Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Ingo Molnar:
- Move the kernel cmdline setup earlier in the boot process (again),
to address a split_lock_detect= boot parameter bug
- Ignore relocations in .notes sections
- Simplify boot stack setup
- Re-introduce a bootloader quirk wrt CR4 handling
- Miscellaneous cleanups & fixes
* tag 'x86-boot-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Clear most of CR4 in startup_64(), except PAE, MCE and LA57
x86/boot: Move kernel cmdline setup earlier in the boot process (again)
x86/build: Clean up arch/x86/tools/relocs.c a bit
x86/boot: Ignore relocations in .notes sections in walk_relocs() too
x86: Rename __{start,end}_init_task to __{start,end}_init_stack
x86/boot: Simplify boot stack setup
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
- Clean up & fix asm() operand modifiers & constraints
- Misc cleanups
* tag 'x86-asm-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternatives: Remove a superfluous newline in _static_cpu_has()
x86/asm/64: Clean up memset16(), memset32(), memset64() assembly constraints in <asm/string_64.h>
x86/asm: Use "m" operand constraint in WRUSSQ asm template
x86/asm: Use %a instead of %P operand modifier in asm templates
x86/asm: Use %c/%n instead of %P operand modifier in asm templates
x86/asm: Remove %P operand modifier from altinstr asm templates
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Over a dozen code generation micro-optimizations for the atomic
and spinlock code
- Add more __ro_after_init attributes
- Robustify the lockdevent_*() macros
* tag 'locking-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/pvqspinlock/x86: Use _Q_LOCKED_VAL in PV_UNLOCK_ASM macro
locking/qspinlock/x86: Micro-optimize virt_spin_lock()
locking/atomic/x86: Merge __arch{,_try}_cmpxchg64_emu_local() with __arch{,_try}_cmpxchg64_emu()
locking/atomic/x86: Introduce arch_try_cmpxchg64_local()
locking/pvqspinlock/x86: Remove redundant CMP after CMPXCHG in __raw_callee_save___pv_queued_spin_unlock()
locking/pvqspinlock: Use try_cmpxchg() in qspinlock_paravirt.h
locking/pvqspinlock: Use try_cmpxchg_acquire() in trylock_clear_pending()
locking/qspinlock: Use atomic_try_cmpxchg_relaxed() in xchg_tail()
locking/atomic/x86: Define arch_atomic_sub() family using arch_atomic_add() functions
locking/atomic/x86: Rewrite x86_32 arch_atomic64_{,fetch}_{and,or,xor}() functions
locking/atomic/x86: Introduce arch_atomic64_read_nonatomic() to x86_32
locking/atomic/x86: Introduce arch_atomic64_try_cmpxchg() to x86_32
locking/atomic/x86: Introduce arch_try_cmpxchg64() for !CONFIG_X86_CMPXCHG64
locking/atomic/x86: Modernize x86_32 arch_{,try_}_cmpxchg64{,_local}()
locking/atomic/x86: Correct the definition of __arch_try_cmpxchg128()
x86/tsc: Make __use_tsc __ro_after_init
x86/kvm: Make kvm_async_pf_enabled __ro_after_init
context_tracking: Make context_tracking_key __ro_after_init
jump_label,module: Don't alloc static_key_mod for __ro_after_init keys
locking/qspinlock: Always evaluate lockevent* non-event parameter once
|
|
Merge x86-specific ACPI updates, an ACPI DPTF driver update adding new
platform support to it, and an ACPI APEI update:
- Add a num-cs device property to specify the number of chip selects
for Intel Braswell to the ACPI LPSS (Intel SoC) driver and remove a
nested CONFIG_PM #ifdef from it (Andy Shevchenko).
- Move three x86-specific ACPI files to the x86 directory (Andy
Shevchenko).
- Mark SMO8810 accel on Dell XPS 15 9550 as always present and add a
PNP_UART1_SKIP quirk for Lenovo Blade2 tablets (Hans de Goede).
- Move acpi_blacklisted() declaration to asm/acpi.h (Kuppuswamy
Sathyanarayanan).
- Add Lunar Lake support to the ACPI DPTF driver (Sumeet Pawnikar).
- Mark the einj_driver driver's remove callback as __exit because it
cannot get unbound via sysfs (Uwe Kleine-König).
* acpi-x86:
ACPI: Move acpi_blacklisted() declaration to asm/acpi.h
ACPI: x86: Add PNP_UART1_SKIP quirk for Lenovo Blade2 tablets
ACPI: x86: utils: Mark SMO8810 accel on Dell XPS 15 9550 as always present
ACPI: x86: Move LPSS to x86 folder
ACPI: x86: Move blacklist to x86 folder
ACPI: x86: Move acpi_cmos_rtc to x86 folder
ACPI: x86: Introduce a Makefile
ACPI: LPSS: Remove nested ifdeffery for CONFIG_PM
ACPI: LPSS: Advertise number of chip selects via property
* acpi-dptf:
ACPI: DPTF: Add Lunar Lake support
* acpi-apei:
ACPI: APEI: EINJ: mark remove callback as __exit
|
|
Add support for the SEV-SNP AP Creation NAE event. This allows SEV-SNP
guests to alter the register state of the APs on their own. This allows
the guest a way of simulating INIT-SIPI.
A new event, KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, is created and used
so as to avoid updating the VMSA pointer while the vCPU is running.
For CREATE
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID. The GPA is saved in the svm struct of the
target vCPU, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added
to the vCPU and then the vCPU is kicked.
For CREATE_ON_INIT:
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID the next time an INIT is performed. The GPA is
saved in the svm struct of the target vCPU.
For DESTROY:
The guest indicates it wishes to stop the vCPU. The GPA is cleared
from the svm struct, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is
added to vCPU and then the vCPU is kicked.
The KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event handler will be invoked
as a result of the event or as a result of an INIT. If a new VMSA is to
be installed, the VMSA guest page is set as the VMSA in the vCPU VMCB
and the vCPU state is set to KVM_MP_STATE_RUNNABLE. If a new VMSA is not
to be installed, the VMSA is cleared in the vCPU VMCB and the vCPU state
is set to KVM_MP_STATE_HALTED to prevent it from being run.
Signed-off-by: Tom Lendacky <[email protected]>
Co-developed-by: Michael Roth <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
When SEV-SNP is enabled in the guest, the hardware places restrictions
on all memory accesses based on the contents of the RMP table. When
hardware encounters RMP check failure caused by the guest memory access
it raises the #NPF. The error code contains additional information on
the access type. See the APM volume 2 for additional information.
When using gmem, RMP faults resulting from mismatches between the state
in the RMP table vs. what the guest expects via its page table result
in KVM_EXIT_MEMORY_FAULTs being forwarded to userspace to handle. This
means the only expected case that needs to be handled in the kernel is
when the page size of the entry in the RMP table is larger than the
mapping in the nested page table, in which case a PSMASH instruction
needs to be issued to split the large RMP entry into individual 4K
entries so that subsequent accesses can succeed.
Signed-off-by: Brijesh Singh <[email protected]>
Co-developed-by: Michael Roth <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP
table to be private or shared using the Page State Change NAE event
as defined in the GHCB specification version 2.
Forward these requests to userspace as KVM_EXIT_VMGEXITs, similar to how
it is done for requests that don't use a GHCB page.
As with the MSR-based page-state changes, use the existing
KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to
userspace via KVM_EXIT_HYPERCALL.
Signed-off-by: Michael Roth <[email protected]>
Co-developed-by: Brijesh Singh <[email protected]>
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Message-ID: <[email protected]>
Co-developed-by: Paolo Bonzini <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP
table to be private or shared using the Page State Change MSR protocol
as defined in the GHCB specification.
When using gmem, private/shared memory is allocated through separate
pools, and KVM relies on userspace issuing a KVM_SET_MEMORY_ATTRIBUTES
KVM ioctl to tell the KVM MMU whether or not a particular GFN should be
backed by private memory or not.
Forward these page state change requests to userspace so that it can
issue the expected KVM ioctls. The KVM MMU will handle updating the RMP
entries when it is ready to map a private page into a guest.
Use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these
requests to userspace via KVM_EXIT_HYPERCALL.
Signed-off-by: Michael Roth <[email protected]>
Co-developed-by: Brijesh Singh <[email protected]>
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
SEV-SNP guests are required to perform a GHCB GPA registration. Before
using a GHCB GPA for a vCPU the first time, a guest must register the
vCPU GHCB GPA. If hypervisor can work with the guest requested GPA then
it must respond back with the same GPA otherwise return -1.
On VMEXIT, verify that the GHCB GPA matches with the registered value.
If a mismatch is detected, then abort the guest.
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
SEV-SNP builds upon existing SEV and SEV-ES functionality while adding
new hardware-based security protection. SEV-SNP adds strong memory
encryption and integrity protection to help prevent malicious
hypervisor-based attacks such as data replay, memory re-mapping, and
more, to create an isolated execution environment.
Define a new KVM_X86_SNP_VM type which makes use of these capabilities
and extend the KVM_SEV_INIT2 ioctl to support it. Also add a basic
helper to check whether SNP is enabled and set PFERR_PRIVATE_ACCESS for
private #NPFs so they are handled appropriately by KVM MMU.
Signed-off-by: Brijesh Singh <[email protected]>
Co-developed-by: Michael Roth <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Reviewed-by: Paolo Bonzini <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Common patches for the target-independent functionality and hooks
that are needed by SEV-SNP and TDX.
|
|
KVM VMX changes for 6.10:
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
- Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
"real" exit_qualification, which is tracked elsewhere.
- Add a sanity check to assert that EPT Violations are the only sources of
nested PML Full VM-Exits.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.10
1. Add ParaVirt IPI support.
2. Add software breakpoint support.
3. Add mmio trace events support.
|
|
While the main additions from GHCB protocol version 1 to version 2
revolve mostly around SEV-SNP support, there are a number of changes
applicable to SEV-ES guests as well. Pluck a handful patches from the
SNP hypervisor patchset for GHCB-related changes that are also applicable
to SEV-ES. A KVM_SEV_INIT2 field lets userspace can control the maximum
GHCB protocol version advertised to guests and manage compatibility
across kernels/versions.
|
|
A combination of prep work for TDX and SNP, and a clean up of the
page fault path to (hopefully) make it easier to follow the rules for
private memory, noslot faults, writes to read-only slots, etc.
|
|
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a
2MB mapping in the guest's nested page table depends on whether or not
any subpages within the range have already been initialized as private
in the RMP table. The existing mixed-attribute tracking in KVM is
insufficient here, for instance:
- gmem allocates 2MB page
- guest issues PVALIDATE on 2MB page
- guest later converts a subpage to shared
- SNP host code issues PSMASH to split 2MB RMP mapping to 4K
- KVM MMU splits NPT mapping to 4K
- guest later converts that shared page back to private
At this point there are no mixed attributes, and KVM would normally
allow for 2MB NPT mappings again, but this is actually not allowed
because the RMP table mappings are 4K and cannot be promoted on the
hypervisor side, so the NPT mappings must still be limited to 4K to
match this.
Add a hook to determine the max NPT mapping size in situations like
this.
Suggested-by: Sean Christopherson <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Reviewed-by: Isaku Yamahata <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
In some cases, like with SEV-SNP, guest memory needs to be updated in a
platform-specific manner before it can be safely freed back to the host.
Wire up arch-defined hooks to the .free_folio kvm_gmem_aops callback to
allow for special handling of this sort when freeing memory in response
to FALLOC_FL_PUNCH_HOLE operations and when releasing the inode, and go
ahead and define an arch-specific hook for x86 since it will be needed
for handling memory used for SEV-SNP guests.
Signed-off-by: Michael Roth <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
guest_memfd pages are generally expected to be in some arch-defined
initial state prior to using them for guest memory. For SEV-SNP this
initial state is 'private', or 'guest-owned', and requires additional
operations to move these pages into a 'private' state by updating the
corresponding entries the RMP table.
Allow for an arch-defined hook to handle updates of this sort, and go
ahead and implement one for x86 so KVM implementations like AMD SVM can
register a kvm_x86_ops callback to handle these updates for SEV-SNP
guests.
The preparation callback is always called when allocating/grabbing
folios via gmem, and it is up to the architecture to keep track of
whether or not the pages are already in the expected state (e.g. the RMP
table in the case of SEV-SNP).
In some cases, it is necessary to defer the preparation of the pages to
handle things like in-place encryption of initial guest memory payloads
before marking these pages as 'private'/'guest-owned'. Add an argument
(always true for now) to kvm_gmem_get_folio() that allows for the
preparation callback to be bypassed. To detect possible issues in
the way userspace initializes memory, it is only possible to add an
unprepared page if it is not already included in the filemap.
Link: https://lore.kernel.org/lkml/[email protected]/
Co-developed-by: Michael Roth <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
lapic_vector_set_in_irr() is already available, use it for checking
pending vectors at the local APIC. No functional change.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Imran Khan <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Version 2 of the GHCB specification introduced advertisement of features
that are supported by the Hypervisor.
Now that KVM supports version 2 of the GHCB specification, bump the
maximum supported protocol version.
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Add support for AP Reset Hold being invoked using the GHCB MSR protocol,
available in version 2 of the GHCB specification.
Signed-off-by: Tom Lendacky <[email protected]>
Signed-off-by: Brijesh Singh <[email protected]>
Signed-off-by: Ashish Kalra <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Right now the error code is not used when an async page fault is completed.
This is not a problem in the current code, but it is untidy. For protected
VMs, we will also need to check that the page attributes match the current
state of the page, because asynchronous page faults can only occur on
shared pages (private pages go through kvm_faultin_pfn_private() instead of
__gfn_to_pfn_memslot()).
Start by piping the error code from kvm_arch_setup_async_pf() to
kvm_arch_async_page_ready() via the architecture-specific async page
fault data. For now, it can be used to assert that there are no
async page faults on private memory.
Extracted from a patch by Isaku Yamahata.
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Add and use a synthetic, KVM-defined page fault error code to indicate
whether a fault is to private vs. shared memory. TDX and SNP have
different mechanisms for reporting private vs. shared, and KVM's
software-protected VMs have no mechanism at all. Usurp an error code
flag to avoid having to plumb another parameter to kvm_mmu_page_fault()
and friends.
Alternatively, KVM could borrow AMD's PFERR_GUEST_ENC_MASK, i.e. set it
for TDX and software-protected VMs as appropriate, but that would require
*clearing* the flag for SEV and SEV-ES VMs, which support encrypted
memory at the hardware layer, but don't utilize private memory at the
KVM layer.
Opportunistically add a comment to call out that the logic for software-
protected VMs is (and was before this commit) broken for nested MMUs, i.e.
for nested TDP, as the GPA is an L2 GPA. Punt on trying to play nice with
nested MMUs as there is a _lot_ of functionality that simply doesn't work
for software-protected VMs, e.g. all of the paths where KVM accesses guest
memory need to be updated to be aware of private vs. shared memory.
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Move the sanity check that hardware never sets bits that collide with KVM-
define synthetic bits from kvm_mmu_page_fault() to npf_interception(),
i.e. make the sanity check #NPF specific. The legacy #PF path already
WARNs if _any_ of bits 63:32 are set, and the error code that comes from
VMX's EPT Violatation and Misconfig is 100% synthesized (KVM morphs VMX's
EXIT_QUALIFICATION into error code flags).
Add a compile-time assert in the legacy #PF handler to make sure that KVM-
define flags are covered by its existing sanity check on the upper bits.
Opportunistically add a description of PFERR_IMPLICIT_ACCESS, since we
are removing the comment that defined it.
Signed-off-by: Sean Christopherson <[email protected]>
Reviewed-by: Kai Huang <[email protected]>
Reviewed-by: Binbin Wu <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Define more #NPF error code flags that are relevant to SEV+ (mostly SNP)
guests, as specified by the APM:
* Bit 31 (RMP): Set to 1 if the fault was caused due to an RMP check or a
VMPL check failure, 0 otherwise.
* Bit 34 (ENC): Set to 1 if the guest’s effective C-bit was 1, 0 otherwise.
* Bit 35 (SIZEM): Set to 1 if the fault was caused by a size mismatch between
PVALIDATE or RMPADJUST and the RMP, 0 otherwise.
* Bit 36 (VMPL): Set to 1 if the fault was caused by a VMPL permission
check failure, 0 otherwise.
Note, the APM is *extremely* misleading, and strongly implies that the
above flags can _only_ be set for #NPF exits from SNP guests. That is a
lie, as bit 34 (C-bit=1, i.e. was encrypted) can be set when running _any_
flavor of SEV guest on SNP capable hardware.
Signed-off-by: Sean Christopherson <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Open code the bit number directly in the PFERR_* masks and drop the
intermediate PFERR_*_BIT defines, as having to bounce through two macros
just to see which flag corresponds to which bit is quite annoying, as is
having to define two macros just to add recognition of a new flag.
Use ternary operator to derive the bit in permission_fault(), the one
function that actually needs the bit number as part of clever shifting
to avoid conditional branches. Generally the compiler is able to turn
it into a conditional move, and if not it's not really a big deal.
No functional change intended.
Signed-off-by: Sean Christopherson <[email protected]>
Reviewed-by: Paolo Bonzini <[email protected]>
Message-ID: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
For configurations that have the kconfig option NUMA_KEEP_MEMINFO
disabled, numa_fill_memblks() only returns with NUMA_NO_MEMBLK (-1).
SRAT lookup fails then because an existing SRAT memory range cannot be
found for a CFMWS address range. This causes the addition of a
duplicate numa_memblk with a different node id and a subsequent page
fault and kernel crash during boot.
Fix this by making numa_fill_memblks() always available regardless of
NUMA_KEEP_MEMINFO.
As Dan suggested, the fix is implemented to remove numa_fill_memblks()
from sparsemem.h and alos using __weak for the function.
Note that the issue was initially introduced with [1]. But since
phys_to_target_node() was originally used that returned the valid node
0, an additional numa_memblk was not added. Though, the node id was
wrong too, a message is seen then in the logs:
kernel/numa.c: pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
[1] commit fd49f99c1809 ("ACPI: NUMA: Add a node and memblk for each
CFMWS not in SRAT")
Suggested-by: Dan Williams <[email protected]>
Link: https://lore.kernel.org/all/[email protected]/
Fixes: 8f1004679987 ("ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window")
Reviewed-by: Jonathan Cameron <[email protected]>
Reviewed-by: Alison Schofield <[email protected]>
Reviewed-by: Dan Williams <[email protected]>
Signed-off-by: Robert Richter <[email protected]>
Acked-by: Borislav Petkov (AMD) <[email protected]>
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
CONFIG_BASE_SMALL is currently a type int but is only used as a boolean.
So, change its type to bool and adapt all usages:
CONFIG_BASE_SMALL == 0 becomes !IS_ENABLED(CONFIG_BASE_SMALL) and
CONFIG_BASE_SMALL != 0 becomes IS_ENABLED(CONFIG_BASE_SMALL).
Reviewed-by: Petr Mladek <[email protected]>
Reviewed-by: Greg Kroah-Hartman <[email protected]>
Reviewed-by: Masahiro Yamada <[email protected]>
Signed-off-by: Yoann Congal <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Petr Mladek <[email protected]>
|
|
It is unused.
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Allow page_table_check hooks to check over userfaultfd wr-protect criteria
upon pgtable updates. The rule is no co-existance allowed for any
writable flag against userfault wr-protect flag.
This should be better than c2da319c2e, where we used to only sanitize such
issues during a pgtable walk, but when hitting such issue we don't have a
good chance to know where does that writable bit came from [1], so that
even the pgtable walk exposes a kernel bug (which is still helpful on
triaging) but not easy to track and debug.
Now we switch to track the source. It's much easier too with the recent
introduction of page table check.
There are some limitations with using the page table check here for
userfaultfd wr-protect purpose:
- It is only enabled with explicit enablement of page table check configs
and/or boot parameters, but should be good enough to track at least
syzbot issues, as syzbot should enable PAGE_TABLE_CHECK[_ENFORCED] for
x86 [1]. We used to have DEBUG_VM but it's now off for most distros,
while distros also normally not enable PAGE_TABLE_CHECK[_ENFORCED], which
is similar.
- It conditionally works with the ptep_modify_prot API. It will be
bypassed when e.g. XEN PV is enabled, however still work for most of the
rest scenarios, which should be the common cases so should be good
enough.
- Hugetlb check is a bit hairy, as the page table check cannot identify
hugetlb pte or normal pte via trapping at set_pte_at(), because of the
current design where hugetlb maps every layers to pte_t... For example,
the default set_huge_pte_at() can invoke set_pte_at() directly and lose
the hugetlb context, treating it the same as a normal pte_t. So far it's
fine because we have huge_pte_uffd_wp() always equals to pte_uffd_wp() as
long as supported (x86 only). It'll be a bigger problem when we'll
define _PAGE_UFFD_WP differently at various pgtable levels, because then
one huge_pte_uffd_wp() per-arch will stop making sense first.. as of now
we can leave this for later too.
This patch also removes commit c2da319c2e altogether, as we have something
better now.
[1] https://lore.kernel.org/all/[email protected]/
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Peter Xu <[email protected]>
Reviewed-by: Pasha Tatashin <[email protected]>
Cc: Axel Rasmussen <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: Nadav Amit <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
The per-architecture fbdev code has no dependencies on fbdev and can
be used for any video-related subsystem. Rename the files to 'video'.
Use video-sti.c on parisc as the source file depends on CONFIG_STI_CORE.
On arc, arm, arm64, sh, and um the asm header file is an empty wrapper
around the file in asm-generic. Let Kbuild generate the file. The build
system does this automatically. Only um needs to generate video.h
explicitly, so that it overrides the host architecture's header. The
latter would otherwise interfere with the build.
Further update all includes statements, include guards, and Makefiles.
Also update a few strings and comments to refer to video instead of
fbdev.
v3:
- arc, arm, arm64, sh: generate asm header via build system (Sam,
Helge, Arnd)
- um: rename fb.h to video.h
- fix typo in commit message (Sam)
Signed-off-by: Thomas Zimmermann <[email protected]>
Reviewed-by: Sam Ravnborg <[email protected]>
Cc: Vineet Gupta <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Huacai Chen <[email protected]>
Cc: WANG Xuerui <[email protected]>
Cc: Geert Uytterhoeven <[email protected]>
Cc: Thomas Bogendoerfer <[email protected]>
Cc: "James E.J. Bottomley" <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Nicholas Piggin <[email protected]>
Cc: Yoshinori Sato <[email protected]>
Cc: Rich Felker <[email protected]>
Cc: John Paul Adrian Glaubitz <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Andreas Larsson <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: [email protected]
Cc: "H. Peter Anvin" <[email protected]>
Signed-off-by: Arnd Bergmann <[email protected]>
|
|
The per-architecture video helpers do not depend on struct fb_info
or anything else from fbdev. Remove it from the interface and replace
fb_is_primary_device() with video_is_primary_device(). The new helper
is similar in functionality, but can operate on non-fbdev devices.
Signed-off-by: Thomas Zimmermann <[email protected]>
Reviewed-by: Sam Ravnborg <[email protected]>
Cc: "James E.J. Bottomley" <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: "David S. Miller" <[email protected]>
Cc: Andreas Larsson <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: [email protected]
Cc: "H. Peter Anvin" <[email protected]>
Signed-off-by: Arnd Bergmann <[email protected]>
|
|
We are going to fix perf-events fallout of changes in tip:x86/cpu,
so merge in that branch first.
Signed-off-by: Ingo Molnar <[email protected]>
|
|
Intel Advanced Performance Extensions (APX) extends the EVEX prefix to
support:
- extended general purpose registers (EGPRs) i.e. r16 to r31
- Push-Pop Acceleration (PPX) hints
- new data destination (NDD) register
- suppress status flags writes (NF) of common instructions
- new instructions
Refer to the Intel Advanced Performance Extensions (Intel APX) Architecture
Specification for details.
The extended EVEX prefix does not need amended instruction decoder logic,
except in one area. Some instructions are defined as SCALABLE which means
the EVEX.W bit and EVEX.pp bits are used to determine operand size.
Specifically, if an instruction is SCALABLE and EVEX.W is zero, then
EVEX.pp value 0 (representing no prefix NP) means default operand size,
whereas EVEX.pp value 1 (representing 66 prefix) means operand size
override i.e. 16 bits
Add an attribute (INAT_EVEX_SCALABLE) to identify such instructions, and
amend the logic appropriately.
Amend the awk script that generates the attribute tables from the opcode
map, to recognise "(es)" as attribute INAT_EVEX_SCALABLE.
Signed-off-by: Adrian Hunter <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Intel Advanced Performance Extensions (APX) uses a new 2-byte prefix named
REX2 to select extended general purpose registers (EGPRs) i.e. r16 to r31.
The REX2 prefix is effectively an extended version of the REX prefix.
REX2 and EVEX are also used with PUSH/POP instructions to provide a
Push-Pop Acceleration (PPX) hint. With PPX hints, a CPU will attempt to
fast-forward register data between matching PUSH and POP instructions.
REX2 is valid only with opcodes in maps 0 and 1. Similar extension for
other maps is provided by the EVEX prefix, covered in a separate patch.
Some opcodes in maps 0 and 1 are reserved under REX2. One of these is used
for a new 64-bit absolute direct jump instruction JMPABS.
Refer to the Intel Advanced Performance Extensions (Intel APX) Architecture
Specification for details.
Define a code value for the REX2 prefix (INAT_PFX_REX2), and add attribute
flags for opcodes reserved under REX2 (INAT_NO_REX2) and to identify
opcodes (only JMPABS) that require a mandatory REX2 prefix
(INAT_REX2_VARIANT).
Amend logic to read the REX2 prefix and get the opcode attribute for the
map number (0 or 1) encoded in the REX2 prefix.
Amend the awk script that generates the attribute tables from the opcode
map, to recognise "REX2" as attribute INAT_PFX_REX2, and "(!REX2)"
as attribute INAT_NO_REX2, and "(REX2)" as attribute INAT_REX2_VARIANT.
Signed-off-by: Adrian Hunter <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The syzbot-reported stack trace from hell in this discussion thread
actually has three nested page faults:
https://lore.kernel.org/r/[email protected]
... and I think that's actually the important thing here:
- the first page fault is from user space, and triggers the vsyscall
emulation.
- the second page fault is from __do_sys_gettimeofday(), and that should
just have caused the exception that then sets the return value to
-EFAULT
- the third nested page fault is due to _raw_spin_unlock_irqrestore() ->
preempt_schedule() -> trace_sched_switch(), which then causes a BPF
trace program to run, which does that bpf_probe_read_compat(), which
causes that page fault under pagefault_disable().
It's quite the nasty backtrace, and there's a lot going on.
The problem is literally the vsyscall emulation, which sets
current->thread.sig_on_uaccess_err = 1;
and that causes the fixup_exception() code to send the signal *despite* the
exception being caught.
And I think that is in fact completely bogus. It's completely bogus
exactly because it sends that signal even when it *shouldn't* be sent -
like for the BPF user mode trace gathering.
In other words, I think the whole "sig_on_uaccess_err" thing is entirely
broken, because it makes any nested page-faults do all the wrong things.
Now, arguably, I don't think anybody should enable vsyscall emulation any
more, but this test case clearly does.
I think we should just make the "send SIGSEGV" be something that the
vsyscall emulation does on its own, not this broken per-thread state for
something that isn't actually per thread.
The x86 page fault code actually tried to deal with the "incorrect nesting"
by having that:
if (in_interrupt())
return;
which ignores the sig_on_uaccess_err case when it happens in interrupts,
but as shown by this example, these nested page faults do not need to be
about interrupts at all.
IOW, I think the only right thing is to remove that horrendously broken
code.
The attached patch looks like the ObviouslyCorrect(tm) thing to do.
NOTE! This broken code goes back to this commit in 2011:
4fc3490114bb ("x86-64: Set siginfo and context on vsyscall emulation faults")
... and back then the reason was to get all the siginfo details right.
Honestly, I do not for a moment believe that it's worth getting the siginfo
details right here, but part of the commit says:
This fixes issues with UML when vsyscall=emulate.
... and so my patch to remove this garbage will probably break UML in this
situation.
I do not believe that anybody should be running with vsyscall=emulate in
2024 in the first place, much less if you are doing things like UML. But
let's see if somebody screams.
Reported-and-tested-by: [email protected]
Signed-off-by: Linus Torvalds <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Tested-by: Jiri Olsa <[email protected]>
Acked-by: Andy Lutomirski <[email protected]>
Link: https://lore.kernel.org/r/CAHk-=wh9D6f7HUkDgZHKmDCHUQmp+Co89GP+b8+z+G56BKeyNg@mail.gmail.com
|
|
The function acpi_blacklisted() is defined only when CONFIG_X86 is
enabled and is only used by X86 arch code. To align with its usage and
definition conditions, move its declaration to asm/acpi.h
Signed-off-by: Kuppuswamy Sathyanarayanan <[email protected]>
Reviewed-by: Andy Shevchenko <[email protected]>
[ rjw: Added empty code line in a header file ]
Signed-off-by: Rafael J. Wysocki <[email protected]>
|
|
Add a command line opt-in option for posted MSI if CONFIG_X86_POSTED_MSI=y.
Also introduce a helper function for testing if posted MSI is supported on
the platform.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
During interrupt affinity change, it is possible to have interrupts delivered
to the old CPU after the affinity has changed to the new one. To prevent lost
interrupts, local APIC IRR is checked on the old CPU. Similar checks must be
done for posted MSIs given the same reason.
Consider the following scenario:
Device system agent iommu memory CPU/LAPIC
1 FEEX_XXXX
2 Interrupt request
3 Fetch IRTE ->
4 ->Atomic Swap PID.PIR(vec)
Push to Global Observable(GO)
5 if (ON*)
done;*
else
6 send a notification ->
* ON: outstanding notification, 1 will suppress new notifications
If the affinity change happens between 3 and 5 in the IOMMU, the old CPU's
posted interrupt request (PIR) could have the pending bit set for the
vector being moved.
Add a helper function to check individual vector status. Then use the
helper to check for pending interrupts on the source CPU's PID.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Use a common function for checking pending interrupt vector in APIC IRR
instead of duplicated open coding them.
Additional checks for posted MSI vectors can then be contained in this
function.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
All MSI vectors are multiplexed into a single notification vector when
posted MSI is enabled. It is the responsibility of the notification vector
handler to demultiplex MSI vectors. In the handler the MSI vector handlers
are dispatched without IDT delivery for each pending MSI interrupt.
For example, the interrupt flow will change as follows:
(3 MSIs of different vectors arrive in a a high frequency burst)
BEFORE:
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
AFTER:
interrupt /* Posted MSI notification vector */
irq_enter()
atomic_xchg(PIR)
handler()
handler()
handler()
pi_clear_on()
apic_eoi()
irq_exit()
process_softirq()
Except for the leading MSI, CPU notifications are skipped/coalesced.
For MSIs which arrive at a low frequency, the demultiplexing loop does not
wait for more interrupts to coalesce. Therefore, there's no additional
latency other than the processing time.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
To support posted MSIs, create a posted interrupt descriptor (PID) for each
host CPU. Later on, when setting up interrupt affinity, the IOMMU's
interrupt remapping table entry (IRTE) will point to the physical address
of the matching CPU's PID.
Each PID is initialized with the owner CPU's physical APICID as the
destination.
Originally-by: Thomas Gleixner <[email protected]>
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When posted MSI is enabled, all device MSIs are multiplexed into a single
notification vector. MSI handlers will be de-multiplexed at run-time by
system software without IDT delivery.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Mixture of bitfields and types is weird and really not intuitive, remove
bitfields and use typed data exclusively. Bitfields often result in
inferior machine code.
Suggested-by: Sean Christopherson <[email protected]>
Suggested-by: Thomas Gleixner <[email protected]>
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Link: https://lore.kernel.org/all/20240404101735.402feec8@jacob-builder/T/#mf66e34a82a48f4d8e2926b5581eff59a122de53a
|
|
Make the PIR field into u64 such that atomic xchg64 can be used without
ugly casting.
Suggested-by: Thomas Gleixner <[email protected]>
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
To prepare native usage of posted interrupts, move the PID declarations out
of VMX code such that they can be shared.
Signed-off-by: Jacob Pan <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Acked-by: Sean Christopherson <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Handle cases where the RMP table placement in the BIOS is not 2M aligned
and the kexec-ed kernel could try to allocate from within that chunk
which then causes a fatal RMP fault.
The kexec failure is illustrated below:
SEV-SNP: RMP table physical range [0x0000007ffe800000 - 0x000000807f0fffff]
BIOS-provided physical RAM map:
BIOS-e820: [mem 0x0000000000000000-0x000000000008efff] usable
BIOS-e820: [mem 0x000000000008f000-0x000000000008ffff] ACPI NVS
...
BIOS-e820: [mem 0x0000004080000000-0x0000007ffe7fffff] usable
BIOS-e820: [mem 0x0000007ffe800000-0x000000807f0fffff] reserved
BIOS-e820: [mem 0x000000807f100000-0x000000807f1fefff] usable
As seen here in the e820 memory map, the end range of the RMP table is not
aligned to 2MB and not reserved but it is usable as RAM.
Subsequently, kexec -s (KEXEC_FILE_LOAD syscall) loads it's purgatory
code and boot_param, command line and other setup data into this RAM
region as seen in the kexec logs below, which leads to fatal RMP fault
during kexec boot.
Loaded purgatory at 0x807f1fa000
Loaded boot_param, command line and misc at 0x807f1f8000 bufsz=0x1350 memsz=0x2000
Loaded 64bit kernel at 0x7ffae00000 bufsz=0xd06200 memsz=0x3894000
Loaded initrd at 0x7ff6c89000 bufsz=0x4176014 memsz=0x4176014
E820 memmap:
0000000000000000-000000000008efff (1)
000000000008f000-000000000008ffff (4)
0000000000090000-000000000009ffff (1)
...
0000004080000000-0000007ffe7fffff (1)
0000007ffe800000-000000807f0fffff (2)
000000807f100000-000000807f1fefff (1)
000000807f1ff000-000000807fffffff (2)
nr_segments = 4
segment[0]: buf=0x00000000e626d1a2 bufsz=0x4000 mem=0x807f1fa000 memsz=0x5000
segment[1]: buf=0x0000000029c67bd6 bufsz=0x1350 mem=0x807f1f8000 memsz=0x2000
segment[2]: buf=0x0000000045c60183 bufsz=0xd06200 mem=0x7ffae00000 memsz=0x3894000
segment[3]: buf=0x000000006e54f08d bufsz=0x4176014 mem=0x7ff6c89000 memsz=0x4177000
kexec_file_load: type:0, start:0x807f1fa150 head:0x1184d0002 flags:0x0
Check if RMP table start and end physical range in the e820 tables are
not aligned to 2MB and in that case map this range to reserved in all
the three e820 tables.
[ bp: Massage. ]
Fixes: c3b86e61b756 ("x86/cpufeatures: Enable/unmask SEV-SNP CPU feature")
Signed-off-by: Ashish Kalra <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Link: https://lore.kernel.org/r/df6e995ff88565262c2c7c69964883ff8aa6fc30.1714090302.git.ashish.kalra@amd.com
|
|
Add a new API helper e820__range_update_table() with which to update an
arbitrary e820 table. Move all current users of
e820__range_update_kexec() to this new helper.
[ bp: Massage. ]
Signed-off-by: Ashish Kalra <[email protected]>
Signed-off-by: Borislav Petkov (AMD) <[email protected]>
Link: https://lore.kernel.org/r/b726af213ad55053f8a7a1e793b01bb3f1ca9dd5.1714090302.git.ashish.kalra@amd.com
|
|
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
Add x86 arch implementations of arch_get_unmapped_area_vmflags/_topdown()
so future changes can allow the guard gap of type of vma being placed to
be taken into account. This will be used for shadow stack memory.
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Rick Edgecombe <[email protected]>
Cc: Alexei Starovoitov <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Aneesh Kumar K.V <[email protected]>
Cc: Borislav Petkov (AMD) <[email protected]>
Cc: Christophe Leroy <[email protected]>
Cc: Dan Williams <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Deepak Gupta <[email protected]>
Cc: Guo Ren <[email protected]>
Cc: Helge Deller <[email protected]>
Cc: H. Peter Anvin (Intel) <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: "James E.J. Bottomley" <[email protected]>
Cc: Kees Cook <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Liam R. Howlett <[email protected]>
Cc: Mark Brown <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Naveen N. Rao <[email protected]>
Cc: Nicholas Piggin <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|
|
The comment in the code explains the reasons. We took a different
approach comparing to pmd_pfn() by providing a fallback function.
Another option is to provide some lower level config options (compare to
HUGETLB_PAGE or THP) to identify which layer an arch can support for such
huge mappings. However that can be an overkill.
[[email protected]: fix loongson defconfig]
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Peter Xu <[email protected]>
Reviewed-by: Jason Gunthorpe <[email protected]>
Tested-by: Ryan Roberts <[email protected]>
Cc: Mike Rapoport (IBM) <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Andrew Jones <[email protected]>
Cc: Aneesh Kumar K.V (IBM) <[email protected]>
Cc: Axel Rasmussen <[email protected]>
Cc: Christophe Leroy <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: David Hildenbrand <[email protected]>
Cc: James Houghton <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Lorenzo Stoakes <[email protected]>
Cc: Michael Ellerman <[email protected]>
Cc: Muchun Song <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Yang Shi <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
|