Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Cache the AMD debug registers in per-CPU variables to avoid MSR
writes where possible, when supporting a debug registers swap feature
for SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which
is part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
* tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/amd: Cache debug register values in percpu variables
KVM: x86: Propagate the AMD Automatic IBRS feature to the guest
x86/cpu: Support AMD Automatic IBRS
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
x86/cpu, kvm: Add the Null Selector Clears Base feature
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code
x86/cpu, kvm: Add support for CPUID_80000021_EAX
x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h>
x86/gsseg: Use the LKGS instruction if available for load_gs_index()
x86/gsseg: Move load_gs_index() to its own new header file
x86/gsseg: Make asm_load_gs_index() take an u16
x86/opcode: Add the LKGS instruction to x86-opcode-map
x86/cpufeature: Add the CPU feature bit for LKGS
x86/bugs: Reset speculation control settings on init
x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull miscellaneous x86 cleanups from Thomas Gleixner:
- Correct the common copy and pasted mishandling of kstrtobool() in the
strict_sas_size() setup function
- Make recalibrate_cpu_khz() an GPL only export
- Check TSC feature before doing anything else which avoids pointless
code execution if TSC is not available
- Remove or fixup stale and misleading comments
- Remove unused or pointelessly duplicated variables
- Spelling and typo fixes
* tag 'x86-cleanups-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hotplug: Remove incorrect comment about mwait_play_dead()
x86/tsc: Do feature check as the very first thing
x86/tsc: Make recalibrate_cpu_khz() export GPL only
x86/cacheinfo: Remove unused trace variable
x86/Kconfig: Fix spellos & punctuation
x86/signal: Fix the value returned by strict_sas_size()
x86/cpu: Remove misleading comment
x86/setup: Move duplicate boot_cpu_data definition out of the ifdeffery
x86/boot/e820: Fix typo in e820.c comment
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 vdso updates from Borislav Petkov:
- Add getcpu support for the 32-bit version of the vDSO
- Some smaller fixes
* tag 'x86_vdso_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Fix -Wmissing-prototypes warnings
x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu
selftests: Emit a warning if getcpu() is missing on 32bit
x86/vdso: Provide getcpu for x86-32.
x86/cpu: Provide the full setup for getcpu() on x86-32
x86/vdso: Move VDSO image init to vdso2c generated code
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loader updates from Borislav Petkov:
- Fix mixed steppings support on AMD which got broken somewhere along
the way
- Improve revision reporting
- Properly check CPUID capabilities after late microcode upgrade to
avoid false positives
- A garden variety of other small fixes
* tag 'x86_microcode_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/core: Return an error only when necessary
x86/microcode/AMD: Fix mixed steppings support
x86/microcode/AMD: Add a @cpu parameter to the reloading functions
x86/microcode/amd: Remove load_microcode_amd()'s bsp parameter
x86/microcode: Allow only "1" as a late reload trigger value
x86/microcode/intel: Print old and new revision during early boot
x86/microcode/intel: Pass the microcode revision to print_ucode_info() directly
x86/microcode: Adjust late loading result reporting message
x86/microcode: Check CPU capabilities after late microcode update correctly
x86/microcode: Add a parameter to microcode_check() to store CPU capabilities
x86/microcode: Use the DEVICE_ATTR_RO() macro
x86/microcode/AMD: Handle multiple glued containers properly
x86/microcode/AMD: Rename a couple of functions
|
|
Certain AMD processors are vulnerable to a cross-thread return address
predictions bug. When running in SMT mode and one of the sibling threads
transitions out of C0 state, the other sibling thread could use return
target predictions from the sibling thread that transitioned out of C0.
The Spectre v2 mitigations cover the Linux kernel, as it fills the RSB
when context switching to the idle thread. However, KVM allows a VMM to
prevent exiting guest mode when transitioning out of C0. A guest could
act maliciously in this situation, so create a new x86 BUG that can be
used to detect if the processor is vulnerable.
Reviewed-by: Borislav Petkov (AMD) <[email protected]>
Signed-off-by: Tom Lendacky <[email protected]>
Message-Id: <91cec885656ca1fcd4f0185ce403a53dd9edecb7.1675956146.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
UEFI v2.10 extends the EFI memory attributes table with a flag that
indicates whether or not all RuntimeServicesCode regions were
constructed with ENDBR landing pads, permitting the OS to map these
regions with IBT restrictions enabled.
So let's take this into account on x86 as well.
Suggested-by: Peter Zijlstra <[email protected]> # ibt_save() changes
Signed-off-by: Ard Biesheuvel <[email protected]>
Acked-by: Dave Hansen <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
|
|
setup_getcpu() configures two things:
- it writes the current CPU & node information into MSR_TSC_AUX
- it writes the same information as a GDT entry.
By using the "full" setup_getcpu() on i386 it is possible to read the CPU
information in userland via RDTSCP() or via LSL from the GDT.
Provide an GDT_ENTRY_CPUNODE for x86-32 and make the setup function
unconditionally available.
Signed-off-by: Sebastian Andrzej Siewior <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Roland Mainz <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The AMD Zen4 core supports a new feature called Automatic IBRS.
It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBRS mitigation resources automatically across CPL transitions.
The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by
setting MSR C000_0080 (EFER) bit 21.
Enable Automatic IBRS by default if the CPU feature is present. It typically
provides greater performance over the incumbent generic retpolines mitigation.
Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and
Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to
cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS.
The kernel command line option spectre_v2=eibrs is used to select AMD Automatic
IBRS, if available.
Signed-off-by: Kim Phillips <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Acked-by: Sean Christopherson <[email protected]>
Acked-by: Dave Hansen <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.
Also drop the bit description comments now it's more self-describing.
[ bp: Convert test in check_null_seg_clears_base() too. ]
Signed-off-by: Kim Phillips <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Acked-by: Sean Christopherson <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Generate an init function for each VDSO image, replacing init_vdso() and
sysenter_setup().
Signed-off-by: Brian Gerst <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.
Include KVM's reverse_cpuid entry because features are used by VM guests, too.
[ bp: Massage commit message. ]
Signed-off-by: Kim Phillips <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Acked-by: Sean Christopherson <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The kernel caches each CPU's feature bits at boot in an x86_capability[]
structure. However, the capabilities in the BSP's copy can be turned off
as a result of certain command line parameters or configuration
restrictions, for example the SGX bit. This can cause a mismatch when
comparing the values before and after the microcode update.
Another example is X86_FEATURE_SRBDS_CTRL which gets added only after
microcode update:
--- cpuid.before 2023-01-21 14:54:15.652000747 +0100
+++ cpuid.after 2023-01-21 14:54:26.632001024 +0100
@@ -10,7 +10,7 @@ CPU:
0x00000004 0x04: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
0x00000005 0x00: eax=0x00000040 ebx=0x00000040 ecx=0x00000003 edx=0x11142120
0x00000006 0x00: eax=0x000027f7 ebx=0x00000002 ecx=0x00000001 edx=0x00000000
- 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002400
+ 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002e00
^^^
and which proves for a gazillionth time that late loading is a bad bad
idea.
microcode_check() is called after an update to report any previously
cached CPUID bits which might have changed due to the update.
Therefore, store the cached CPU caps before the update and compare them
with the CPU caps after the microcode update has succeeded.
Thus, the comparison is done between the CPUID *hardware* bits before
and after the upgrade instead of using the cached, possibly runtime
modified values in BSP's boot_cpu_data copy.
As a result, false warnings about CPUID bits changes are avoided.
[ bp:
- Massage.
- Add SRBDS_CTRL example.
- Add kernel-doc.
- Incorporate forgotten review feedback from dhansen.
]
Fixes: 1008c52c09dc ("x86/CPU: Add a microcode loader callback")
Signed-off-by: Ashok Raj <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a parameter to store CPU capabilities before performing a microcode
update so that CPU capabilities can be compared before and after update.
[ bp: Massage. ]
Signed-off-by: Ashok Raj <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The comment of the "#endif" after setup_disable_pku() is wrong.
As the related #ifdef is only a few lines above, just remove the
comment.
Signed-off-by: Juergen Gross <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The LKGS instruction atomically loads a segment descriptor into the
%gs descriptor registers, *except* that %gs.base is unchanged, and the
base is instead loaded into MSR_IA32_KERNEL_GS_BASE, which is exactly
what we want this function to do.
Signed-off-by: H. Peter Anvin (Intel) <[email protected]>
Signed-off-by: Xin Li <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Acked-by: Peter Zijlstra <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Cc: Andy Lutomirski <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Linus Torvalds <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Add the call depth tracking mitigation for Retbleed which has been
long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets
applied, it patches a call accounting thunk which is used to track
the call depth of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific
value for the Return Stack Buffer, the code stuffs that RSB and
avoids its underflow which could otherwise lead to the Intel variant
of Retbleed.
This software-only solution brings a lot of the lost performance
back, as benchmarks suggest:
https://lore.kernel.org/all/[email protected]/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT
support where present to annotate and track indirect branches using a
hash to validate them
- Other misc fixes and cleanups
* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
x86/paravirt: Use common macro for creating simple asm paravirt functions
x86/paravirt: Remove clobber bitmask from .parainstructions
x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
x86/Kconfig: Enable kernel IBT by default
x86,pm: Force out-of-line memcpy()
objtool: Fix weak hole vs prefix symbol
objtool: Optimize elf_dirty_reloc_sym()
x86/cfi: Add boot time hash randomization
x86/cfi: Boot time selection of CFI scheme
x86/ibt: Implement FineIBT
objtool: Add --cfi to generate the .cfi_sites section
x86: Add prefix symbols for function padding
objtool: Add option to generate prefix symbols
objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
objtool: Slice up elf_create_section_symbol()
kallsyms: Revert "Take callthunks into account"
x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
x86/retpoline: Fix crash printing warning
x86/paravirt: Fix a !PARAVIRT build warning
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Split MTRR and PAT init code to accomodate at least Xen PV and TDX
guests which do not get MTRRs exposed but only PAT. (TDX guests do
not support the cache disabling dance when setting up MTRRs so they
fall under the same category)
This is a cleanup work to remove all the ugly workarounds for such
guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern
Centaur CPUs
* tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/mtrr: Make message for disabled MTRRs more descriptive
x86/pat: Handle TDX guest PAT initialization
x86/cpuid: Carve out all CPUID functionality
x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV
x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area()
x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack()
x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode()
x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h
x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
x86/mtrr: Simplify mtrr_ops initialization
x86/cacheinfo: Switch cache_ap_init() to hotplug callback
x86: Decouple PAT and MTRR handling
x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init()
x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init
x86/mtrr: Get rid of __mtrr_enabled bool
x86/mtrr: Simplify mtrr_bp_init()
x86/mtrr: Remove set_all callback from struct mtrr_ops
x86/mtrr: Disentangle MTRR init from PAT init
x86/mtrr: Move cache control code to cacheinfo.c
x86/mtrr: Split MTRR-specific handling from cache dis/enabling
...
|
|
This has nothing to do with random.c and everything to do with stack
protectors. Yes, it uses randomness. But many things use randomness.
random.h and random.c are concerned with the generation of randomness,
not with each and every use. So move this function into the more
specific stackprotector.h file where it belongs.
Acked-by: Greg Kroah-Hartman <[email protected]>
Signed-off-by: Jason A. Donenfeld <[email protected]>
|
|
Instead of explicitly calling cache_ap_init() in
identify_secondary_cpu() use a CPU hotplug callback instead. By
registering the callback only after having started the non-boot CPUs
and initializing cache_aps_delayed_init with "true", calling
set_cache_aps_delayed_init() at boot time can be dropped.
It should be noted that this change results in cache_ap_init() being
called a little bit later when hotplugging CPUs. By using a new
hotplug slot right at the start of the low level bringup this is not
problematic, as no operations requiring a specific caching mode are
performed that early in CPU initialization.
Suggested-by: Borislav Petkov <[email protected]>
Signed-off-by: Juergen Gross <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Instead of having a stop_machine() handler for either a specific
MTRR register or all state at once, add a handler just for calling
cache_cpu_init() if appropriate.
Add functions for calling stop_machine() with this handler as well.
Add a generic replacement for mtrr_bp_restore() and a wrapper for
mtrr_bp_init().
Signed-off-by: Juergen Gross <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Implement an alternative CFI scheme that merges both the fine-grained
nature of kCFI but also takes full advantage of the coarse grained
hardware CFI as provided by IBT.
To contrast:
kCFI is a pure software CFI scheme and relies on being able to read
text -- specifically the instruction *before* the target symbol, and
does the hash validation *before* doing the call (otherwise control
flow is compromised already).
FineIBT is a software and hardware hybrid scheme; by ensuring every
branch target starts with a hash validation it is possible to place
the hash validation after the branch. This has several advantages:
o the (hash) load is avoided; no memop; no RX requirement.
o IBT WAIT-FOR-ENDBR state is a speculation stop; by placing
the hash validation in the immediate instruction after
the branch target there is a minimal speculation window
and the whole is a viable defence against SpectreBHB.
o Kees feels obliged to mention it is slightly more vulnerable
when the attacker can write code.
Obviously this patch relies on kCFI, but additionally it also relies
on the padding from the call-depth-tracking patches. It uses this
padding to place the hash-validation while the call-sites are
re-written to modify the indirect target to be 16 bytes in front of
the original target, thus hitting this new preamble.
Notably, there is no hardware that needs call-depth-tracking (Skylake)
and supports IBT (Tigerlake and onwards).
Suggested-by: Joao Moreira (Intel) <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Further extend struct pcpu_hot with the hard and soft irq stack
pointers.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Extend the struct pcpu_hot cacheline with current_top_of_stack;
another very frequently used value.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add preempt_count to pcpu_hot, since it is once of the most used
per-cpu variables.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The layout of per-cpu variables is at the mercy of the compiler. This
can lead to random performance fluctuations from build to build.
Create a structure to hold some of the hottest per-cpu variables,
starting with current_task.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Commit 5416c2663517 ("x86: make sure load_percpu_segment has no
stackprotector") disabled the stackprotector for cpu/common.c because of
load_percpu_segment(). Back then the boot stack canary was initialized very
early in start_kernel(). Switching the per CPU area by loading the GDT
caused the stackprotector to fail with paravirt enabled kernels as the
GSBASE was not updated yet. In hindsight a wrong change because it would
have been sufficient to ensure that the canary is the same in both per CPU
areas.
Commit d55535232c3d ("random: move rand_initialize() earlier") moved the
stack canary initialization to a later point in the init sequence. As a
consequence the per CPU stack canary is 0 when switching the per CPU areas,
so there is no requirement anymore to exclude this file.
Add a comment to load_percpu_segment().
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The only place where switch_to_new_gdt() is required is early boot to
switch from the early GDT to the direct GDT. Any other invocation is
completely redundant because it does not change anything.
Secondary CPUs come out of the ASM code with GDT and GSBASE correctly set
up. The same is true for XEN_PV.
Remove all the voodoo invocations which are left overs from the ancient
past, rename the function to switch_gdt_and_percpu_base() and mark it init.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
On 32bit FS and on 64bit GS segments are already set up correctly, but
load_percpu_segment() still sets [FG]S after switching from the early GDT
to the direct GDT.
For 32bit the segment load has no side effects, but on 64bit it causes
GSBASE to become 0, which means that any per CPU access before GSBASE is
set to the new value is going to fault. That's the reason why the whole
file containing this code has stackprotector removed.
But that's a pointless exercise for both 32 and 64 bit as the relevant
segment selector is already correct. Loading the new GDT does not change
that.
Remove the segment loads and add comments.
Signed-off-by: Thomas Gleixner <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <[email protected]>
Suggested-by: Tony Luck <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Cc: [email protected]
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
|
|
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <[email protected]>
Co-developed-by: Pawan Gupta <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Cannon lake is also affected by RETBleed, add it to the list.
Fixes: 6ad0ad2bf8a6 ("x86/bugs: Report Intel retbleed vulnerability")
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion.
Zen3 CPUs don't suffer BTC.
Hypervisors are expected to synthesise BTC_NO when it is appropriate
given the migration pool, to prevent kernels using heuristics.
[ bp: Massage. ]
Signed-off-by: Andrew Cooper <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
The whole MMIO/RETBLEED enumeration went overboard on steppings. Get
rid of all that and simply use ANY.
If a future stepping of these models would not be affected, it had
better set the relevant ARCH_CAP_$FOO_NO bit in
IA32_ARCH_CAPABILITIES.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Acked-by: Dave Hansen <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Skylake suffers from RSB underflow speculation issues; report this
vulnerability and it's mitigation (spectre_v2=ibrs).
[jpoimboe: cleanups, eibrs]
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Josh Poimboeuf <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Report that AMD x86 CPUs are vulnerable to the RETBleed (Arbitrary
Speculative Code Execution with Return Instructions) attack.
[peterz: add hygon]
[kim: invert parity; fam15h]
Co-developed-by: Kim Phillips <[email protected]>
Signed-off-by: Kim Phillips <[email protected]>
Signed-off-by: Alexandre Chartre <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Josh Poimboeuf <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
|
|
It is dangerous and it should not be used anyway - there's a nice early
loading already.
Requested-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CPU feature updates from Borislav Petkov:
- Remove a bunch of chicken bit options to turn off CPU features which
are not really needed anymore
- Misc fixes and cleanups
* tag 'x86_cpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add missing prototype for unpriv_ebpf_notify()
x86/pm: Fix false positive kmemleak report in msr_build_context()
x86/speculation/srbds: Do not try to turn mitigation off when not supported
x86/cpu: Remove "noclflush"
x86/cpu: Remove "noexec"
x86/cpu: Remove "nosmep"
x86/cpu: Remove CONFIG_X86_SMAP and "nosmap"
x86/cpu: Remove "nosep"
x86/cpu: Allow feature bit names from /proc/cpuinfo in clearcpuid=
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull AMD SEV-SNP support from Borislav Petkov:
"The third AMD confidential computing feature called Secure Nested
Paging.
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a
SNP guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on"
* tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/entry: Fixup objtool/ibt validation
x86/sev: Mark the code returning to user space as syscall gap
x86/sev: Annotate stack change in the #VC handler
x86/sev: Remove duplicated assignment to variable info
x86/sev: Fix address space sparse warning
x86/sev: Get the AP jump table address from secrets page
x86/sev: Add missing __init annotations to SEV init routines
virt: sevguest: Rename the sevguest dir and files to sev-guest
virt: sevguest: Change driver name to reflect generic SEV support
x86/boot: Put globals that are accessed early into the .data section
x86/boot: Add an efi.h header for the decompressor
virt: sevguest: Fix bool function returning negative value
virt: sevguest: Fix return value check in alloc_shared_pages()
x86/sev-es: Replace open-coded hlt-loop with sev_es_terminate()
virt: sevguest: Add documentation for SEV-SNP CPUID Enforcement
virt: sevguest: Add support to get extended report
virt: sevguest: Add support to derive key
virt: Add SEV-SNP guest driver
x86/sev: Register SEV-SNP guest request platform device
x86/sev: Provide support for SNP guest request NAEs
...
|
|
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
|
|
A microcode update on some Intel processors causes all TSX transactions
to always abort by default[*]. Microcode also added functionality to
re-enable TSX for development purposes. With this microcode loaded, if
tsx=on was passed on the cmdline, and TSX development mode was already
enabled before the kernel boot, it may make the system vulnerable to TSX
Asynchronous Abort (TAA).
To be on safer side, unconditionally disable TSX development mode during
boot. If a viable use case appears, this can be revisited later.
[*]: Intel TSX Disable Update for Selected Processors, doc ID: 643557
[ bp: Drop unstable web link, massage heavily. ]
Suggested-by: Andrew Cooper <[email protected]>
Suggested-by: Borislav Petkov <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Tested-by: Neelima Krishnan <[email protected]>
Cc: <[email protected]>
Link: https://lore.kernel.org/r/347bd844da3a333a9793c6687d4e4eb3b2419a3e.1646943780.git.pawan.kumar.gupta@linux.intel.com
|
|
The SEV-SNP guest is required by the GHCB spec to register the GHCB's
Guest Physical Address (GPA). This is because the hypervisor may prefer
that a guest uses a consistent and/or specific GPA for the GHCB associated
with a vCPU. For more information, see the GHCB specification section
"GHCB GPA Registration".
[ bp: Cleanup comments. ]
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Not really needed anymore and there's clearcpuid=.
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
There should be no need to disable SMEP anymore.
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Lai Jiangshan <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Those were added as part of the SMAP enablement but SMAP is currently
an integral part of kernel proper and there's no need to disable it
anymore.
Rip out that functionality. Leave --uaccess default on for objtool as
this is what objtool should do by default anyway.
If still needed - clearcpuid=smap.
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Lai Jiangshan <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
That chicken bit was added by
4f88651125e2 ("[PATCH] i386: allow disabling X86_FEATURE_SEP at boot")
but measuring int80 vsyscall performance on 32-bit doesn't matter
anymore.
If still needed, one can boot with
clearcpuid=sep
to disable that feature for testing.
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Having to give the X86_FEATURE array indices in order to disable a
feature bit for testing is not really user-friendly. So accept the
feature bit names too.
Some feature bits don't have names so there the array indices are still
accepted, of course.
Clearing CPUID flags is not something which should be done in production
so taint the kernel too.
An exemplary cmdline would then be something like:
clearcpuid=de,440,smca,succory,bmi1,3dnow
("succory" is wrong on purpose). And it says:
[ ... ] Clearing CPUID bits: de 13:24 smca (unknown: succory) bmi1 3dnow
[ Fix CONFIG_X86_FEATURE_NAMES=n build error as reported by the 0day
robot: https://lore.kernel.org/r/[email protected] ]
Signed-off-by: Borislav Petkov <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Conflicts:
arch/x86/include/asm/cpufeatures.h
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Assume firmware isn't IBT clean and disable it across calls.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Kees Cook <[email protected]>
Acked-by: Josh Poimboeuf <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|