Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
and a micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
* tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch/x86: Fix typos
x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify()
x86/docs: Remove reference to syscall trampoline in PTI
x86/Kconfig: Remove obsolete config X86_32_SMP
x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro
x86/mtrr: Document missing function parameters in kernel-doc
x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Convert the sev-guest plaform ->remove callback to return void
- Move the SEV C-bit verification to the BSP as it needs to happen only
once and not on every AP
* tag 'x86_sev_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
virt: sev-guest: Convert to platform remove callback returning void
x86/sev: Do the C-bit verification only on the BSP
|
|
Fix typos, most reported by "codespell arch/x86". Only touches comments,
no code changes.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
|
|
Chris reported that a Dell PowerEdge T340 system stopped to boot when upgrading
to a kernel which contains the parallel hotplug changes. Disabling parallel
hotplug on the kernel command line makes it boot again.
It turns out that the Dell BIOS has x2APIC enabled and the boot CPU comes up in
X2APIC mode, but the APs come up inconsistently in xAPIC mode.
Parallel hotplug requires that the upcoming CPU reads out its APIC ID from the
local APIC in order to map it to the Linux CPU number.
In this particular case the readout on the APs uses the MMIO mapped registers
because the BIOS failed to enable x2APIC mode. That readout results in a page
fault because the kernel does not have the APIC MMIO space mapped when X2APIC
mode was enabled by the BIOS on the boot CPU and the kernel switched to X2APIC
mode early. That page fault can't be handled on the upcoming CPU that early and
results in a silent boot failure.
If parallel hotplug is disabled the system boots because in that case the APIC
ID read is not required as the Linux CPU number is provided to the AP in the
smpboot control word. When the kernel uses x2APIC mode then the APs are
switched to x2APIC mode too slightly later in the bringup process, but there is
no reason to do it that late.
Cure the BIOS bogosity by checking in the parallel bootup path whether the
kernel uses x2APIC mode and if so switching over the APs to x2APIC mode before
the APIC ID readout.
Fixes: 0c7ffa32dbd6 ("x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it")
Reported-by: Chris Lindee <chris.lindee@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Chris Lindee <chris.lindee@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/CA%2B2tU59853R49EaU_tyvOZuOTDdcU0RshGyydccp9R1NX9bEeQ@mail.gmail.com
|
|
There's no need to do it on every AP.
The C-bit value read on the BSP and also verified there, is used
everywhere from now on.
No functional changes - just a bit faster booting APs.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20231130132601.10317-1-bp@alien8.de
|
|
There is no need to use TESTL when checking the least-significant bit
with a TEST instruction. Use TESTB, which is three bytes shorter:
f6 05 00 00 00 00 01 testb $0x1,0x0(%rip)
vs:
f7 05 00 00 00 00 01 testl $0x1,0x0(%rip)
00 00 00
for the same effect.
No functional changes intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231109201032.4439-1-ubizjak@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm handling updates from Ingo Molnar:
- Add new NX-stack self-test
- Improve NUMA partial-CFMWS handling
- Fix #VC handler bugs resulting in SEV-SNP boot failures
- Drop the 4MB memory size restriction on minimal NUMA nodes
- Reorganize headers a bit, in preparation to header dependency
reduction efforts
- Misc cleanups & fixes
* tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size
selftests/x86/lam: Zero out buffer for readlink()
x86/sev: Drop unneeded #include
x86/sev: Move sev_setup_arch() to mem_encrypt.c
x86/tdx: Replace deprecated strncpy() with strtomem_pad()
selftests/x86/mm: Add new test that userspace stack is in fact NX
x86/sev: Make boot_ghcb_page[] static
x86/boot: Move x86_cache_alignment initialization to correct spot
x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach
x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot
x86_64: Show CR4.PSE on auxiliaries like on BSP
x86/iommu/docs: Update AMD IOMMU specification document URL
x86/sev/docs: Update document URL in amd-memory-encryption.rst
x86/mm: Move arch_memory_failure() and arch_is_platform_page() definitions from <asm/processor.h> to <asm/pgtable.h>
ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window
x86/numa: Introduce numa_fill_memblks()
|
|
The following commit:
ddb5cdbafaaa ("kbuild: generate KSYMTAB entries by modpost")
deprecated <asm/export.h>, which is now a wrapper of <linux/export.h>.
Use <linux/export.h> in *.S as well as in *.c files.
After all the <asm/export.h> lines are replaced, <asm/export.h> and
<asm-generic/export.h> will be removed.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230806145958.380314-2-masahiroy@kernel.org
|
|
Set CR4.PSE in secondary_startup_64: the Intel SDM is clear that it does
not matter whether it's 0 or 1 when 4-level-pts are enabled, but it's
distracting to find CR4 different on BSP and auxiliaries - on x86_64,
BSP alone got to add the PSE bit, in probe_page_size_mask().
Peter Zijlstra adds:
"I think the point is that PSE bit is completely without
meaning in long mode.
But yes, having the same CR4 bits set across BSP and APs is
definitely sane."
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/103ad03a-8c93-c3e2-4226-f79af4d9a074@google.com
|
|
Instead of pushing/popping %RSI to/from the stack every time a function
is called from startup_64(), store it in a callee preserved register
and grab it from there when its value is actually needed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-3-ardb@kernel.org
|
|
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP updates from Thomas Gleixner:
"A large update for SMP management:
- Parallel CPU bringup
The reason why people are interested in parallel bringup is to
shorten the (kexec) reboot time of cloud servers to reduce the
downtime of the VM tenants.
The current fully serialized bringup does the following per AP:
1) Prepare callbacks (allocate, intialize, create threads)
2) Kick the AP alive (e.g. INIT/SIPI on x86)
3) Wait for the AP to report alive state
4) Let the AP continue through the atomic bringup
5) Let the AP run the threaded bringup to full online state
There are two significant delays:
#3 The time for an AP to report alive state in start_secondary()
on x86 has been measured in the range between 350us and 3.5ms
depending on vendor and CPU type, BIOS microcode size etc.
#4 The atomic bringup does the microcode update. This has been
measured to take up to ~8ms on the primary threads depending
on the microcode patch size to apply.
On a two socket SKL server with 56 cores (112 threads) the boot CPU
spends on current mainline about 800ms busy waiting for the APs to
come up and apply microcode. That's more than 80% of the actual
onlining procedure.
This can be reduced significantly by splitting the bringup
mechanism into two parts:
1) Run the prepare callbacks and kick the AP alive for each AP
which needs to be brought up.
The APs wake up, do their firmware initialization and run the
low level kernel startup code including microcode loading in
parallel up to the first synchronization point. (#1 and #2
above)
2) Run the rest of the bringup code strictly serialized per CPU
(#3 - #5 above) as it's done today.
Parallelizing that stage of the CPU bringup might be possible
in theory, but it's questionable whether required surgery
would be justified for a pretty small gain.
If the system is large enough the first AP is already waiting at
the first synchronization point when the boot CPU finished the
wake-up of the last AP. That reduces the AP bringup time on that
SKL from ~800ms to ~80ms, i.e. by a factor ~10x.
The actual gain varies wildly depending on the system, CPU,
microcode patch size and other factors. There are some
opportunities to reduce the overhead further, but that needs some
deep surgery in the x86 CPU bringup code.
For now this is only enabled on x86, but the core functionality
obviously works for all SMP capable architectures.
- Enhancements for SMP function call tracing so it is possible to
locate the scheduling and the actual execution points. That allows
to measure IPI delivery time precisely"
* tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
trace,smp: Add tracepoints for scheduling remotelly called functions
trace,smp: Add tracepoints around remotelly called functions
MAINTAINERS: Add CPU HOTPLUG entry
x86/smpboot: Fix the parallel bringup decision
x86/realmode: Make stack lock work in trampoline_compat()
x86/smp: Initialize cpu_primary_thread_mask late
cpu/hotplug: Fix off by one in cpuhp_bringup_mask()
x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils
x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
x86/smpboot: Support parallel startup of secondary CPUs
x86/smpboot: Implement a bit spinlock to protect the realmode stack
x86/apic: Save the APIC virtual base address
cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE
x86/apic: Provide cpu_primary_thread mask
x86/smpboot: Enable split CPU startup
cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism
cpu/hotplug: Reset task stack state in _cpu_up()
cpu/hotplug: Remove unused state functions
riscv: Switch to hotplug core state synchronization
parisc: Switch to hotplug core state synchronization
...
|
|
The call to startup_64_setup_env() will install a new GDT but does not
actually switch to using the KERNEL_CS entry until returning from the
function call.
Commit bcce82908333 ("x86/sev: Detect/setup SEV/SME features earlier in
boot") moved the call to sme_enable() earlier in the boot process and in
between the call to startup_64_setup_env() and the switch to KERNEL_CS.
An SEV-ES or an SEV-SNP guest will trigger #VC exceptions during the call
to sme_enable() and if the CS pushed on the stack as part of the exception
and used by IRETQ is not mapped by the new GDT, then problems occur.
Today, the current CS when entering startup_64 is the kernel CS value
because it was set up by the decompressor code, so no issue is seen.
However, a recent patchset that looked to avoid using the legacy
decompressor during an EFI boot exposed this bug. At entry to startup_64,
the CS value is that of EFI and is not mapped in the new kernel GDT. So
when a #VC exception occurs, the CS value used by IRETQ is not valid and
the guest boot crashes.
Fix this issue by moving the block that switches to the KERNEL_CS value to
be done immediately after returning from startup_64_setup_env().
Fixes: bcce82908333 ("x86/sev: Detect/setup SEV/SME features earlier in boot")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Link: https://lore.kernel.org/all/6ff1f28af2829cc9aea357ebee285825f90a431f.1684340801.git.thomas.lendacky%40amd.com
|
|
In parallel startup mode the APs are kicked alive by the control CPU
quickly after each other and run through the early startup code in
parallel. The real-mode startup code is already serialized with a
bit-spinlock to protect the real-mode stack.
In parallel startup mode the smpboot_control variable obviously cannot
contain the Linux CPU number so the APs have to determine their Linux CPU
number on their own. This is required to find the CPUs per CPU offset in
order to find the idle task stack and other per CPU data.
To achieve this, export the cpuid_to_apicid[] array so that each AP can
find its own CPU number by searching therein based on its APIC ID.
Introduce a flag in the top bits of smpboot_control which indicates that
the AP should find its CPU number by reading the APIC ID from the APIC.
This is required because CPUID based APIC ID retrieval can only provide the
initial APIC ID, which might have been overruled by the firmware. Some AMD
APUs come up with APIC ID = initial APIC ID + 0x10, so the APIC ID to CPU
number lookup would fail miserably if based on CPUID. Also virtualization
can make its own APIC ID assignements. The only requirement is that the
APIC IDs are consistent with the APCI/MADT table.
For the boot CPU or in case parallel bringup is disabled the control bits
are empty and the CPU number is directly available in bit 0-23 of
smpboot_control.
[ tglx: Initial proof of concept patch with bitlock and APIC ID lookup ]
[ dwmw2: Rework and testing, commit message, CPUID 0x1 and CPU0 support ]
[ seanc: Fix stray override of initial_gs in common_cpu_up() ]
[ Oleksandr Natalenko: reported suspend/resume issue fixed in
x86_acpi_suspend_lowlevel ]
[ tglx: Make it read the APIC ID from the APIC instead of using CPUID,
split the bitlock part out ]
Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.411554373@linutronix.de
|
|
Parallel AP bringup requires that the APs can run fully parallel through
the early startup code including the real mode trampoline.
To prepare for this implement a bit-spinlock to serialize access to the
real mode stack so that parallel upcoming APs are not going to corrupt each
others stack while going through the real mode startup code.
Co-developed-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.355425551@linutronix.de
|
|
Now that the CPU0 hotplug cruft is gone, the only user is AMD SEV.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.822234014@linutronix.de
|
|
This is used in the SEV play_dead() implementation to re-online CPUs. But
that has nothing to do with CPU0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.662319599@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
|
|
Mark reported that the ORC unwinder incorrectly marks an unwind as
reliable when the unwind terminates prematurely in the dark corners of
return_to_handler() due to lack of information about the next frame.
The problem is UNWIND_HINT_EMPTY is used in two different situations:
1) The end of the kernel stack unwind before hitting user entry, boot
code, or fork entry
2) A blind spot in ORC coverage where the unwinder has to bail due to
lack of information about the next frame
The ORC unwinder has no way to tell the difference between the two.
When it encounters an undefined stack state with 'end=1', it blindly
marks the stack reliable, which can break the livepatch consistency
model.
Fix it by splitting UNWIND_HINT_EMPTY into UNWIND_HINT_UNDEFINED and
UNWIND_HINT_END_OF_STACK.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/fd6212c8b450d3564b855e1cb48404d6277b4d9f.1677683419.git.jpoimboe@kernel.org
|
|
The ENTRY unwind hint type is serving double duty as both an empty
unwind hint and an unret validation annotation.
Unret validation is unrelated to unwinding. Separate it out into its own
annotation.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/ff7448d492ea21b86d8a90264b105fbd0d751077.1677683419.git.jpoimboe@kernel.org
|
|
Given its CPU#, each CPU can find its own per-cpu offset, and directly set
GSBASE accordingly. The global variable can be eliminated.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-9-usama.arif@bytedance.com
|
|
Build the GDT descriptor on the stack instead.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-8-usama.arif@bytedance.com
|
|
In order to facilitate parallel startup, start to eliminate some of the
global variables passing information to CPUs in the startup path.
However, start by introducing one more: smpboot_control. For now this
merely holds the CPU# of the CPU which is coming up. Each CPU can then
find its own per-cpu data, and everything else it needs can be found
from there, allowing the other global variables to be removed.
First to be removed is initial_stack. Each CPU can load %rsp from its
current_task->thread.sp instead. That is already set up with the correct
idle thread for APs. Set up the .sp field in INIT_THREAD on x86 so that
the BSP also finds a suitable stack pointer in the static per-cpu data
when coming up on first boot.
On resume from S3, the CPU needs a temporary stack because its idle task
is already active. Instead of setting initial_stack, the sleep code can
simply set its own current->thread.sp to point to the temporary stack.
Nobody else cares about ->thread.sp for a thread which is currently on
a CPU, because the true value is actually in the %rsp register. Which
is restored with the rest of the CPU context in do_suspend_lowlevel().
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-7-usama.arif@bytedance.com
|
|
Mitigating the Intel SKL RSB underflow issue in software requires to
track the call depth. That is every CALL and every RET need to be
intercepted and additional code injected.
The existing retbleed mitigations already include means of redirecting
RET to __x86_return_thunk; this can be re-purposed and RET can be
redirected to another function doing RET accounting.
CALL accounting will use the function padding introduced in prior
patches. For each CALL instruction, the destination symbol's padding
is rewritten to do the accounting and the CALL instruction is adjusted
to call into the padding.
This ensures only affected CPUs pay the overhead of this accounting.
Unaffected CPUs will leave the padding unused and have their 'JMP
__x86_return_thunk' replaced with an actual 'RET' instruction.
Objtool has been modified to supply a .call_sites section that lists
all the 'CALL' instructions. Additionally the paravirt instruction
sites are iterated since they will have been patched from an indirect
call to direct calls (or direct instructions in which case it'll be
ignored).
Module handling and the actual thunk code for SKL will be added in
subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.470877038@infradead.org
|
|
Since entry asm is tricky, add a validation pass that ensures the
retbleed mitigation has been done before the first actual RET
instruction.
Entry points are those that either have UNWIND_HINT_ENTRY, which acts
as UNWIND_HINT_EMPTY but marks the instruction as an entry point, or
those that have UWIND_HINT_IRET_REGS at +0.
This is basically a variant of validate_branch() that is
intra-function and it will simply follow all branches from marked
entry points and ensures that all paths lead to ANNOTATE_UNRET_END.
If a path hits RET or an indirection the path is a fail and will be
reported.
There are 3 ANNOTATE_UNRET_END instances:
- UNTRAIN_RET itself
- exception from-kernel; this path doesn't need UNTRAIN_RET
- all early exceptions; these also don't need UNTRAIN_RET
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull Intel TDX support from Borislav Petkov:
"Intel Trust Domain Extensions (TDX) support.
This is the Intel version of a confidential computing solution called
Trust Domain Extensions (TDX). This series adds support to run the
kernel as part of a TDX guest. It provides similar guest protections
to AMD's SEV-SNP like guest memory and register state encryption,
memory integrity protection and a lot more.
Design-wise, it differs from AMD's solution considerably: it uses a
software module which runs in a special CPU mode called (Secure
Arbitration Mode) SEAM. As the name suggests, this module serves as
sort of an arbiter which the confidential guest calls for services it
needs during its lifetime.
Just like AMD's SNP set, this series reworks and streamlines certain
parts of x86 arch code so that this feature can be properly
accomodated"
* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/tdx: Fix RETs in TDX asm
x86/tdx: Annotate a noreturn function
x86/mm: Fix spacing within memory encryption features message
x86/kaslr: Fix build warning in KASLR code in boot stub
Documentation/x86: Document TDX kernel architecture
ACPICA: Avoid cache flush inside virtual machines
x86/tdx/ioapic: Add shared bit for IOAPIC base address
x86/mm: Make DMA memory shared for TD guest
x86/mm/cpa: Add support for TDX shared memory
x86/tdx: Make pages shared in ioremap()
x86/topology: Disable CPU online/offline control for TDX guests
x86/boot: Avoid #VE during boot for TDX platforms
x86/boot: Set CR0.NE early and keep it set during the boot
x86/acpi/x86/boot: Add multiprocessor wake-up support
x86/boot: Add a trampoline for booting APs via firmware handoff
x86/tdx: Wire up KVM hypercalls
x86/tdx: Port I/O: Add early boot support
x86/tdx: Port I/O: Add runtime hypercalls
x86/boot: Port I/O: Add decompression-time support for TDX
x86/boot: Port I/O: Allow to hook up alternative helpers
...
|
|
There are a few MSRs and control register bits that the kernel
normally needs to modify during boot. But, TDX disallows
modification of these registers to help provide consistent security
guarantees. Fortunately, TDX ensures that these are all in the correct
state before the kernel loads, which means the kernel does not need to
modify them.
The conditions to avoid are:
* Any writes to the EFER MSR
* Clearing CR4.MCE
This theoretically makes the guest boot more fragile. If, for instance,
EFER was set up incorrectly and a WRMSR was performed, it will trigger
early exception panic or a triple fault, if it's before early
exceptions are set up. However, this is likely to trip up the guest
BIOS long before control reaches the kernel. In any case, these kinds
of problems are unlikely to occur in production environments, and
developers have good debug tools to fix them quickly.
Change the common boot code to work on TDX and non-TDX systems.
This should have no functional effect on non-TDX systems.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-24-kirill.shutemov@linux.intel.com
|
|
Due to
103a4908ad4d ("x86/head/64: Disable stack protection for head$(BITS).o")
kernel/head{32,64}.c are compiled with -fno-stack-protector to allow
a call to set_bringup_idt_handler(), which would otherwise have stack
protection enabled with CONFIG_STACKPROTECTOR_STRONG.
While sufficient for that case, there may still be issues with calls to
any external functions that were compiled with stack protection enabled
that in-turn make stack-protected calls, or if the exception handlers
set up by set_bringup_idt_handler() make calls to stack-protected
functions.
Subsequent patches for SEV-SNP CPUID validation support will introduce
both such cases. Attempting to disable stack protection for everything
in scope to address that is prohibitive since much of the code, like the
SEV-ES #VC handler, is shared code that remains in use after boot and
could benefit from having stack protection enabled. Attempting to inline
calls is brittle and can quickly balloon out to library/helper code
where that's not really an option.
Instead, re-enable stack protection for head32.c/head64.c, and make the
appropriate changes to ensure the segment used for the stack canary is
initialized in advance of any stack-protected C calls.
For head64.c:
- The BSP will enter from startup_64() and call into C code
(startup_64_setup_env()) shortly after setting up the stack, which
may result in calls to stack-protected code. Set up %gs early to allow
for this safely.
- APs will enter from secondary_startup_64*(), and %gs will be set up
soon after. There is one call to C code prior to %gs being setup
(__startup_secondary_64()), but it is only to fetch 'sme_me_mask'
global, so just load 'sme_me_mask' directly instead, and remove the
now-unused __startup_secondary_64() function.
For head32.c:
- BSPs/APs will set %fs to __BOOT_DS prior to any C calls. In recent
kernels, the compiler is configured to access the stack canary at
%fs:__stack_chk_guard [1], which overlaps with the initial per-cpu
'__stack_chk_guard' variable in the initial/"master" .data..percpu
area. This is sufficient to allow access to the canary for use
during initial startup, so no changes are needed there.
[1] 3fb0fdb3bbe7 ("x86/stackprotector/32: Make the canary into a regular percpu variable")
[ bp: Massage commit message. ]
Suggested-by: Joerg Roedel <jroedel@suse.de> #for 64-bit %gs set up
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-24-brijesh.singh@amd.com
|
|
sme_enable() handles feature detection for both SEV and SME. Future
patches will also use it for SEV-SNP feature detection/setup, which
will need to be done immediately after the first #VC handler is set up.
Move it now in preparation.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Link: https://lore.kernel.org/r/20220307213356.2797205-9-brijesh.singh@amd.com
|
|
No IBT on AMD so far.. probably correct, who knows.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154318.995109889@infradead.org
|
|
Annotate away some of the generic code references. This is things
where we take the address of a symbol for exception handling or return
addresses (eg. context switch).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154318.877758523@infradead.org
|
|
Kernel entry points should be having ENDBR on for IBT configs.
The SYSCALL entry points are found through taking their respective
address in order to program them in the MSRs, while the exception
entry points are found through UNWIND_HINT_IRET_REGS.
The rule is that any UNWIND_HINT_IRET_REGS at sym+0 should have an
ENDBR, see the later objtool ibt validation patch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154317.933157479@infradead.org
|
|
Even though Xen currently doesn't advertise IBT, prepare for when it
will eventually do so and sprinkle the ENDBR dust accordingly.
Even though most of the entry points are IRET like, the CPL0
Hypervisor can set WAIT-FOR-ENDBR and demand ENDBR at these sites.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154317.873919996@infradead.org
|
|
By doing an early rewrite of 'jmp native_iret` in
restore_regs_and_return_to_kernel() we can get rid of the last
INTERRUPT_RETURN user and paravirt_iret.
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154317.815039833@infradead.org
|
|
The AP bringup code uses the trampoline_pgd page-table which
establishes global mappings in the user range of the address space.
Flush the global TLB entries after the indentity mappings are removed so
no stale entries remain in the TLB.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211202153226.22946-3-joro@8bytes.org
|
|
The register offsets in <asm/ptrace-abi.h> are duplicated in
entry/calling.h, but are formatted differently and therefore not
compatible. Use the version from <asm/ptrace-abi.h> consistently.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510185316.3307264-2-hpa@zytor.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 build updates from Borislav Petkov:
"Two x86 build fixes:
- Fix the vmlinux size check on 64-bit along with adding useful
clarifications on the topic (Arvind Sankar)
- Remove -m16 workaround now that the GCC versions that need it are
unsupported (Nick Desaulniers)"
* tag 'x86_build_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build: Remove -m16 workaround for unsupported versions of GCC
x86/build: Fix vmlinux size check on 64-bit
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Borislav Petkov:
"Another branch with a nicely negative diffstat, just the way I
like 'em:
- Remove all uses of TIF_IA32 and TIF_X32 and reclaim the two bits in
the end (Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree"
* tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/ia32_signal: Propagate __user annotation properly
x86/alternative: Update text_poke_bp() kernel-doc comment
x86/PCI: Make a kernel-doc comment a normal one
x86/asm: Drop unused RDPID macro
x86/boot/compressed/64: Use TEST %reg,%reg instead of CMP $0,%reg
x86/head64: Remove duplicate include
x86/mm: Declare 'start' variable where it is used
x86/head/64: Remove unused GET_CR2_INTO() macro
x86/boot: Remove unused finalize_identity_maps()
x86/uaccess: Document copy_from_user_nmi()
x86/dumpstack: Make show_trace_log_lvl() static
x86/mtrr: Fix a kernel-doc markup
x86/setup: Remove unused MCA variables
x86, libnvdimm/test: Remove COPY_MC_TEST
x86: Reclaim TIF_IA32 and TIF_X32
x86/mm: Convert mmu context ia32_compat into a proper flags field
x86/elf: Use e_machine to check for x32/ia32 in setup_additional_pages()
elf: Expose ELF header on arch_setup_additional_pages()
x86/elf: Use e_machine to select start_thread for x32
elf: Expose ELF header in compat_start_thread()
...
|
|
Commit
4b47cdbda6f1 ("x86/head/64: Move early exception dispatch to C code")
removed the usage of GET_CR2_INTO().
Drop the definition as well, and related definitions in paravirt.h and
asm-offsets.h
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201005151208.2212886-3-nivedita@alum.mit.edu
|
|
Commit
b4e0409a36f4 ("x86: check vmlinux limits, 64-bit")
added a check that the size of the 64-bit kernel is less than
KERNEL_IMAGE_SIZE.
The check uses (_end - _text), but this is not enough. The initial
PMD used in startup_64() (level2_kernel_pgt) can only map upto
KERNEL_IMAGE_SIZE from __START_KERNEL_map, not from _text, and the
modules area (MODULES_VADDR) starts at KERNEL_IMAGE_SIZE.
The correct check is what is currently done for 32-bit, since
LOAD_OFFSET is defined appropriately for the two architectures. Just
check (_end - LOAD_OFFSET) against KERNEL_IMAGE_SIZE unconditionally.
Note that on 32-bit, the limit is not strict: KERNEL_IMAGE_SIZE is not
really used by the main kernel. The higher the kernel is located, the
less the space available for the vmalloc area. However, it is used by
KASLR in the compressed stub to limit the maximum address of the kernel
to a safe value.
Clean up various comments to clarify that despite the name,
KERNEL_IMAGE_SIZE is not a limit on the size of the kernel image, but a
limit on the maximum virtual address that the image can occupy.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201029161903.2553528-1-nivedita@alum.mit.edu
|
|
When SEV is enabled, the kernel requests the C-bit position again from
the hypervisor to build its own page-table. Since the hypervisor is an
untrusted source, the C-bit position needs to be verified before the
kernel page-table is used.
Call sev_verify_cbit() before writing the CR3.
[ bp: Massage. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20201028164659.27002-5-joro@8bytes.org
|
|
The APs are not ready to handle exceptions when verify_cpu() is called
in secondary_startup_64().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-69-joro@8bytes.org
|
|
Add the infrastructure to handle #VC exceptions when the kernel runs on
virtual addresses and has mapped a GHCB. This handler will be used until
the runtime #VC handler takes over.
Since the handler runs very early, disable instrumentation for sev-es.c.
[ bp: Make vc_ghcb_invalidate() __always_inline so that it can be
inlined in noinstr functions like __sev_es_nmi_complete(). ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200908123816.GB3764@8bytes.org
|
|
Setup an early handler for #VC exceptions. There is no GHCB mapped
yet, so just re-use the vc_no_ghcb_handler(). It can only handle
CPUID exit-codes, but that should be enough to get the kernel through
verify_cpu() and __startup_64() until it runs on virtual addresses.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
[ boot failure Error: kernel_ident_mapping_init() failed. ]
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20200908123517.GA3764@8bytes.org
|
|
Move the assembly coded dispatch between page-faults and all other
exceptions to C code to make it easier to maintain and extend.
Also change the return-type of early_make_pgtable() to bool and make it
static.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-36-joro@8bytes.org
|
|
Add a separate bringup IDT for the CPU bringup code that will be used
until the kernel switches to the idt_table. There are two reasons for a
separate IDT:
1) When the idt_table is set up and the secondary CPUs are
booted, it contains entries (e.g. IST entries) which
require certain CPU state to be set up. This includes a
working TSS (for IST), MSR_GS_BASE (for stack protector) or
CR4.FSGSBASE (for paranoid_entry) path. By using a
dedicated IDT for early boot this state need not to be set
up early.
2) The idt_table is static to idt.c, so any function
using/modifying must be in idt.c too. That means that all
compiler driven instrumentation like tracing or KASAN is
also active in this code. But during early CPU bringup the
environment is not set up for this instrumentation to work
correctly.
To avoid all of these hassles and make early exception handling robust,
use a dedicated bringup IDT.
The IDT is loaded two times, first on the boot CPU while the kernel is
still running on direct mapped addresses, and again later after the
switch to kernel addresses has happened. The second IDT load happens on
the boot and secondary CPUs.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-34-joro@8bytes.org
|
|
Make sure there is a stack once the kernel runs from virtual addresses.
At this stage any secondary CPU which boots will have lost its stack
because the kernel switched to a new page-table which does not map the
real-mode stack anymore.
This is needed for handling early #VC exceptions caused by instructions
like CPUID.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-33-joro@8bytes.org
|
|
Make sure segments are properly set up before setting up an IDT and
doing anything that might cause a #VC exception. This is later needed
for early exception handling.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-32-joro@8bytes.org
|
|
Load the GDT right after switching to virtual addresses to make sure
there is a defined GDT for exception handling.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-31-joro@8bytes.org
|
|
Handling exceptions during boot requires a working GDT. The kernel GDT
can't be used on the direct mapping, so load a startup GDT and setup
segments.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-30-joro@8bytes.org
|
|
Remove all the code which was there to emit the system vector stubs. All
users are gone.
Move the now unused GET_CR2_INTO macro muck to head_64.S where the last
user is. Fixup the eye hurting comment there while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.927433002@linutronix.de
|