aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/kvm
AgeCommit message (Collapse)AuthorFilesLines
2024-04-01KVM: arm64: Rationalise KVM banner outputMarc Zyngier1-8/+5
We are not very consistent when it comes to displaying which mode we're in (VHE, {n,h}VHE, protected or not). For example, booting in protected mode with hVHE results in: [ 0.969545] kvm [1]: Protected nVHE mode initialized successfully which is mildly amusing considering that the machine is VHE only. We already cleaned this up a bit with commit 1f3ca7023fe6 ("KVM: arm64: print Hyp mode"), but that's still unsatisfactory. Unify the three strings into one and use a mess of conditional statements to sort it out (yes, it's a slow day). Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240321173706.3280796-1-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-04-01KVM: arm64: Ensure target address is granule-aligned for range TLBIWill Deacon1-4/+7
When zapping a table entry in stage2_try_break_pte(), we issue range TLB invalidation for the region that was mapped by the table. However, we neglect to align the base address down to the granule size and so if we ended up reaching the table entry via a misaligned address then we will accidentally skip invalidation for some prefix of the affected address range. Align 'ctx->addr' down to the granule size when performing TLB invalidation for an unmapped table in stage2_try_break_pte(). Cc: Raghavendra Rao Ananta <rananta@google.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Quentin Perret <qperret@google.com> Fixes: defc8cc7abf0 ("KVM: arm64: Invalidate the table entries upon a range") Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240327124853.11206-5-will@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-04-01KVM: arm64: Use TLBI_TTL_UNKNOWN in __kvm_tlb_flush_vmid_range()Will Deacon2-2/+4
Commit c910f2b65518 ("arm64/mm: Update tlb invalidation routines for FEAT_LPA2") updated the __tlbi_level() macro to take the target level as an argument, with TLBI_TTL_UNKNOWN (rather than 0) indicating that the caller cannot provide level information. Unfortunately, the two implementations of __kvm_tlb_flush_vmid_range() were not updated and so now ask for an level 0 invalidation if FEAT_LPA2 is implemented. Fix the problem by passing TLBI_TTL_UNKNOWN instead of 0 as the level argument to __flush_s2_tlb_range_op() in __kvm_tlb_flush_vmid_range(). Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Marc Zyngier <maz@kernel.org> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Fixes: c910f2b65518 ("arm64/mm: Update tlb invalidation routines for FEAT_LPA2") Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240327124853.11206-4-will@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-04-01KVM: arm64: Don't pass a TLBI level hint when zapping table entriesWill Deacon1-5/+7
The TLBI level hints are for leaf entries only, so take care not to pass them incorrectly after clearing a table entry. Cc: Gavin Shan <gshan@redhat.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Fixes: 82bb02445de5 ("KVM: arm64: Implement kvm_pgtable_hyp_unmap() at EL2") Fixes: 6d9d2115c480 ("KVM: arm64: Add support for stage-2 map()/unmap() in generic page-table") Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240327124853.11206-3-will@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-04-01KVM: arm64: Don't defer TLB invalidation when zapping table entriesWill Deacon1-1/+3
Commit 7657ea920c54 ("KVM: arm64: Use TLBI range-based instructions for unmap") introduced deferred TLB invalidation for the stage-2 page-table so that range-based invalidation can be used for the accumulated addresses. This works fine if the structure of the page-tables remains unchanged, but if entire tables are zapped and subsequently freed then we transiently leave the hardware page-table walker with a reference to freed memory thanks to the translation walk caches. For example, stage2_unmap_walker() will free page-table pages: if (childp) mm_ops->put_page(childp); and issue the TLB invalidation later in kvm_pgtable_stage2_unmap(): if (stage2_unmap_defer_tlb_flush(pgt)) /* Perform the deferred TLB invalidations */ kvm_tlb_flush_vmid_range(pgt->mmu, addr, size); For now, take the conservative approach and invalidate the TLB eagerly when we clear a table entry. Note, however, that the existing level hint passed to __kvm_tlb_flush_vmid_ipa() is incorrect and will be fixed in a subsequent patch. Cc: Raghavendra Rao Ananta <rananta@google.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240327124853.11206-2-will@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-26KVM: arm64: Fix out-of-IPA space translation fault handlingWujie Duan1-1/+1
Commit 11e5ea5242e3 ("KVM: arm64: Use helpers to classify exception types reported via ESR") tried to abstract the translation fault check when handling an out-of IPA space condition, but incorrectly replaced it with a permission fault check. Restore the previous translation fault check. Fixes: 11e5ea5242e3 ("KVM: arm64: Use helpers to classify exception types reported via ESR") Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Wujie Duan <wjduan@linx-info.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/kvmarm/864jd3269g.wl-maz@kernel.org/ Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-15Revert "KVM: arm64: Snapshot all non-zero RES0/RES1 sysreg fields for later ↵Oliver Upton3-139/+0
checking" This reverts commits 99101dda29e3186b1356b0dc4dbb835c02c71ac9 and b80b701d5a67d07f4df4a21e09cb31f6bc1feeca. Linus reports that the sysreg reserved bit checks in KVM have led to build failures, arising from commit fdd867fe9b32 ("arm64/sysreg: Add register fields for ID_AA64DFR1_EL1") giving meaning to fields that were previously RES0. Of course, this is a genuine issue, since KVM's sysreg emulation depends heavily on the definition of reserved fields. But at this point the build breakage is far more offensive, and the right course of action is to revert and retry later. All of these build-time assertions were on by default before commit 99101dda29e3 ("KVM: arm64: Make build-time check of RES0/RES1 bits optional"), so deliberately revert it all atomically to avoid introducing further breakage of bisection. Link: https://lore.kernel.org/all/CAHk-=whCvkhc8BbFOUf1ddOsgSGgEjwoKv77=HEY1UiVCydGqw@mail.gmail.com/ Acked-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-03-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds28-274/+1057
Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ...
2024-03-14Merge tag 'mm-stable-2024-03-13-20-04' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
2024-03-14Merge tag 'arm64-upstream' of ↵Linus Torvalds2-12/+6
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The major features are support for LPA2 (52-bit VA/PA with 4K and 16K pages), the dpISA extension and Rust enabled on arm64. The changes are mostly contained within the usual arch/arm64/, drivers/perf, the arm64 Documentation and kselftests. The exception is the Rust support which touches some generic build files. Summary: - Reorganise the arm64 kernel VA space and add support for LPA2 (at stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address range with 4KB and 16KB pages - Enable Rust on arm64 - Support for the 2023 dpISA extensions (data processing ISA), host only - arm64 perf updates: - StarFive's StarLink (integrates one or more CPU cores with a shared L3 memory system) PMU support - Enable HiSilicon Erratum 162700402 quirk for HIP09 - Several updates for the HiSilicon PCIe PMU driver - Arm CoreSight PMU support - Convert all drivers under drivers/perf/ to use .remove_new() - Miscellaneous: - Don't enable workarounds for "rare" errata by default - Clean up the DAIF flags handling for EL0 returns (in preparation for NMI support) - Kselftest update for ptrace() - Update some of the sysreg field definitions - Slight improvement in the code generation for inline asm I/O accessors to permit offset addressing - kretprobes: acquire regs via a BRK exception (previously done via a trampoline handler) - SVE/SME cleanups, comment updates - Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously disabled due to gcc silently ignoring -falign-functions=N)" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (134 commits) Revert "mm: add arch hook to validate mmap() prot flags" Revert "arm64: mm: add support for WXN memory translation attribute" Revert "ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512" ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512 kselftest/arm64: Add 2023 DPISA hwcap test coverage kselftest/arm64: Add basic FPMR test kselftest/arm64: Handle FPMR context in generic signal frame parser arm64/hwcap: Define hwcaps for 2023 DPISA features arm64/ptrace: Expose FPMR via ptrace arm64/signal: Add FPMR signal handling arm64/fpsimd: Support FEAT_FPMR arm64/fpsimd: Enable host kernel access to FPMR arm64/cpufeature: Hook new identification registers up to cpufeature docs: perf: Fix build warning of hisi-pcie-pmu.rst perf: starfive: Only allow COMPILE_TEST for 64-bit architectures MAINTAINERS: Add entry for StarFive StarLink PMU docs: perf: Add description for StarFive's StarLink PMU dt-bindings: perf: starfive: Add JH8100 StarLink PMU perf: starfive: Add StarLink PMU support docs: perf: Update usage for target filter of hisi-pcie-pmu ...
2024-03-11Merge tag 'kvmarm-6.9' of ↵Paolo Bonzini28-272/+1056
https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.9 - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests
2024-03-09Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of ↵Paolo Bonzini4-13/+22
https://github.com/kvm-x86/linux into HEAD KVM GUEST_MEMFD fixes for 6.8: - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to avoid creating ABI that KVM can't sanely support. - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly clear that such VMs are purely a development and testing vehicle, and come with zero guarantees. - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan is to support confidential VMs with deterministic private memory (SNP and TDX) only in the TDP MMU. - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-07Merge branch 'for-next/stage1-lpa2' into for-next/coreCatalin Marinas1-12/+5
* for-next/stage1-lpa2: (48 commits) : Add support for LPA2 and WXN and stage 1 arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed arm64/mm: Use generic __pud_free() helper in pud_free() implementation arm64: gitignore: ignore relacheck arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange arm64: mm: Make PUD folding check in set_pud() a runtime check arm64: mm: add support for WXN memory translation attribute mm: add arch hook to validate mmap() prot flags arm64: defconfig: Enable LPA2 support arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels arm64: ptdump: Deal with translation levels folded at runtime arm64: ptdump: Disregard unaddressable VA space arm64: mm: Add support for folding PUDs at runtime arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging arm64: mm: Add 5 level paging support to fixmap and swapper handling arm64: Enable LPA2 at boot if supported by the system arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion arm64: mm: Add definitions to support 5 levels of paging arm64: mm: Add LPA2 support to phys<->pte conversion routines arm64: mm: Wire up TCR.DS bit to PTE shareability fields ...
2024-03-07arm64/fpsimd: Support FEAT_FPMRMark Brown1-0/+1
FEAT_FPMR defines a new EL0 accessible register FPMR use to configure the FP8 related features added to the architecture at the same time. Detect support for this register and context switch it for EL0 when present. Due to the sharing of responsibility for saving floating point state between the host kernel and KVM FP8 support is not yet implemented in KVM and a stub similar to that used for SVCR is provided for FPMR in order to avoid bisection issues. To make it easier to share host state with the hypervisor we store FPMR as a hardened usercopy field in uw (along with some padding). Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-3-c568edc8ed7f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-03-07Merge branch kvm-arm64/kerneldoc into kvmarm/nextOliver Upton10-15/+24
* kvm-arm64/kerneldoc: : kerneldoc warning fixes, courtesy of Randy Dunlap : : Fixes addressing the widespread misuse of kerneldoc-style comments : throughout KVM/arm64. KVM: arm64: vgic: fix a kernel-doc warning KVM: arm64: vgic-its: fix kernel-doc warnings KVM: arm64: vgic-init: fix a kernel-doc warning KVM: arm64: sys_regs: fix kernel-doc warnings KVM: arm64: PMU: fix kernel-doc warnings KVM: arm64: mmu: fix a kernel-doc warning KVM: arm64: vhe: fix a kernel-doc warning KVM: arm64: hyp/aarch32: fix kernel-doc warnings KVM: arm64: guest: fix kernel-doc warnings KVM: arm64: debug: fix kernel-doc warnings Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/vfio-normal-nc into kvmarm/nextOliver Upton2-9/+29
* kvm-arm64/vfio-normal-nc: : Normal-NC support for vfio-pci @ stage-2, courtesy of Ankit Agrawal : : KVM's policy to date has been that any and all MMIO mapping at stage-2 : is treated as Device-nGnRE. This is primarily done due to concerns of : the guest triggering uncontainable failures in the system if they manage : to tickle the device / memory system the wrong way, though this is : unnecessarily restrictive for devices that can be reasoned as 'safe'. : : Unsurprisingly, the Device-* mapping can really hurt the performance of : assigned devices that can handle Gathering, and can be an outright : correctness issue if the guest driver does unaligned accesses. : : Rather than opening the floodgates to the full ecosystem of devices that : can be exposed to VMs, take the conservative approach and allow PCI : devices to be mapped as Normal-NC since it has been determined to be : 'safe'. vfio: Convey kvm that the vfio-pci device is wc safe KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device mm: Introduce new flag to indicate wc safe KVM: arm64: Introduce new flag for non-cacheable IO memory Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/lpi-xarray into kvmarm/nextOliver Upton6-65/+74
* kvm-arm64/lpi-xarray: : xarray-based representation of vgic LPIs : : KVM's linked-list of LPI state has proven to be a bottleneck in LPI : injection paths, due to lock serialization when acquiring / releasing a : reference on an IRQ. : : Start the tedious process of reworking KVM's LPI injection by replacing : the LPI linked-list with an xarray, leveraging this to allow RCU readers : to walk it outside of the spinlock. KVM: arm64: vgic: Don't acquire the lpi_list_lock in vgic_put_irq() KVM: arm64: vgic: Ensure the irq refcount is nonzero when taking a ref KVM: arm64: vgic: Rely on RCU protection in vgic_get_lpi() KVM: arm64: vgic: Free LPI vgic_irq structs in an RCU-safe manner KVM: arm64: vgic: Use atomics to count LPIs KVM: arm64: vgic: Get rid of the LPI linked-list KVM: arm64: vgic-its: Walk the LPI xarray in vgic_copy_lpi_list() KVM: arm64: vgic-v3: Iterate the xarray to find pending LPIs KVM: arm64: vgic: Use xarray to find LPI in vgic_get_lpi() KVM: arm64: vgic: Store LPIs in an xarray Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/vm-configuration into kvmarm/nextOliver Upton10-164/+891
* kvm-arm64/vm-configuration: (29 commits) : VM configuration enforcement, courtesy of Marc Zyngier : : Userspace has gained the ability to control the features visible : through the ID registers, yet KVM didn't take this into account as the : effective feature set when determing trap / emulation behavior. This : series adds: : : - Mechanism for testing the presence of a particular CPU feature in the : guest's ID registers : : - Infrastructure for computing the effective value of VNCR-backed : registers, taking into account the RES0 / RES1 bits for a particular : VM configuration : : - Implementation of 'fine-grained UNDEF' controls that shadow the FGT : register definitions. KVM: arm64: Don't initialize idreg debugfs w/ preemption disabled KVM: arm64: Fail the idreg iterator if idregs aren't initialized KVM: arm64: Make build-time check of RES0/RES1 bits optional KVM: arm64: Add debugfs file for guest's ID registers KVM: arm64: Snapshot all non-zero RES0/RES1 sysreg fields for later checking KVM: arm64: Make FEAT_MOPS UNDEF if not advertised to the guest KVM: arm64: Make AMU sysreg UNDEF if FEAT_AMU is not advertised to the guest KVM: arm64: Make PIR{,E0}_EL1 UNDEF if S1PIE is not advertised to the guest KVM: arm64: Make TLBI OS/Range UNDEF if not advertised to the guest KVM: arm64: Streamline save/restore of HFG[RW]TR_EL2 KVM: arm64: Move existing feature disabling over to FGU infrastructure KVM: arm64: Propagate and handle Fine-Grained UNDEF bits KVM: arm64: Add Fine-Grained UNDEF tracking information KVM: arm64: Rename __check_nv_sr_forward() to triage_sysreg_trap() KVM: arm64: Use the xarray as the primary sysreg/sysinsn walker KVM: arm64: Register AArch64 system register entries with the sysreg xarray KVM: arm64: Always populate the trap configuration xarray KVM: arm64: nv: Move system instructions to their own sys_reg_desc array KVM: arm64: Drop the requirement for XARRAY_MULTI KVM: arm64: nv: Turn encoding ranges into discrete XArray stores ... Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/misc into kvmarm/nextOliver Upton9-16/+17
* kvm-arm64/misc: : Miscellaneous updates : : - Fix handling of features w/ nonzero safe values in set_id_regs : selftest : : - Cleanup the unused kern_hyp_va() asm macro : : - Differentiate nVHE and hVHE in boot-time message : : - Several selftests cleanups : : - Drop bogus return value from kvm_arch_create_vm_debugfs() : : - Make save/restore of SPE and TRBE control registers affect EL1 state : in hVHE mode : : - Typos KVM: arm64: Fix TRFCR_EL1/PMSCR_EL1 access in hVHE mode KVM: selftests: aarch64: Remove unused functions from vpmu test KVM: arm64: Fix typos KVM: Get rid of return value from kvm_arch_create_vm_debugfs() KVM: selftests: Print timer ctl register in ISTATUS assertion KVM: selftests: Fix GUEST_PRINTF() format warnings in ARM code KVM: arm64: removed unused kern_hyp_va asm macro KVM: arm64: add comments to __kern_hyp_va KVM: arm64: print Hyp mode KVM: arm64: selftests: Handle feature fields with nonzero minimum value correctly Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-01KVM: arm64: Fix TRFCR_EL1/PMSCR_EL1 access in hVHE modeMarc Zyngier1-6/+6
When running in hVHE mode, EL1 accesses are performed with the EL12 accessor, as we run with HCR_EL2.E2H=1. Unfortunately, both PMSCR_EL1 and TRFCR_EL1 are used with the EL1 accessor, meaning that we actually affect the EL2 state. Duh. Switch to using the {read,write}_sysreg_el1() helpers that will do the right thing in all circumstances. Note that the 'Fixes:' tag doesn't represent the point where the bug was introduced (there is no such point), but the first practical point where the hVHE feature is usable. Cc: James Clark <james.clark@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Fixes: 38cba55008e5 ("KVM: arm64: Force HCR_E2H in guest context when ARM64_KVM_HVHE is set") Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240229145417.3606279-1-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-27KVM: arm64: Don't initialize idreg debugfs w/ preemption disabledOliver Upton2-5/+13
Testing KVM with DEBUG_ATOMIC_SLEEP enabled doesn't get far before hitting the first splat: BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1578 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 13062, name: vgic_lpi_stress preempt_count: 1, expected: 0 2 locks held by vgic_lpi_stress/13062: #0: ffff080084553240 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0xc0/0x13f0 #1: ffff800080485f08 (&kvm->arch.config_lock){+.+.}-{3:3}, at: kvm_arch_vcpu_ioctl+0xd60/0x1788 CPU: 19 PID: 13062 Comm: vgic_lpi_stress Tainted: G W O 6.8.0-dbg-DEV #1 Call trace: dump_backtrace+0xf8/0x148 show_stack+0x20/0x38 dump_stack_lvl+0xb4/0xf8 dump_stack+0x18/0x40 __might_resched+0x248/0x2a0 __might_sleep+0x50/0x88 down_write+0x30/0x150 start_creating+0x90/0x1a0 __debugfs_create_file+0x5c/0x1b0 debugfs_create_file+0x34/0x48 kvm_reset_sys_regs+0x120/0x1e8 kvm_reset_vcpu+0x148/0x270 kvm_arch_vcpu_ioctl+0xddc/0x1788 kvm_vcpu_ioctl+0xb6c/0x13f0 __arm64_sys_ioctl+0x98/0xd8 invoke_syscall+0x48/0x108 el0_svc_common+0xb4/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x54/0x128 el0t_64_sync_handler+0x68/0xc0 el0t_64_sync+0x1a8/0x1b0 kvm_reset_vcpu() disables preemption as it needs to unload vCPU state from the CPU to twiddle with it, which subsequently explodes when taking the parent inode's rwsem while creating the idreg debugfs file. Fix it by moving the initialization to kvm_arch_create_vm_debugfs(). Fixes: 891766581dea ("KVM: arm64: Add debugfs file for guest's ID registers") Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240227094115.1723330-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-27KVM: arm64: Fail the idreg iterator if idregs aren't initializedOliver Upton1-1/+2
Return an error to userspace if the VM's ID register values haven't been initialized in preparation for changing the debugfs file initialization order. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240227094115.1723330-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-24KVM: arm64: Set io memory s2 pte as normalnc for vfio pci deviceAnkit Agrawal1-4/+10
To provide VM with the ability to get device IO memory with NormalNC property, map device MMIO in KVM for ARM64 at stage2 as NormalNC. Having NormalNC S2 default puts guests in control (based on [1], "Combining stage 1 and stage 2 memory type attributes") of device MMIO regions memory mappings. The rules are summarized below: ([(S1) - stage1], [(S2) - stage 2]) S1 | S2 | Result NORMAL-WB | NORMAL-NC | NORMAL-NC NORMAL-WT | NORMAL-NC | NORMAL-NC NORMAL-NC | NORMAL-NC | NORMAL-NC DEVICE<attr> | NORMAL-NC | DEVICE<attr> Still this cannot be generalized to non PCI devices such as GICv2. There is insufficient information and uncertainity in the behavior of non PCI driver. A driver must indicate support using the new flag VM_ALLOW_ANY_UNCACHED. Adapt KVM to make use of the flag VM_ALLOW_ANY_UNCACHED as indicator to activate the S2 setting to NormalNc. [1] section D8.5.5 of DDI0487J_a_a-profile_architecture_reference_manual.pdf Suggested-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Ankit Agrawal <ankita@nvidia.com> Link: https://lore.kernel.org/r/20240224150546.368-4-ankita@nvidia.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-24KVM: arm64: Introduce new flag for non-cacheable IO memoryAnkit Agrawal1-5/+19
Currently, KVM for ARM64 maps at stage 2 memory that is considered device (i.e. it is not RAM) with DEVICE_nGnRE memory attributes; this setting overrides (as per the ARM architecture [1]) any device MMIO mapping present at stage 1, resulting in a set-up whereby a guest operating system cannot determine device MMIO mapping memory attributes on its own but it is always overridden by the KVM stage 2 default. This set-up does not allow guest operating systems to select device memory attributes independently from KVM stage-2 mappings (refer to [1], "Combining stage 1 and stage 2 memory type attributes"), which turns out to be an issue in that guest operating systems (e.g. Linux) may request to map devices MMIO regions with memory attributes that guarantee better performance (e.g. gathering attribute - that for some devices can generate larger PCIe memory writes TLPs) and specific operations (e.g. unaligned transactions) such as the NormalNC memory type. The default device stage 2 mapping was chosen in KVM for ARM64 since it was considered safer (i.e. it would not allow guests to trigger uncontained failures ultimately crashing the machine) but this turned out to be asynchronous (SError) defeating the purpose. Failures containability is a property of the platform and is independent from the memory type used for MMIO device memory mappings. Actually, DEVICE_nGnRE memory type is even more problematic than Normal-NC memory type in terms of faults containability in that e.g. aborts triggered on DEVICE_nGnRE loads cannot be made, architecturally, synchronous (i.e. that would imply that the processor should issue at most 1 load transaction at a time - it cannot pipeline them - otherwise the synchronous abort semantics would break the no-speculation attribute attached to DEVICE_XXX memory). This means that regardless of the combined stage1+stage2 mappings a platform is safe if and only if device transactions cannot trigger uncontained failures and that in turn relies on platform capabilities and the device type being assigned (i.e. PCIe AER/DPC error containment and RAS architecture[3]); therefore the default KVM device stage 2 memory attributes play no role in making device assignment safer for a given platform (if the platform design adheres to design guidelines outlined in [3]) and therefore can be relaxed. For all these reasons, relax the KVM stage 2 device memory attributes from DEVICE_nGnRE to Normal-NC. The NormalNC was chosen over a different Normal memory type default at stage-2 (e.g. Normal Write-through) to avoid cache allocation/snooping. Relaxing S2 KVM device MMIO mappings to Normal-NC is not expected to trigger any issue on guest device reclaim use cases either (i.e. device MMIO unmap followed by a device reset) at least for PCIe devices, in that in PCIe a device reset is architected and carried out through PCI config space transactions that are naturally ordered with respect to MMIO transactions according to the PCI ordering rules. Having Normal-NC S2 default puts guests in control (thanks to stage1+stage2 combined memory attributes rules [1]) of device MMIO regions memory mappings, according to the rules described in [1] and summarized here ([(S1) - stage1], [(S2) - stage 2]): S1 | S2 | Result NORMAL-WB | NORMAL-NC | NORMAL-NC NORMAL-WT | NORMAL-NC | NORMAL-NC NORMAL-NC | NORMAL-NC | NORMAL-NC DEVICE<attr> | NORMAL-NC | DEVICE<attr> It is worth noting that currently, to map devices MMIO space to user space in a device pass-through use case the VFIO framework applies memory attributes derived from pgprot_noncached() settings applied to VMAs, which result in device-nGnRnE memory attributes for the stage-1 VMM mappings. This means that a userspace mapping for device MMIO space carried out with the current VFIO framework and a guest OS mapping for the same MMIO space may result in a mismatched alias as described in [2]. Defaulting KVM device stage-2 mappings to Normal-NC attributes does not change anything in this respect, in that the mismatched aliases would only affect (refer to [2] for a detailed explanation) ordering between the userspace and GuestOS mappings resulting stream of transactions (i.e. it does not cause loss of property for either stream of transactions on its own), which is harmless given that the userspace and GuestOS access to the device is carried out through independent transactions streams. A Normal-NC flag is not present today. So add a new kvm_pgtable_prot (KVM_PGTABLE_PROT_NORMAL_NC) flag for it, along with its corresponding PTE value 0x5 (0b101) determined from [1]. Lastly, adapt the stage2 PTE property setter function (stage2_set_prot_attr) to handle the NormalNC attribute. The entire discussion leading to this patch series may be followed through the following links. Link: https://lore.kernel.org/all/20230907181459.18145-3-ankita@nvidia.com Link: https://lore.kernel.org/r/20231205033015.10044-1-ankita@nvidia.com [1] section D8.5.5 - DDI0487J_a_a-profile_architecture_reference_manual.pdf [2] section B2.8 - DDI0487J_a_a-profile_architecture_reference_manual.pdf [3] sections 1.7.7.3/1.8.5.2/appendix C - DEN0029H_SBSA_7.1.pdf Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Will Deacon <will@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Ankit Agrawal <ankita@nvidia.com> Link: https://lore.kernel.org/r/20240224150546.368-2-ankita@nvidia.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-24KVM: arm64: Fix typosBjorn Helgaas7-9/+9
Fix typos, most reported by "codespell arch/arm64". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Zenghui Yu <yuzenghui@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: kvmarm@lists.linux.dev Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103231605.1801364-6-helgaas@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Don't acquire the lpi_list_lock in vgic_put_irq()Oliver Upton3-22/+11
The LPI xarray's xa_lock is sufficient for synchronizing writers when freeing a given LPI. Furthermore, readers can only take a new reference on an IRQ if it was already nonzero. Stop taking the lpi_list_lock unnecessarily and get rid of __vgic_put_lpi_locked(). Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-11-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Ensure the irq refcount is nonzero when taking a refOliver Upton2-11/+10
It will soon be possible for get() and put() calls to happen in parallel, which means in most cases we must ensure the refcount is nonzero when taking a new reference. Switch to using vgic_try_get_irq_kref() where necessary, and document the few conditions where an IRQ's refcount is guaranteed to be nonzero. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-10-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Rely on RCU protection in vgic_get_lpi()Oliver Upton2-8/+15
Stop acquiring the lpi_list_lock in favor of RCU for protecting the read-side critical section in vgic_get_lpi(). In order for this to be safe, we also need to be careful not to take a reference on an irq with a refcount of 0, as it is about to be freed. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-9-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Free LPI vgic_irq structs in an RCU-safe mannerOliver Upton1-1/+1
Free the vgic_irq structs in an RCU-safe manner to allow reads of the LPI configuration data to happen in parallel with the release of LPIs. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-8-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Use atomics to count LPIsOliver Upton3-4/+4
Switch to using atomics for LPI accounting, allowing vgic_irq references to be dropped in parallel. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-7-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Get rid of the LPI linked-listOliver Upton3-8/+2
All readers of LPI configuration have been transitioned to use the LPI xarray. Get rid of the linked-list altogether. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-6-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic-its: Walk the LPI xarray in vgic_copy_lpi_list()Oliver Upton1-1/+8
Start iterating the LPI xarray in anticipation of removing the LPI linked-list. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-5-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic-v3: Iterate the xarray to find pending LPIsOliver Upton1-1/+2
Start walking the LPI xarray to find pending LPIs in preparation for the removal of the LPI linked-list. Note that the 'basic' iterator is chosen here as each iteration needs to drop the xarray read lock (RCU) as reads/writes to guest memory can potentially block. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Use xarray to find LPI in vgic_get_lpi()Oliver Upton1-14/+5
Iterating over the LPI linked-list is less than ideal when the desired index is already known. Use the INTID to index the LPI xarray instead. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23KVM: arm64: vgic: Store LPIs in an xarrayOliver Upton3-1/+22
Using a linked-list for LPIs is less than ideal as it of course requires iterative searches to find a particular entry. An xarray is a better data structure for this use case, as it provides faster searches and can still handle a potentially sparse range of INTID allocations. Start by storing LPIs in an xarray, punting usage of the xarray to a subsequent change. The observant among you will notice that we added yet another lock to the chain of locking order rules; document the ordering of the xa_lock. Don't worry, we'll get rid of the lpi_list_lock one day... Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240221054253.3848076-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-22arm64/mm: new ptep layer to manage contig bitRyan Roberts1-1/+1
Create a new layer for the in-table PTE manipulation APIs. For now, The existing API is prefixed with double underscore to become the arch-private API and the public API is just a simple wrapper that calls the private API. The public API implementation will subsequently be used to transparently manipulate the contiguous bit where appropriate. But since there are already some contig-aware users (e.g. hugetlb, kernel mapper), we must first ensure those users use the private API directly so that the future contig-bit manipulations in the public API do not interfere with those existing uses. The following APIs are treated this way: - ptep_get - set_pte - set_ptes - pte_clear - ptep_get_and_clear - ptep_test_and_clear_young - ptep_clear_flush_young - ptep_set_wrprotect - ptep_set_access_flags Link: https://lkml.kernel.org/r/20240215103205.2607016-11-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: convert set_pte_at() to set_ptes(..., 1)Ryan Roberts1-1/+1
Since set_ptes() was introduced, set_pte_at() has been implemented as a generic macro around set_ptes(..., 1). So this change should continue to generate the same code. However, making this change prepares us for the transparent contpte support. It means we can reroute set_ptes() to __set_ptes(). Since set_pte_at() is a generic macro, there will be no equivalent __set_pte_at() to reroute to. Note that a couple of calls to set_pte_at() remain in the arch code. This is intentional, since those call sites are acting on behalf of core-mm and should continue to call into the public set_ptes() rather than the arch-private __set_ptes(). Link: https://lkml.kernel.org/r/20240215103205.2607016-9-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22KVM: arm64: Make build-time check of RES0/RES1 bits optionalMarc Zyngier2-0/+15
In order to ease the transition towards a state of absolute paranoia where all RES0/RES1 bits gets checked against what KVM know of them, make the checks optional and guarded by a config symbol (CONFIG_KVM_ARM64_RES_BITS_PARANOIA) default to n. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/kvm/87frxka7ud.wl-maz@kernel.org/ Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-21KVM: arm64: vgic-its: Test for valid IRQ in MOVALL handlerOliver Upton1-0/+2
It is possible that an LPI mapped in a different ITS gets unmapped while handling the MOVALL command. If that is the case, there is no state that can be migrated to the destination. Silently ignore it and continue migrating other LPIs. Cc: stable@vger.kernel.org Fixes: ff9c114394aa ("KVM: arm/arm64: GICv4: Handle MOVALL applied to a vPE") Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240221092732.4126848-3-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-02-21KVM: arm64: vgic-its: Test for valid IRQ in its_sync_lpi_pending_table()Oliver Upton1-0/+3
vgic_get_irq() may not return a valid descriptor if there is no ITS that holds a valid translation for the specified INTID. If that is the case, it is safe to silently ignore it and continue processing the LPI pending table. Cc: stable@vger.kernel.org Fixes: 33d3bc9556a7 ("KVM: arm64: vgic-its: Read initial LPI pending table") Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240221092732.4126848-2-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-02-19KVM: arm64: Add debugfs file for guest's ID registersMarc Zyngier1-0/+81
Debugging ID register setup can be a complicated affair. Give the kernel hacker a way to dump that state in an easy to parse way. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-27-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Snapshot all non-zero RES0/RES1 sysreg fields for later checkingMarc Zyngier2-0/+124
As KVM now strongly relies on accurately handling the RES0/RES1 bits on a number of paths, add a compile-time checker that will blow in the face of the innocent bystander, should they try to sneak in an update that changes any of these RES0/RES1 fields. It is expected that such an update will come with the relevant KVM update if needed. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-26-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Make FEAT_MOPS UNDEF if not advertised to the guestMarc Zyngier2-1/+8
We unconditionally enable FEAT_MOPS, which is obviously wrong. So let's only do that when it is advertised to the guest. Which means we need to rely on a per-vcpu HCRX_EL2 shadow register. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240214131827.2856277-25-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Make AMU sysreg UNDEF if FEAT_AMU is not advertised to the guestMarc Zyngier1-0/+4
No AMU? No AMU! IF we see an AMU-related trap, let's turn it into an UNDEF! Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-24-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Make PIR{,E0}_EL1 UNDEF if S1PIE is not advertised to the guestMarc Zyngier2-3/+25
As part of the ongoing effort to honor the guest configuration, add the necessary checks to make PIR_EL1 and co UNDEF if not advertised to the guest, and avoid context switching them. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240214131827.2856277-23-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Make TLBI OS/Range UNDEF if not advertised to the guestMarc Zyngier1-0/+34
Outer Shareable and Range TLBI instructions shouldn't be made available to the guest if they are not advertised. Use FGU to disable those, and set HCR_EL2.TLBIOS in the case the host doesn't have FGT. Note that in that later case, we cannot efficiently disable TLBI Range instructions, as this would require to trap all TLBIs. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240214131827.2856277-22-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Streamline save/restore of HFG[RW]TR_EL2Marc Zyngier1-33/+9
The way we save/restore HFG[RW]TR_EL2 can now be simplified, and the Ampere erratum hack is the only thing that still stands out. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-21-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Move existing feature disabling over to FGU infrastructureMarc Zyngier3-14/+32
We already trap a bunch of existing features for the purpose of disabling them (MAIR2, POR, ACCDATA, SME...). Let's move them over to our brand new FGU infrastructure. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-20-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Propagate and handle Fine-Grained UNDEF bitsMarc Zyngier2-20/+72
In order to correctly honor our FGU bits, they must be converted into a set of FGT bits. They get merged as part of the existing FGT setting. Similarly, the UNDEF injection phase takes place when handling the trap. This results in a bit of rework in the FGT macros in order to help with the code generation, as burying per-CPU accesses in macros results in a lot of expansion, not to mention the vcpu->kvm access on nvhe (kern_hyp_va() is not optimisation-friendly). Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-19-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Add Fine-Grained UNDEF tracking informationMarc Zyngier1-12/+0
In order to efficiently handle system register access being disabled, and this resulting in an UNDEF exception being injected, we introduce the (slightly dubious) concept of Fine-Grained UNDEF, modeled after the architectural Fine-Grained Traps. For each FGT group, we keep a 64 bit word that has the exact same bit assignment as the corresponding FGT register, where a 1 indicates that trapping this register should result in an UNDEF exception being reinjected. So far, nothing populates this information, nor sets the corresponding trap bits. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-18-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>