aboutsummaryrefslogtreecommitdiff
AgeCommit message (Collapse)AuthorFilesLines
2021-09-04mm, slub: convert kmem_cpu_slab protection to local_lockVlastimil Babka2-35/+117
Embed local_lock into struct kmem_cpu_slab and use the irq-safe versions of local_lock instead of plain local_irq_save/restore. On !PREEMPT_RT that's equivalent, with better lockdep visibility. On PREEMPT_RT that means better preemption. However, the cost on PREEMPT_RT is the loss of lockless fast paths which only work with cpu freelist. Those are designed to detect and recover from being preempted by other conflicting operations (both fast or slow path), but the slow path operations assume they cannot be preempted by a fast path operation, which is guaranteed naturally with disabled irqs. With local locks on PREEMPT_RT, the fast paths now also need to take the local lock to avoid races. In the allocation fastpath slab_alloc_node() we can just defer to the slowpath __slab_alloc() which also works with cpu freelist, but under the local lock. In the free fastpath do_slab_free() we have to add a new local lock protected version of freeing to the cpu freelist, as the existing slowpath only works with the page freelist. Also update the comment about locking scheme in SLUB to reflect changes done by this series. [ Mike Galbraith <[email protected]>: use local_lock() without irq in PREEMPT_RT scope; debugging of RT crashes resulting in put_cpu_partial() locking changes ] Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: use migrate_disable() on PREEMPT_RTVlastimil Babka1-9/+30
We currently use preempt_disable() (directly or via get_cpu_ptr()) to stabilize the pointer to kmem_cache_cpu. On PREEMPT_RT this would be incompatible with the list_lock spinlock. We can use migrate_disable() instead, but that increases overhead on !PREEMPT_RT as it's an unconditional function call. In order to get the best available mechanism on both PREEMPT_RT and !PREEMPT_RT, introduce private slub_get_cpu_ptr() and slub_put_cpu_ptr() wrappers and use them. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: protect put_cpu_partial() with disabled irqs instead of cmpxchgVlastimil Babka1-37/+44
Jann Horn reported [1] the following theoretically possible race: task A: put_cpu_partial() calls preempt_disable() task A: oldpage = this_cpu_read(s->cpu_slab->partial) interrupt: kfree() reaches unfreeze_partials() and discards the page task B (on another CPU): reallocates page as page cache task A: reads page->pages and page->pobjects, which are actually halves of the pointer page->lru.prev task B (on another CPU): frees page interrupt: allocates page as SLUB page and places it on the percpu partial list task A: this_cpu_cmpxchg() succeeds which would cause page->pages and page->pobjects to end up containing halves of pointers that would then influence when put_cpu_partial() happens and show up in root-only sysfs files. Maybe that's acceptable, I don't know. But there should probably at least be a comment for now to point out that we're reading union fields of a page that might be in a completely different state. Additionally, the this_cpu_cmpxchg() approach in put_cpu_partial() is only safe against s->cpu_slab->partial manipulation in ___slab_alloc() if the latter disables irqs, otherwise a __slab_free() in an irq handler could call put_cpu_partial() in the middle of ___slab_alloc() manipulating ->partial and corrupt it. This becomes an issue on RT after a local_lock is introduced in later patch. The fix means taking the local_lock also in put_cpu_partial() on RT. After debugging this issue, Mike Galbraith suggested [2] that to avoid different locking schemes on RT and !RT, we can just protect put_cpu_partial() with disabled irqs (to be converted to local_lock_irqsave() later) everywhere. This should be acceptable as it's not a fast path, and moving the actual partial unfreezing outside of the irq disabled section makes it short, and with the retry loop gone the code can be also simplified. In addition, the race reported by Jann should no longer be possible. [1] https://lore.kernel.org/lkml/CAG48ez1mvUuXwg0YPH5ANzhQLpbphqk-ZS+jbRz+H66fvm4FcA@mail.gmail.com/ [2] https://lore.kernel.org/linux-rt-users/[email protected]/ Reported-by: Jann Horn <[email protected]> Suggested-by: Mike Galbraith <[email protected]> Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: make slab_lock() disable irqs with PREEMPT_RTVlastimil Babka1-17/+41
We need to disable irqs around slab_lock() (a bit spinlock) to make it irq-safe. Most calls to slab_lock() are nested under spin_lock_irqsave() which doesn't disable irqs on PREEMPT_RT, so add explicit disabling with PREEMPT_RT. The exception is cmpxchg_double_slab() which already disables irqs, so use a __slab_[un]lock() variant without irq disable there. slab_[un]lock() thus needs a flags pointer parameter, which is unused on !RT. free_debug_processing() now has two flags variables, which looks odd, but only one is actually used - the one used in spin_lock_irqsave() on !RT and the one used in slab_lock() on RT. As a result, __cmpxchg_double_slab() and cmpxchg_double_slab() become effectively identical on RT, as both will disable irqs, which is necessary on RT as most callers of this function also rely on irqsaving lock operations. Thus, assert that irqs are already disabled in __cmpxchg_double_slab() only on !RT and also change the VM_BUG_ON assertion to the more standard lockdep_assert one. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm: slub: make object_map_lock a raw_spinlock_tSebastian Andrzej Siewior1-3/+3
The variable object_map is protected by object_map_lock. The lock is always acquired in debug code and within already atomic context Make object_map_lock a raw_spinlock_t. Signed-off-by: Sebastian Andrzej Siewior <[email protected]> Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of ↵Sebastian Andrzej Siewior2-16/+80
IRQ context flush_all() flushes a specific SLAB cache on each CPU (where the cache is present). The deactivate_slab()/__free_slab() invocation happens within IPI handler and is problematic for PREEMPT_RT. The flush operation is not a frequent operation or a hot path. The per-CPU flush operation can be moved to within a workqueue. Because a workqueue handler, unlike IPI handler, does not disable irqs, flush_slab() now has to disable them for working with the kmem_cache_cpu fields. deactivate_slab() is safe to call with irqs enabled. [[email protected]: adapt to new SLUB changes] Signed-off-by: Sebastian Andrzej Siewior <[email protected]> Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slab: split out the cpu offline variant of flush_slab()Vlastimil Babka1-2/+10
flush_slab() is called either as part IPI handler on given live cpu, or as a cleanup on behalf of another cpu that went offline. The first case needs to protect updating the kmem_cache_cpu fields with disabled irqs. Currently the whole call happens with irqs disabled by the IPI handler, but the following patch will change from IPI to workqueue, and flush_slab() will have to disable irqs (to be replaced with a local lock later) in the critical part. To prepare for this change, replace the call to flush_slab() for the dead cpu handling with an opencoded variant that will not disable irqs nor take a local lock. Suggested-by: Mike Galbraith <[email protected]> Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: don't disable irqs in slub_cpu_dead()Vlastimil Babka1-5/+1
slub_cpu_dead() cleans up for an offlined cpu from another cpu and calls only functions that are now irq safe, so we don't need to disable irqs anymore. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: only disable irq with spin_lock in __unfreeze_partials()Vlastimil Babka1-8/+4
__unfreeze_partials() no longer needs to have irqs disabled, except for making the spin_lock operations irq-safe, so convert the spin_locks operations and remove the separate irq handling. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: separate detaching of partial list in unfreeze_partials() from ↵Vlastimil Babka1-22/+51
unfreezing Unfreezing partial list can be split to two phases - detaching the list from struct kmem_cache_cpu, and processing the list. The whole operation does not need to be protected by disabled irqs. Restructure the code to separate the detaching (with disabled irqs) and unfreezing (with irq disabling to be reduced in the next patch). Also, unfreeze_partials() can be called from another cpu on behalf of a cpu that is being offlined, where disabling irqs on the local cpu has no sense, so restructure the code as follows: - __unfreeze_partials() is the bulk of unfreeze_partials() that processes the detached percpu partial list - unfreeze_partials() detaches list from current cpu with irqs disabled and calls __unfreeze_partials() - unfreeze_partials_cpu() is to be called for the offlined cpu so it needs no irq disabling, and is called from __flush_cpu_slab() - flush_cpu_slab() is for the local cpu thus it needs to call unfreeze_partials(). So it can't simply call __flush_cpu_slab(smp_processor_id()) anymore and we have to open-code the proper calls. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: detach whole partial list at once in unfreeze_partials()Vlastimil Babka1-3/+7
Instead of iterating through the live percpu partial list, detach it from the kmem_cache_cpu at once. This is simpler and will allow further optimization. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: discard slabs in unfreeze_partials() without irqs disabledVlastimil Babka1-1/+2
No need for disabled irqs when discarding slabs, so restore them before discarding. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: move irq control into unfreeze_partials()Vlastimil Babka1-6/+7
unfreeze_partials() can be optimized so that it doesn't need irqs disabled for the whole time. As the first step, move irq control into the function and remove it from the put_cpu_partial() caller. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: call deactivate_slab() without disabling irqsVlastimil Babka1-5/+19
The function is now safe to be called with irqs enabled, so move the calls outside of irq disabled sections. When called from ___slab_alloc() -> flush_slab() we have irqs disabled, so to reenable them before deactivate_slab() we need to open-code flush_slab() in ___slab_alloc() and reenable irqs after modifying the kmem_cache_cpu fields. But that means a IRQ handler meanwhile might have assigned a new page to kmem_cache_cpu.page so we have to retry the whole check. The remaining callers of flush_slab() are the IPI handler which has disabled irqs anyway, and slub_cpu_dead() which will be dealt with in the following patch. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: make locking in deactivate_slab() irq-safeVlastimil Babka1-4/+5
dectivate_slab() now no longer touches the kmem_cache_cpu structure, so it will be possible to call it with irqs enabled. Just convert the spin_lock calls to their irq saving/restoring variants to make it irq-safe. Note we now have to use cmpxchg_double_slab() for irq-safe slab_lock(), because in some situations we don't take the list_lock, which would disable irqs. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: move reset of c->page and freelist out of deactivate_slab()Vlastimil Babka1-13/+18
deactivate_slab() removes the cpu slab by merging the cpu freelist with slab's freelist and putting the slab on the proper node's list. It also sets the respective kmem_cache_cpu pointers to NULL. By extracting the kmem_cache_cpu operations from the function, we can make it not dependent on disabled irqs. Also if we return a single free pointer from ___slab_alloc, we no longer have to assign kmem_cache_cpu.page before deactivation or care if somebody preempted us and assigned a different page to our kmem_cache_cpu in the process. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: stop disabling irqs around get_partial()Vlastimil Babka1-14/+8
The function get_partial() does not need to have irqs disabled as a whole. It's sufficient to convert spin_lock operations to their irq saving/restoring versions. As a result, it's now possible to reach the page allocator from the slab allocator without disabling and re-enabling interrupts on the way. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: check new pages with restored irqsVlastimil Babka1-5/+3
Building on top of the previous patch, re-enable irqs before checking new pages. alloc_debug_processing() is now called with enabled irqs so we need to remove VM_BUG_ON(!irqs_disabled()); in check_slab() - there doesn't seem to be a need for it anyway. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: validate slab from partial list or page allocator before making it ↵Vlastimil Babka1-8/+9
cpu slab When we obtain a new slab page from node partial list or page allocator, we assign it to kmem_cache_cpu, perform some checks, and if they fail, we undo the assignment. In order to allow doing the checks without irq disabled, restructure the code so that the checks are done first, and kmem_cache_cpu.page assignment only after they pass. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: restore irqs around calling new_slab()Vlastimil Babka1-6/+2
allocate_slab() currently re-enables irqs before calling to the page allocator. It depends on gfpflags_allow_blocking() to determine if it's safe to do so. Now we can instead simply restore irq before calling it through new_slab(). The other caller early_kmem_cache_node_alloc() is unaffected by this. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: move disabling irqs closer to get_partial() in ___slab_alloc()Vlastimil Babka1-9/+25
Continue reducing the irq disabled scope. Check for per-cpu partial slabs with first with irqs enabled and then recheck with irqs disabled before grabbing the slab page. Mostly preparatory for the following patches. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: do initial checks in ___slab_alloc() with irqs enabledVlastimil Babka2-9/+54
As another step of shortening irq disabled sections in ___slab_alloc(), delay disabling irqs until we pass the initial checks if there is a cached percpu slab and it's suitable for our allocation. Now we have to recheck c->page after actually disabling irqs as an allocation in irq handler might have replaced it. Because we call pfmemalloc_match() as one of the checks, we might hit VM_BUG_ON_PAGE(!PageSlab(page)) in PageSlabPfmemalloc in case we get interrupted and the page is freed. Thus introduce a pfmemalloc_match_unsafe() variant that lacks the PageSlab check. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-04mm, slub: move disabling/enabling irqs to ___slab_alloc()Vlastimil Babka1-12/+24
Currently __slab_alloc() disables irqs around the whole ___slab_alloc(). This includes cases where this is not needed, such as when the allocation ends up in the page allocator and has to awkwardly enable irqs back based on gfp flags. Also the whole kmem_cache_alloc_bulk() is executed with irqs disabled even when it hits the __slab_alloc() slow path, and long periods with disabled interrupts are undesirable. As a first step towards reducing irq disabled periods, move irq handling into ___slab_alloc(). Callers will instead prevent the s->cpu_slab percpu pointer from becoming invalid via get_cpu_ptr(), thus preempt_disable(). This does not protect against modification by an irq handler, which is still done by disabled irq for most of ___slab_alloc(). As a small immediate benefit, slab_out_of_memory() from ___slab_alloc() is now called with irqs enabled. kmem_cache_alloc_bulk() disables irqs for its fastpath and then re-enables them before calling ___slab_alloc(), which then disables them at its discretion. The whole kmem_cache_alloc_bulk() operation also disables preemption. When ___slab_alloc() calls new_slab() to allocate a new page, re-enable preemption, because new_slab() will re-enable interrupts in contexts that allow blocking (this will be improved by later patches). The patch itself will thus increase overhead a bit due to disabled preemption (on configs where it matters) and increased disabling/enabling irqs in kmem_cache_alloc_bulk(), but that will be gradually improved in the following patches. Note in __slab_alloc() we need to change the #ifdef CONFIG_PREEMPT guard to CONFIG_PREEMPT_COUNT to make sure preempt disable/enable is properly paired in all configurations. On configs without involuntary preemption and debugging the re-read of kmem_cache_cpu pointer is still compiled out as it was before. [ Mike Galbraith <[email protected]>: Fix kmem_cache_alloc_bulk() error path ] Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: simplify kmem_cache_cpu and tid setupVlastimil Babka1-13/+9
In slab_alloc_node() and do_slab_free() fastpaths we need to guarantee that our kmem_cache_cpu pointer is from the same cpu as the tid value. Currently that's done by reading the tid first using this_cpu_read(), then the kmem_cache_cpu pointer and verifying we read the same tid using the pointer and plain READ_ONCE(). This can be simplified to just fetching kmem_cache_cpu pointer and then reading tid using the pointer. That guarantees they are from the same cpu. We don't need to read the tid using this_cpu_read() because the value will be validated by this_cpu_cmpxchg_double(), making sure we are on the correct cpu and the freelist didn't change by anyone preempting us since reading the tid. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-04mm, slub: restructure new page checks in ___slab_alloc()Vlastimil Babka1-6/+22
When we allocate slab object from a newly acquired page (from node's partial list or page allocator), we usually also retain the page as a new percpu slab. There are two exceptions - when pfmemalloc status of the page doesn't match our gfp flags, or when the cache has debugging enabled. The current code for these decisions is not easy to follow, so restructure it and add comments. The new structure will also help with the following changes. No functional change. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-04mm, slub: return slab page from get_partial() and set c->page afterwardsVlastimil Babka1-10/+11
The function get_partial() finds a suitable page on a partial list, acquires and returns its freelist and assigns the page pointer to kmem_cache_cpu. In later patch we will need more control over the kmem_cache_cpu.page assignment, so instead of passing a kmem_cache_cpu pointer, pass a pointer to a pointer to a page that get_partial() can fill and the caller can assign the kmem_cache_cpu.page pointer. No functional change as all of this still happens with disabled IRQs. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-04mm, slub: dissolve new_slab_objects() into ___slab_alloc()Vlastimil Babka1-32/+18
The later patches will need more fine grained control over individual actions in ___slab_alloc(), the only caller of new_slab_objects(), so dissolve it there. This is a preparatory step with no functional change. The only minor change is moving WARN_ON_ONCE() for using a constructor together with __GFP_ZERO to new_slab(), which makes it somewhat less frequent, but still able to catch a development change introducing a systematic misuse. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Christoph Lameter <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-04mm, slub: extract get_partial() from new_slab_objects()Vlastimil Babka1-6/+6
The later patches will need more fine grained control over individual actions in ___slab_alloc(), the only caller of new_slab_objects(), so this is a first preparatory step with no functional change. This adds a goto label that appears unnecessary at this point, but will be useful for later changes. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Christoph Lameter <[email protected]>
2021-09-03mm, slub: remove redundant unfreeze_partials() from put_cpu_partial()Vlastimil Babka1-7/+0
Commit d6e0b7fa1186 ("slub: make dead caches discard free slabs immediately") introduced cpu partial flushing for kmemcg caches, based on setting the target cpu_partial to 0 and adding a flushing check in put_cpu_partial(). This code that sets cpu_partial to 0 was later moved by c9fc586403e7 ("slab: introduce __kmemcg_cache_deactivate()") and ultimately removed by 9855609bde03 ("mm: memcg/slab: use a single set of kmem_caches for all accounted allocations"). However the check and flush in put_cpu_partial() was never removed, although it's effectively a dead code. So this patch removes it. Note that d6e0b7fa1186 also added preempt_disable()/enable() to unfreeze_partials() which could be thus also considered unnecessary. But further patches will rely on it, so keep it. Signed-off-by: Vlastimil Babka <[email protected]>
2021-09-03mm, slub: don't disable irq for debug_check_no_locks_freed()Vlastimil Babka1-13/+1
In slab_free_hook() we disable irqs around the debug_check_no_locks_freed() call, which is unnecessary, as irqs are already being disabled inside the call. This seems to be leftover from the past where there were more calls inside the irq disabled sections. Remove the irq disable/enable operations. Mel noted: > Looks like it was needed for kmemcheck which went away back in 4.15 Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-03mm, slub: allocate private object map for validate_slab_cache()Vlastimil Babka1-9/+15
validate_slab_cache() is called either to handle a sysfs write, or from a self-test context. In both situations it's straightforward to preallocate a private object bitmap instead of grabbing the shared static one meant for critical sections, so let's do that. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Christoph Lameter <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-03mm, slub: allocate private object map for debugfs listingsVlastimil Babka1-15/+29
Slub has a static spinlock protected bitmap for marking which objects are on freelist when it wants to list them, for situations where dynamically allocating such map can lead to recursion or locking issues, and on-stack bitmap would be too large. The handlers of debugfs files alloc_traces and free_traces also currently use this shared bitmap, but their syscall context makes it straightforward to allocate a private map before entering locked sections, so switch these processing paths to use a private bitmap. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Christoph Lameter <[email protected]> Acked-by: Mel Gorman <[email protected]>
2021-09-03mm, slub: don't call flush_all() from slab_debug_trace_open()Vlastimil Babka1-3/+0
slab_debug_trace_open() can only be called on caches with SLAB_STORE_USER flag and as with all slub debugging flags, such caches avoid cpu or percpu partial slabs altogether, so there's nothing to flush. Signed-off-by: Vlastimil Babka <[email protected]> Acked-by: Christoph Lameter <[email protected]>
2021-08-29Linux 5.14Linus Torvalds1-1/+1
2021-08-29Merge tag 'clk-fixes-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux Pull clk fix from Stephen Boyd: "One hotfix for a NULL pointer deref in the Renesas usb clk driver" * tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: clk: renesas: rcar-usb2-clock-sel: Fix kernel NULL pointer dereference
2021-08-29Merge tag 'sched_urgent_for_v5.14' of ↵Linus Torvalds2-27/+121
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Have get_push_task() check whether current has migration disabled and thus avoid useless invocations of the migration thread - Rework initialization flow so that all rq->core's are initialized, even of CPUs which have not been onlined yet, so that iterating over them all works as expected * tag 'sched_urgent_for_v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Fix get_push_task() vs migrate_disable() sched: Fix Core-wide rq->lock for uninitialized CPUs
2021-08-29Merge tag 'irq_urgent_for_v5.14' of ↵Linus Torvalds1-0/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq fix from Borislav Petkov: - Have msix_mask_all() check a global control which says whether MSI-X masking should be done and thus make it usable on Xen-PV too * tag 'irq_urgent_for_v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: PCI/MSI: Skip masking MSI-X on Xen PV
2021-08-29Merge tag 'perf_urgent_for_v5.14' of ↵Linus Torvalds4-2/+12
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Borislav Petkov: - Prevent the amd/power module from being removed while in use - Mark AMD IBS as not supporting content exclusion - Add a workaround for AMD erratum #1197 where IBS registers might not be restored properly after exiting CC6 state - Fix a potential truncation of a 32-bit variable due to shifting - Read the correct bits describing the number of configurable address ranges on Intel PT * tag 'perf_urgent_for_v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/amd/power: Assign pmu.module perf/x86/amd/ibs: Extend PERF_PMU_CAP_NO_EXCLUDE to IBS Op perf/x86/amd/ibs: Work around erratum #1197 perf/x86/intel/uncore: Fix integer overflow on 23 bit left shift of a u32 perf/x86/intel/pt: Fix mask of num_address_ranges
2021-08-29Merge tag 'x86_urgent_for_v5.14' of ↵Linus Torvalds3-9/+30
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - Fix build error on RHEL where -Werror=maybe-uninitialized is set. - Restore the firmware's IDT when calling EFI boot services and before ExitBootServices() has been called. This fixes a boot failure on what appears to be a tablet with 32-bit UEFI running a 64-bit kernel. * tag 'x86_urgent_for_v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Fix a maybe-uninitialized build warning treated as error x86/efi: Restore Firmware IDT before calling ExitBootServices()
2021-08-29Revert "parisc: Add assembly implementations for memset, strlen, strcpy, ↵Helge Deller5-157/+74
strncpy and strcat" This reverts commit 83af58f8068ea3f7b3c537c37a30887bfa585069. It turns out that at least the assembly implementation for strncpy() was buggy. Revert the whole commit and return back to the default coding. Signed-off-by: Helge Deller <[email protected]> Cc: <[email protected]> # v5.4+ Cc: Rasmus Villemoes <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2021-08-28clk: renesas: rcar-usb2-clock-sel: Fix kernel NULL pointer dereferenceAdam Ford1-1/+1
The probe was manually passing NULL instead of dev to devm_clk_hw_register. This caused a Unable to handle kernel NULL pointer dereference error. Fix this by passing 'dev'. Signed-off-by: Adam Ford <[email protected]> Fixes: a20a40a8bbc2 ("clk: renesas: rcar-usb2-clock-sel: Fix error handling in .probe()") Reviewed-by: Geert Uytterhoeven <[email protected]> Signed-off-by: Stephen Boyd <[email protected]>
2021-08-28Merge tag 'scsi-fixes' of ↵Linus Torvalds1-3/+6
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fix from James Bottomley: "A single fix for a race introduced by a fix that went into 5.14-rc5" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: core: Fix hang of freezing queue between blocking and running device
2021-08-28Merge tag 'usb-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usbLinus Torvalds6-76/+89
Pull USB fixes from Greg KH: "Here are a few tiny USB fixes for reported issues with some USB drivers. These fixes include: - gadget driver fixes for regressions - tcpm driver fix - dwc3 driver fixes - xhci renesas firmware loading fix, again. - usb serial option driver device id addition - usb serial ch341 revert for regression All all of these have been in linux-next with no reported problems" * tag 'usb-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb: usb: gadget: u_audio: fix race condition on endpoint stop usb: gadget: f_uac2: fixup feedback endpoint stop usb: typec: tcpm: Raise vdm_sm_running flag only when VDM SM is running usb: renesas-xhci: Prefer firmware loading on unknown ROM state usb: dwc3: gadget: Stop EP0 transfers during pullup disable usb: dwc3: gadget: Fix dwc3_calc_trbs_left() Revert "USB: serial: ch341: fix character loss at high transfer rates" USB: serial: option: add new VID/PID to support Fibocom FG150
2021-08-28Merge tag 'powerpc-5.14-7' of ↵Linus Torvalds2-4/+5
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc fixes from Michael Ellerman: - Fix scv implicit soft-mask table for relocated (eg. kdump) kernels - Re-enable ARCH_ENABLE_SPLIT_PMD_PTLOCK, which was disabled due to a typo Thanks to Lukas Bulwahn, Nicholas Piggin, and Daniel Axtens. * tag 'powerpc-5.14-7' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/64s: Fix scv implicit soft-mask table for relocated kernels powerpc: Re-enable ARCH_ENABLE_SPLIT_PMD_PTLOCK
2021-08-27Merge tag 'block-5.14-2021-08-27' of git://git.kernel.dk/linux-blockLinus Torvalds4-45/+21
Pull block fixes from Jens Axboe: - Revert the mq-deadline priority handling, it's causing serious performance regressions. While experimental patches exists to fix this up, it's too late to do so now. Revert it and re-do it properly for 5.15 instead. - Fix a NULL vs IS_ERR() regression in this release (Dan) - Fix a mq-deadline accounting regression in this release (Bart) - Mark cryptoloop as deprecated. It's broken and dm-crypt fully supports it, and it's actively intefering with loop. Plan on removal for 5.16 (Christoph) * tag 'block-5.14-2021-08-27' of git://git.kernel.dk/linux-block: cryptoloop: add a deprecation warning pd: fix a NULL vs IS_ERR() check Revert "block/mq-deadline: Prioritize high-priority requests" mq-deadline: Fix request accounting
2021-08-27Merge tag 'soc-fixes-5.14-4' of ↵Linus Torvalds2-2/+3
git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc Pull ARM SoC fixes from Arnd Bergmann: "Just two trivial fixes from the reset driver tree, nothing else came up since the last soc fixes" * tag 'soc-fixes-5.14-4' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: reset: reset-zynqmp: Fixed the argument data type reset: RESET_MCHP_SPARX5 should depend on ARCH_SPARX5
2021-08-27Merge tag 'acpi-5.14-rc8' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI fix from Rafael Wysocki: "Fix a regression introduced during this cycle that has been partially addressed by an earlier commit (Andy Shevchenko)" * tag 'acpi-5.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: media: ipu3-cio2: Drop reference on error path in cio2_bridge_connect_sensor()
2021-08-27Merge tag 'pm-5.14-rc8' of ↵Linus Torvalds2-6/+12
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management fixes from Rafael Wysocki: "These fix two issues introduced during this cycle, one of which is a regression and the other one affects new code. Specifics: - Prevent the operating performance points (OPP) code from crashing when some entries in the table of required OPPs are set to error pointer values (Marijn Suijten) - Prevent the generic power domains (genpd) framework from incorrectly overriding the performance state of a device set by its driver while it is runtime-suspended or when runtime PM of it is disabled (Dmitry Osipenko)" * tag 'pm-5.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: PM: domains: Improve runtime PM performance state handling opp: core: Check for pending links before reading required_opp pointers
2021-08-27virtio-mem: fix sleeping in RCU read side section in virtio_mem_online_page_cb()David Hildenbrand1-1/+8
virtio_mem_set_fake_offline() might sleep now, and we call it under rcu_read_lock(). To fix it, simply move the rcu_read_unlock() further up, as we're done with the device. Reported-by: Dan Carpenter <[email protected]> Fixes: 6cc26d77613a: "virtio-mem: use page_offline_(start|end) when setting PageOffline() Cc: "Michael S. Tsirkin" <[email protected]> Cc: Jason Wang <[email protected]> Cc: Andrew Morton <[email protected]> Cc: [email protected] Signed-off-by: David Hildenbrand <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2021-08-27Merge branch 'pm-opp'Rafael J. Wysocki1-4/+4
* pm-opp: opp: core: Check for pending links before reading required_opp pointers