-by: Reinette Chatre <[email protected]>
Signed-off-by: Fenghua Yu <[email protected]>
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
Set up a delayed work queue for each domain that will read all
the MBM counters of active RMIDs once per second to make sure
that they don't wrap around between reads from users.
[Tony: Added the initializations for the work structure and completed
the patch]
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-29-git-send-email-vikas.shivappa@linux.intel.com
|
|
MBM counters are monotonically increasing counts representing the total
memory bytes at a particular time. In order to calculate total_bytes for
an rdtgroup, we store the value of the counter when we create an
rdtgroup or when a new domain comes online.
When the total_bytes(all memory controller bytes) or local_bytes(local
memory controller bytes) file in "mon_data" is read it shows the
total bytes for that rdtgroup since its creation. User can snapshot this
at different time intervals to obtain bytes/second.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-28-git-send-email-vikas.shivappa@linux.intel.com
|
|
Check CPUID bits for whether each of the MBM events is supported.
Allocate space for each RMID for each counter in each domain to save
previous MSR counter value and running total of data.
Create files in each of the monitor directories.
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-27-git-send-email-vikas.shivappa@linux.intel.com
|
|
Resource groups have a per domain directory under "mon_data". Add or
remove these directories as and when domains come online and go offline.
Also update the per cpu rmids and cache upon onlining and offlining
cpus.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-26-git-send-email-vikas.shivappa@linux.intel.com
|
|
OS associates an RMID/CLOSid to a task by writing the per CPU
IA32_PQR_ASSOC MSR when a task is scheduled in.
The sched_in code will stay as no-op unless we are running on Intel SKU
which supports either resource control or monitoring and we also enable
them by mounting the resctrl fs. The per cpu CLOSid/RMID values are
cached and the write is performed only when a task with a different
CLOSid/RMID is scheduled in.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-25-git-send-email-vikas.shivappa@linux.intel.com
|
|
Add monitoring support during mount and unmount. Since root directory is
a "ctrl_mon" directory which can control and monitor resources create
the "mon_groups" directory which can hold monitor groups and a
"mon_data" directory which would hold all monitoring data like the rest
of resource groups.
The mount succeeds if either of monitoring or control/allocation is
enabled. If only monitoring is enabled user can still create monitor
groups under the "/sys/fs/resctrl/mon_groups/" and any mkdir under root
would fail. If only control/allocation is enabled all of the monitoring
related directories/files would not exist and resctrl would work in
legacy mode.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-23-git-send-email-vikas.shivappa@linux.intel.com
|
|
Resource groups (ctrl_mon and monitor groups) are represented by
directories in resctrl fs. Add support to remove the directories.
When a ctrl_mon directory is removed all the cpus and tasks are assigned
back to the root rdtgroup. When a monitor group is removed the cpus and
tasks are returned to the parent control group.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-22-git-send-email-vikas.shivappa@linux.intel.com
|
|
Re-factor the code to separate the ctrl group removal from the rmdir to
prepare to add RDT monitoring group removal.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-21-git-send-email-vikas.shivappa@linux.intel.com
|
|
Add a mon_data directory for the root rdtgroup and all other rdtgroups.
The directory holds all of the monitored data for all domains and events
of all resources being monitored.
The mon_data itself has a list of directories in the format
mon_<domain_name>_<domain_id>. Each of these subdirectories contain one
file per event in the mode "0444". Reading the file displays a snapshot
of the monitored data for the event the file represents.
For ex, on a 2 socket Broadwell with llc_occupancy being
monitored the mon_data contents look as below:
$ ls /sys/fs/resctrl/p1/mon_data/
mon_L3_00
mon_L3_01
Each domain directory has one file per event:
$ ls /sys/fs/resctrl/p1/mon_data/mon_L3_00/
llc_occupancy
To read current llc_occupancy of ctrl_mon group p1
$ cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
33789096
[This patch idea is based on Tony's sample patches to organise data in a
per domain directory and have one file per event (and use the fp->priv to
store mon data bits)]
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-20-git-send-email-vikas.shivappa@linux.intel.com
|
|
Rename the intel_rdt_schemata file to intel_rdt_ctrlmondata as we now
want to add support for RDT monitoring data for the events that are
supported in later patches.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-19-git-send-email-vikas.shivappa@linux.intel.com
|
|
The cpus file is extended to support resource monitoring. This is used
to over-ride the RMID of the default group when running on specific
CPUs. It works similar to the resource control. The "cpus" and
"cpus_list" file is present in default group, ctrl_mon groups and
monitor groups.
Each "cpus" file or cpu_list file reads a cpumask or list showing which
CPUs belong to the resource group. By default all online cpus belong to
the default root group. A CPU can be present in one "ctrl_mon" and one
"monitor" group simultaneously. They can be added to a resource group by
writing the CPU to the file. When a CPU is added to a ctrl_mon group it
is automatically removed from the previous ctrl_mon group. A CPU can be
added to a monitor group only if it is present in the parent ctrl_mon
group and when a CPU is added to a monitor group, it is automatically
removed from the previous monitor group. When CPUs go offline, they are
automatically removed from the ctrl_mon and monitor groups.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-18-git-send-email-vikas.shivappa@linux.intel.com
|
|
Separate the ctrl cpus file handling from the generic cpus file handling
and convert the per cpu closid from u32 to a struct which will be used
later to add rmid to the same struct. Also cleanup some name space.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-17-git-send-email-vikas.shivappa@linux.intel.com
|
|
The root directory, ctrl_mon and monitor groups are populated
with a read/write file named "tasks". When read, it shows all the task
IDs assigned to the resource group.
Tasks can be added to groups by writing the PID to the file. A task can
be present in one "ctrl_mon" group "and" one "monitor" group. IOW a
PID_x can be seen in a ctrl_mon group and a monitor group at the same
time. When a task is added to a ctrl_mon group, it is automatically
removed from the previous ctrl_mon group where it belonged. Similarly if
a task is moved to a monitor group it is removed from the previous
monitor group . Also since the monitor groups can only have subset of
tasks of parent ctrl_mon group, a task can be moved to a monitor group
only if its already present in the parent ctrl_mon group.
Task membership is indicated by a new field in the task_struct "u32
rmid" which holds the RMID for the task. RMID=0 is reserved for the
default root group where the tasks belong to at mount.
[tony: zero the rmid if rdtgroup was deleted when task was being moved]
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-16-git-send-email-vikas.shivappa@linux.intel.com
|
|
OS associates a CLOSid(Class of service id) to a task by writing the
high 32 bits of per CPU IA32_PQR_ASSOC MSR when a task is scheduled in.
CPUID.(EAX=10H, ECX=1):EDX[15:0] enumerates the max CLOSID supported and
it is zero indexed. Hence change the type to u32 from int.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-15-git-send-email-vikas.shivappa@linux.intel.com
|
|
Resource control groups can be created using mkdir in resctrl
fs(rdtgroup). In order to extend the resctrl interface to support
monitoring the control groups, extend the current mkdir to support
resource monitoring also.
This allows the rdtgroup created under the root directory to be able to
both control and monitor resources (ctrl_mon group). The ctrl_mon groups
are associated with one CLOSID like the legacy rdtgroups and one
RMID(Resource monitoring ID) as well. Hardware uses RMID to track the
resource usage. Once either of the CLOSID or RMID are exhausted, the
mkdir fails with -ENOSPC. If there are RMIDs in limbo list but not free
an -EBUSY is returned. User can also monitor a subset of the ctrl_mon
rdtgroup's tasks/cpus using the monitor groups. The monitor groups are
created using mkdir under the "mon_groups" directory in every ctrl_mon
group.
[Merged Tony's code: Removed a lot of common mkdir code, a fix to handling
of the list of the child rdtgroups and some cleanups in list
traversal. Also the changes to have similar alloc and free for CLOS/RMID
and return -EBUSY when RMIDs are in limbo and not free]
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-14-git-send-email-vikas.shivappa@linux.intel.com
|
|
Separate the ctrl mkdir code from the rest in order to prepare for
adding support for RDT monitoring mkdir support as well.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-13-git-send-email-vikas.shivappa@linux.intel.com
|
|
Add info directory files specific to RDT monitoring.
num_rmids:
The number of RMIDs which are valid for the resource.
mon_features:
Lists the monitoring events if monitoring is enabled for the
resource.
max_threshold_occupancy:
This is specific to llc_occupancy monitoring and is used to
determine if an RMID can be reused. Provides an upper bound on the
threshold and is shown to the user in bytes though the internal
value will be rounded to the scaling factor supported by the h/w.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-12-git-send-email-vikas.shivappa@linux.intel.com
|
|
The info directory files and base files need to be different for each
resource like cache and Memory bandwidth. With in each resource, the
files would be further different for monitoring and ctrl. This leads to
a lot of different static array declarations given that we are adding
resctrl monitoring.
Simplify this to one common list of files and then declare a set of
flags to choose the files based on the resource, whether it is info or
base and if it is control type file. This is as a preparation to include
monitoring based info and base files.
No functional change.
[Vikas: Extended the flags to have few bits per category like resource,
info/base etc]
Signed-off-by: Tony luck <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-11-git-send-email-vikas.shivappa@linux.intel.com
|
|
Hardware uses RMID(Resource monitoring ID) to keep track of each of the
RDT events associated with tasks. The number of RMIDs is dependent on
the SKU and is enumerated via CPUID. We add support to manage the RMIDs
which include managing the RMID allocation and reading LLC occupancy
for an RMID.
RMID allocation is managed by keeping a free list which is initialized
to all available RMIDs except for RMID 0 which is always reserved for
root group. RMIDs goto a limbo list once they are
freed since the RMIDs are still tagged to cache lines of the tasks which
were using them - thereby still having some occupancy. They continue to
be in limbo list until the occupancy < threshold_occupancy. The
threshold_occupancy is a user configurable value.
OS uses IA32_QM_CTR MSR to read the occupancy associated with an RMID
after programming the IA32_EVENTSEL MSR with the RMID.
[Tony: Improved limbo search]
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/1501017287-28083-10-git-send-email-vikas.shivappa@linux.intel.com
|
|
Add common data structures for RDT resource monitoring and perform RDT
monitoring related data structure initializations which include setting
up the RMID(Resource monitoring ID) lists and event list which the
resource supports.
[ tony: some cleanup to make adding MBM easier later, remove "cqm" from
some names, make some data structure local to intel_rdt_monitor.c
static. Add copyright header]
[ tglx: Made it readable ]
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Tony Luck <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
Change the format of the global rdt_resources_all. This holds all the
RDT resource structure initialization values. Make this more readable by
using the format:
rdt_resources_all[] = {
[<resource_index>] =
{...
}
...
}
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
Few of the data-structures have generic names although they are RDT
allocation specific. Rename them to be allocation specific to
accommodate RDT monitoring. E.g. s/enabled/alloc_enabled/
No functional change.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
Sparse reports that both of these can be static.
Make it so.
Signed-off-by: Reinette Chatre <[email protected]>
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
Because the "perf cqm" and resctrl code were separately added and
indivdually configurable, there seem to be separate context switch code
and also things on global .h which are not really needed.
Move only the scheduling specific code and definitions to
<asm/intel_rdt_sched.h> and the put all the other declarations to a
local intel_rdt.h.
h/t to Reinette Chatre for pointing out that we should separate the
public interfaces used by other parts of the kernel from private
objects shared between the various files comprising RDT.
No functional change.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
We currently have a CONFIG_RDT_A which is for RDT(Resource directory
technology) allocation based resctrl filesystem interface. As a
preparation to add support for RDT monitoring as well into the same
resctrl filesystem, change the config option to be CONFIG_RDT which
would include both RDT allocation and monitoring code.
No functional change.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
'perf cqm' never worked due to the incompatibility between perf
infrastructure and cqm hardware support. The hardware uses RMIDs to
track the llc occupancy of tasks and these RMIDs are per package. This
makes monitoring a hierarchy like cgroup along with monitoring of tasks
separately difficult and several patches sent to lkml to fix them were
NACKed. Further more, the following issues in the current perf cqm make
it almost unusable:
1. No support to monitor the same group of tasks for which we do
allocation using resctrl.
2. It gives random and inaccurate data (mostly 0s) once we run out
of RMIDs due to issues in Recycling.
3. Recycling results in inaccuracy of data because we cannot
guarantee that the RMID was stolen from a task when it was not
pulling data into cache or even when it pulled the least data. Also
for monitoring llc_occupancy, if we stop using an RMID_x and then
start using an RMID_y after we reclaim an RMID from an other event,
we miss accounting all the occupancy that was tagged to RMID_x at a
later perf_count.
2. Recycling code makes the monitoring code complex including
scheduling because the event can lose RMID any time. Since MBM
counters count bandwidth for a period of time by taking snap shot of
total bytes at two different times, recycling complicates the way we
count MBM in a hierarchy. Also we need a spin lock while we do the
processing to account for MBM counter overflow. We also currently
use a spin lock in scheduling to prevent the RMID from being taken
away.
4. Lack of support when we run different kind of event like task,
system-wide and cgroup events together. Data mostly prints 0s. This
is also because we can have only one RMID tied to a cpu as defined
by the cqm hardware but a perf can at the same time tie multiple
events during one sched_in.
5. No support of monitoring a group of tasks. There is partial support
for cgroup but it does not work once there is a hierarchy of cgroups
or if we want to monitor a task in a cgroup and the cgroup itself.
6. No support for monitoring tasks for the lifetime without perf
overhead.
7. It reported the aggregate cache occupancy or memory bandwidth over
all sockets. But most cloud and VMM based use cases want to know the
individual per-socket usage.
Signed-off-by: Vikas Shivappa <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
|
|
WARNING: CPU: 5 PID: 1242 at kernel/rcu/tree_plugin.h:323 rcu_note_context_switch+0x207/0x6b0
CPU: 5 PID: 1242 Comm: unity-settings- Not tainted 4.13.0-rc2+ #1
RIP: 0010:rcu_note_context_switch+0x207/0x6b0
Call Trace:
__schedule+0xda/0xba0
? kvm_async_pf_task_wait+0x1b2/0x270
schedule+0x40/0x90
kvm_async_pf_task_wait+0x1cc/0x270
? prepare_to_swait+0x22/0x70
do_async_page_fault+0x77/0xb0
? do_async_page_fault+0x77/0xb0
async_page_fault+0x28/0x30
RIP: 0010:__d_lookup_rcu+0x90/0x1e0
I encounter this when trying to stress the async page fault in L1 guest w/
L2 guests running.
Commit 9b132fbe5419 (Add rcu user eqs exception hooks for async page
fault) adds rcu_irq_enter/exit() to kvm_async_pf_task_wait() to exit cpu
idle eqs when needed, to protect the code that needs use rcu. However,
we need to call the pair even if the function calls schedule(), as seen
from the above backtrace.
This patch fixes it by informing the RCU subsystem exit/enter the irq
towards/away from idle for both n.halted and !n.halted.
Cc: Paolo Bonzini <[email protected]>
Cc: Radim Krčmář <[email protected]>
Cc: Paul E. McKenney <[email protected]>
Cc: [email protected]
Signed-off-by: Wanpeng Li <[email protected]>
Reviewed-by: Paolo Bonzini <[email protected]>
Signed-off-by: Radim Krčmář <[email protected]>
|
|
The HPET resume path abuses irq_domain_[de]activate_irq() to restore the
MSI message in the HPET chip for the boot CPU on resume and it relies on an
implementation detail of the interrupt core code, which magically makes the
HPET unmask call invoked via a irq_disable/enable pair. This worked as long
as the irq code did unconditionally invoke the unmask() callback. With the
recent changes which keep track of the masked state to avoid expensive
hardware access, this does not longer work. As a consequence the HPET timer
interrupts are not unmasked which breaks resume as the boot CPU waits
forever that a timer interrupt arrives.
Make the restore of the MSI message explicit and invoke the unmask()
function directly. While at it get rid of the pointless affinity setting as
nothing can change the affinity of the interrupt and the vector across
suspend/resume. The restore of the MSI message reestablishes the previous
affinity setting which is the correct one.
Fixes: bf22ff45bed6 ("genirq: Avoid unnecessary low level irq function calls")
Reported-and-tested-by: Tomi Sarvela <[email protected]>
Reported-by: Martin Peres <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Acked-by: "Rafael J. Wysocki" <[email protected]>
Cc: [email protected]
Cc: Peter Zijlstra <[email protected]>
Cc: Marc Zyngier <[email protected]>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1707312158590.2287@nanos
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A small set of x86 fixes:
- prevent the kernel from using the EFI reboot method when EFI is
disabled.
- two patches addressing clang issues"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Disable the address-of-packed-member compiler warning
x86/efi: Fix reboot_mode when EFI runtime services are disabled
x86/boot: #undef memcpy() et al in string.c
|