Age | Commit message (Collapse) | Author | Files | Lines |
|
This should be ARRAY_SIZE() instead of sizeof(). The sizeof() limit is
too high so it doesn't work.
Fixes: 093b8494f299 ("ALSA: usb-audio: Print more information in stream proc files")
Signed-off-by: Dan Carpenter <[email protected]>
Link: https://lore.kernel.org/r/20200422092255.GB195357@mwanda
Signed-off-by: Takashi Iwai <[email protected]>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus
ASoC: Fixes for v5.7
Quite a lot of fixes here, a lot of driver specific ones but the biggest
one is the revert of changes to the startup and shutdown sequence for
DAIs that went in during the merge window - they broke some older x86
platforms and attempts to fix them didn't succeed so it's safer to just
roll them back and try to make sure those platforms are handled properly
in any future attempt.
The rockchip S/PDIF DT stuff was IIRC for validation issues.
|
|
Due to rounding error driver sometimes incorrectly calculate next packet
size, which results in audible clicks on devices with synchronous playback
endpoints. For example on a high speed bus and a sample rate 44.1 kHz it
loses one sample every ~40.9 seconds. Fortunately playback interface on
Scarlett 2i4 2nd gen has a working explicit feedback endpoint, so we can
switch playback data endpoint to asynchronous mode as a workaround.
Signed-off-by: Alexander Tsoy <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
After suspend & resume, wm8960_hw_params may be called when
bias_level is not SND_SOC_BIAS_ON, then wm8960_configure_clocking
is not called. But if sample rate is changed at that time, then
the output clock rate will be not correct.
So judgement of bias_level is SND_SOC_BIAS_ON in wm8960_hw_params
is not necessary and it causes above issue.
Fixes: 3176bf2d7ccd ("ASoC: wm8960: update pll and clock setting function")
Signed-off-by: Shengjiu Wang <[email protected]>
Acked-by: Charles Keepax <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
The error handling code in usX2Y_rate_set() may hit a potential NULL
dereference when an error occurs before allocating all us->urb[].
Add a proper NULL check for fixing the corner case.
Reported-by: Lin Yi <[email protected]>
Cc: <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
Force it to use asynchronous playback.
Same quirk has already been added for Focusrite Scarlett Solo (2nd gen)
with a commit 46f5710f0b88 ("ALSA: usb-audio: Add quirk for Focusrite
Scarlett Solo").
This also seems to prevent regular clicks when playing at 44100Hz
on Scarlett 2i2 (2nd gen). I did not notice any side effects.
Moved both quirks to snd_usb_audioformat_attributes_quirk() as suggested.
Signed-off-by: Gregor Pintar <[email protected]>
Reviewed-by: Alexander Tsoy <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
sound/soc/codecs/wm8900.o: In function `wm8900_i2c_probe':
wm8900.c:(.text+0xa36): undefined reference to `__devm_regmap_init_i2c'
sound/soc/codecs/wm8900.o: In function `wm8900_modinit':
wm8900.c:(.init.text+0xb): undefined reference to `i2c_register_driver'
sound/soc/codecs/wm8900.o: In function `wm8900_exit':
wm8900.c:(.exit.text+0x8): undefined reference to `i2c_del_driver'
sound/soc/codecs/wm8988.o: In function `wm8988_i2c_probe':
wm8988.c:(.text+0x857): undefined reference to `__devm_regmap_init_i2c'
sound/soc/codecs/wm8988.o: In function `wm8988_modinit':
wm8988.c:(.init.text+0xb): undefined reference to `i2c_register_driver'
sound/soc/codecs/wm8988.o: In function `wm8988_exit':
wm8988.c:(.exit.text+0x8): undefined reference to `i2c_del_driver'
sound/soc/codecs/wm8995.o: In function `wm8995_i2c_probe':
wm8995.c:(.text+0x1c4f): undefined reference to `__devm_regmap_init_i2c'
sound/soc/codecs/wm8995.o: In function `wm8995_modinit':
wm8995.c:(.init.text+0xb): undefined reference to `i2c_register_driver'
sound/soc/codecs/wm8995.o: In function `wm8995_exit':
wm8995.c:(.exit.text+0x8): undefined reference to `i2c_del_driver'
Add SND_SOC_I2C_AND_SPI dependency to fix this.
Fixes: ea00d95200d02ece ("ASoC: Use imply for SND_SOC_ALL_CODECS")
Reported-by: Hulk Robot <[email protected]>
Signed-off-by: YueHaibing <[email protected]>
Acked-by: Charles Keepax <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
<[email protected]>:
Fix rsnd_dai_call() operations being performed twice for the master SSI
in multi-SSI setups, and fix the rsnd_ssi_stop operation for multi-SSI
setups.
The only visible effect of these issues was some "status check failed"
spam when the rsnd_ssi_stop was called, but overall the code is cleaner
now, and some questionable writes to the SSICR register which did not
lead to any observable misbehaviour but were contrary to the datasheet
are fixed.
Mark:
The first patch kind of reverts my "ASoC: rsnd: Fix parent SSI
start/stop in multi-SSI mode" from a few days ago and achieves the same
effect in a simpler fashion, if you would prefer a clean patch series
based on v5.6 drop me a note.
Greetings,
Matthias
Matthias Blankertz (2):
ASoC: rsnd: Don't treat master SSI in multi SSI setup as parent
ASoC: rsnd: Fix "status check failed" spam for multi-SSI
sound/soc/sh/rcar/ssi.c | 18 +++++++++++++-----
1 file changed, 13 insertions(+), 5 deletions(-)
base-commit: 15a5760cb8b6d5c1ebbf1d2e1f0b77380ab68a82
--
2.26.1
|
|
<[email protected]>:
This patchset fixes the problem reported by Marc in this thread [0]
The problem was due to an error in the meson card drivers which had
the "no_pcm" dai_link property set on codec-to-codec links
[0]: https://lore.kernel.org/r/[email protected]
Jerome Brunet (2):
ASoC: meson: axg-card: fix codec-to-codec link setup
ASoC: meson: gx-card: fix codec-to-codec link setup
sound/soc/meson/axg-card.c | 4 +++-
sound/soc/meson/gx-card.c | 4 +++-
2 files changed, 6 insertions(+), 2 deletions(-)
--
2.25.2
|
|
snd_soc_dapm_kcontrol widget which is created by autodisable control
should contain correct on_val, mask and shift because it is set when the
widget is powered and changed value is applied on registers by following
code in dapm_seq_run_coalesced().
mask |= w->mask << w->shift;
if (w->power)
value |= w->on_val << w->shift;
else
value |= w->off_val << w->shift;
Shift on the mask in dapm_kcontrol_data_alloc() is removed to prevent
double shift.
And, on_val in dapm_kcontrol_set_value() is modified to get correct
value in the dapm_seq_run_coalesced().
Signed-off-by: Gyeongtaek Lee <[email protected]>
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
Fix the rsnd_ssi_stop function to skip disabling the individual SSIs of
a multi-SSI setup, as the actual stop is performed by rsnd_ssiu_stop_gen2
- the same logic as in rsnd_ssi_start. The attempt to disable these SSIs
was harmless, but caused a "status check failed" message to be printed
for every SSI in the multi-SSI setup.
The disabling of interrupts is still performed, as they are enabled for
all SSIs in rsnd_ssi_init, but care is taken to not accidentally set the
EN bit for an SSI where it was not set by rsnd_ssi_start.
Signed-off-by: Matthias Blankertz <[email protected]>
Acked-by: Kuninori Morimoto <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
The master SSI of a multi-SSI setup was attached both to the
RSND_MOD_SSI slot and the RSND_MOD_SSIP slot of the rsnd_dai_stream.
This is not correct wrt. the meaning of being "parent" in the rest of
the SSI code, where it seems to indicate an SSI that provides clock and
word sync but is not transmitting/receiving audio data.
Not treating the multi-SSI master as parent allows removal of various
special cases to the rsnd_ssi_is_parent conditions introduced in commit
a09fb3f28a60 ("ASoC: rsnd: Fix parent SSI start/stop in multi-SSI mode").
It also fixes the issue that operations performed via rsnd_dai_call()
were performed twice for the master SSI. This caused some "status check
failed" spam when stopping a multi-SSI stream as the driver attempted to
stop the master SSI twice.
Signed-off-by: Matthias Blankertz <[email protected]>
Acked-by: Kuninori Morimoto <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
Since the addition of commit 9b5db059366a ("ASoC: soc-pcm: dpcm: Only allow
playback/capture if supported"), meson-axg cards which have codec-to-codec
links fail to init and Oops.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000128
Internal error: Oops: 96000044 [#1] PREEMPT SMP
CPU: 3 PID: 1582 Comm: arecord Not tainted 5.7.0-rc1
pc : invalidate_paths_ep+0x30/0xe0
lr : snd_soc_dapm_dai_get_connected_widgets+0x170/0x1a8
Call trace:
invalidate_paths_ep+0x30/0xe0
snd_soc_dapm_dai_get_connected_widgets+0x170/0x1a8
dpcm_path_get+0x38/0xd0
dpcm_fe_dai_open+0x70/0x920
snd_pcm_open_substream+0x564/0x840
snd_pcm_open+0xfc/0x228
snd_pcm_capture_open+0x4c/0x78
snd_open+0xac/0x1a8
...
While this error was initially reported the axg-card type, it also applies
to the gx-card type.
While initiliazing the links, ASoC treats the codec-to-codec links of this
card type as a DPCM backend. This error eventually leads to the Oops.
Most of the card driver code is shared between DPCM backends and
codec-to-codec links. The property "no_pcm" marking DCPM BE was left set on
codec-to-codec links, leading to this problem. This commit fixes that.
Fixes: e37a0c313a0f ("ASoC: meson: gx: add sound card support")
Signed-off-by: Jerome Brunet <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
Since the addition of commit 9b5db059366a ("ASoC: soc-pcm: dpcm: Only allow
playback/capture if supported"), meson-axg cards which have codec-to-codec
links fail to init and Oops:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000128
Internal error: Oops: 96000044 [#1] PREEMPT SMP
CPU: 3 PID: 1582 Comm: arecord Not tainted 5.7.0-rc1
pc : invalidate_paths_ep+0x30/0xe0
lr : snd_soc_dapm_dai_get_connected_widgets+0x170/0x1a8
Call trace:
invalidate_paths_ep+0x30/0xe0
snd_soc_dapm_dai_get_connected_widgets+0x170/0x1a8
dpcm_path_get+0x38/0xd0
dpcm_fe_dai_open+0x70/0x920
snd_pcm_open_substream+0x564/0x840
snd_pcm_open+0xfc/0x228
snd_pcm_capture_open+0x4c/0x78
snd_open+0xac/0x1a8
...
While initiliazing the links, ASoC treats the codec-to-codec links of this
card type as a DPCM backend. This error eventually leads to the Oops.
Most of the card driver code is shared between DPCM backends and
codec-to-codec links. The property "no_pcm" marking DCPM BE was left set on
codec-to-codec links, leading to this problem. This commit fixes that.
Fixes: 0a8f1117a680 ("ASoC: meson: axg-card: add basic codec-to-codec link support")
Signed-off-by: Jerome Brunet <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
|
|
TRX40 mobos from MSI and others with ALC1220-VB USB-audio device need
yet more quirks for the proper control names.
This patch provides the mapping table for those boards, correcting the
FU names for volume and mute controls as well as the terminal names
for jack controls. It also improves build_connector_control() not to
add the directional suffix blindly if the string is given from the
mapping table.
With this patch applied, the new UCM profiles will be effective.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=206873
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
For more debug and usability information, add the entry showing the
DSD raw states and the channel mapping in each stream proc file.
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
|
|
The commit 3c6fd1f07ed0 ("ALSA: hda: Add driver blacklist") added a
new blacklist for the devices that are known to have empty codecs, and
one of the entries was ASUS ROG Zenith II (PCI SSID 1043:874f).
However, it turned out that the very same PCI SSID is used for the
previous model that does have the valid HD-audio codecs and the change
broke the sound on it.
This patch reverts the corresponding entry as a temporary solution.
Although Zenith II and co will see get the empty HD-audio bus again,
it'd be merely resource wastes and won't affect the functionality,
so it's no end of the world. We'll need to address this later,
e.g. by either switching to DMI string matching or using PCI ID &
SSID pairs.
Fixes: 3c6fd1f07ed0 ("ALSA: hda: Add driver blacklist")
Reported-by: Johnathan Smithinovic <[email protected]>
Cc: <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
|
|
When remapping a mapping where a portion of a VMA is remapped
into another portion of the VMA it can cause the VMA to become
split. During the copy_vma operation the VMA can actually
be remerged if it's an anonymous VMA whose pages have not yet
been faulted. This isn't normally a problem because at the end
of the remap the original portion is unmapped causing it to
become split again.
However, MREMAP_DONTUNMAP leaves that original portion in place which
means that the VMA which was split and then remerged is not actually
split at the end of the mremap. This patch fixes a bug where
we don't detect that the VMAs got remerged and we end up
putting back VM_ACCOUNT on the next mapping which is completely
unreleated. When that next mapping is unmapped it results in
incorrectly unaccounting for the memory which was never accounted,
and eventually we will underflow on the memory comittment.
There is also another issue which is similar, we're currently
accouting for the number of pages in the new_vma but that's wrong.
We need to account for the length of the remap operation as that's
all that is being added. If there was a mapping already at that
location its comittment would have been adjusted as part of
the munmap at the start of the mremap.
A really simple repro can be seen in:
https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c
Fixes: e346b3813067 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: syzbot <[email protected]>
Signed-off-by: Brian Geffon <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
Pull clk fixes from Stephen Boyd:
"Two build fixes for a couple clk drivers and a fix for the Unisoc
serial clk where we want to keep it on for earlycon"
* tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux:
clk: sprd: don't gate uart console clock
clk: mmp2: fix link error without mmp2
clk: asm9260: fix __clk_hw_register_fixed_rate_with_accuracy typo
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 and objtool fixes from Thomas Gleixner:
"A set of fixes for x86 and objtool:
objtool:
- Ignore the double UD2 which is emitted in BUG() when
CONFIG_UBSAN_TRAP is enabled.
- Support clang non-section symbols in objtool ORC dump
- Fix switch table detection in .text.unlikely
- Make the BP scratch register warning more robust.
x86:
- Increase microcode maximum patch size for AMD to cope with new CPUs
which have a larger patch size.
- Fix a crash in the resource control filesystem when the removal of
the default resource group is attempted.
- Preserve Code and Data Prioritization enabled state accross CPU
hotplug.
- Update split lock cpu matching to use the new X86_MATCH macros.
- Change the split lock enumeration as Intel finaly decided that the
IA32_CORE_CAPABILITIES bits are not architectural contrary to what
the SDM claims. !@#%$^!
- Add Tremont CPU models to the split lock detection cpu match.
- Add a missing static attribute to make sparse happy"
* tag 'x86-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Add Tremont family CPU models
x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architectural
x86/resctrl: Preserve CDP enable over CPU hotplug
x86/resctrl: Fix invalid attempt at removing the default resource group
x86/split_lock: Update to use X86_MATCH_INTEL_FAM6_MODEL()
x86/umip: Make umip_insns static
x86/microcode/AMD: Increase microcode PATCH_MAX_SIZE
objtool: Make BP scratch register warning more robust
objtool: Fix switch table detection in .text.unlikely
objtool: Support Clang non-section symbols in ORC generation
objtool: Support Clang non-section symbols in ORC dump
objtool: Fix CONFIG_UBSAN_TRAP unreachable warnings
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull time namespace fix from Thomas Gleixner:
"An update for the proc interface of time namespaces: Use symbolic
names instead of clockid numbers. The usability nuisance of numbers
was noticed by Michael when polishing the man page"
* tag 'timers-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
proc, time/namespace: Show clock symbolic names in /proc/pid/timens_offsets
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf tooling fixes and updates from Thomas Gleixner:
- Fix the header line of perf stat output for '--metric-only --per-socket'
- Fix the python build with clang
- The usual tools UAPI header synchronization
* tag 'perf-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools headers: Synchronize linux/bits.h with the kernel sources
tools headers: Adopt verbatim copy of compiletime_assert() from kernel sources
tools headers: Update x86's syscall_64.tbl with the kernel sources
tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
tools headers UAPI: Update tools's copy of drm.h headers
tools headers kvm: Sync linux/kvm.h with the kernel sources
tools headers UAPI: Sync linux/fscrypt.h with the kernel sources
tools include UAPI: Sync linux/vhost.h with the kernel sources
tools arch x86: Sync asm/cpufeatures.h with the kernel sources
tools headers UAPI: Sync linux/mman.h with the kernel
tools headers UAPI: Sync sched.h with the kernel
tools headers: Update linux/vdso.h and grab a copy of vdso/const.h
perf stat: Fix no metric header if --per-socket and --metric-only set
perf python: Check if clang supports -fno-semantic-interposition
tools arch x86: Sync the msr-index.h copy with the kernel sources
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq fixes from Thomas Gleixner:
"A set of fixes/updates for the interrupt subsystem:
- Remove setup_irq() and remove_irq(). All users have been converted
so remove them before new users surface.
- A set of bugfixes for various interrupt chip drivers
- Add a few missing static attributes to address sparse warnings"
* tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/irq-bcm7038-l1: Make bcm7038_l1_of_init() static
irqchip/irq-mvebu-icu: Make legacy_bindings static
irqchip/meson-gpio: Fix HARDIRQ-safe -> HARDIRQ-unsafe lock order
irqchip/sifive-plic: Fix maximum priority threshold value
irqchip/ti-sci-inta: Fix processing of masked irqs
irqchip/mbigen: Free msi_desc on device teardown
irqchip/gic-v4.1: Update effective affinity of virtual SGIs
irqchip/gic-v4.1: Add support for VPENDBASER's Dirty+Valid signaling
genirq: Remove setup_irq() and remove_irq()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"Two fixes for the scheduler:
- Work around an uninitialized variable warning where GCC can't
figure it out.
- Allow 'isolcpus=' to skip unknown subparameters so that older
kernels work with the commandline of a newer kernel. Improve the
error output while at it"
* tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/vtime: Work around an unitialized variable warning
sched/isolation: Allow "isolcpus=" to skip unknown sub-parameters
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU fix from Thomas Gleixner:
"A single bugfix for RCU to prevent taking a lock in NMI context"
* tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rcu: Don't acquire lock in NMI handler in rcu_nmi_enter_common()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 fixes from Ted Ts'o:
"Miscellaneous bug fixes and cleanups for ext4, including a fix for
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning
up some compiler warnings"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: convert BUG_ON's to WARN_ON's in mballoc.c
ext4: increase wait time needed before reuse of deleted inode numbers
ext4: remove set but not used variable 'es' in ext4_jbd2.c
ext4: remove set but not used variable 'es'
ext4: do not zeroout extents beyond i_disksize
ext4: fix return-value types in several function comments
ext4: use non-movable memory for superblock readahead
ext4: use matching invalidatepage in ext4_writepage
|
|
Pull cifs fixes from Steve French:
"Three small smb3 fixes: two debug related (helping network tracing for
SMB2 mounts, and the other removing an unintended debug line on
signing failures), and one fixing a performance problem with 64K
pages"
* tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
smb3: remove overly noisy debug line in signing errors
cifs: improve read performance for page size 64KB & cache=strict & vers=2.1+
cifs: dump the session id and keys also for SMB2 sessions
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux
Pull flexible-array member conversion from Gustavo Silva:
"The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof
operator may not be applied. As a quirk of the original
implementation of zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible
array members have incomplete type[1]. There are some instances of
code in which the sizeof operator is being incorrectly/erroneously
applied to zero-length arrays and the result is zero. Such instances
may be hiding some bugs. So, this work (flexible-array member
convertions) will also help to get completely rid of those sorts of
issues.
Notice that all of these patches have been baking in linux-next for
quite a while now and, 238 more of these patches have already been
merged into 5.7-rc1.
There are a couple hundred more of these issues waiting to be
addressed in the whole codebase"
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
* tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (28 commits)
xattr.h: Replace zero-length array with flexible-array member
uapi: linux: fiemap.h: Replace zero-length array with flexible-array member
uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member
tpm_eventlog.h: Replace zero-length array with flexible-array member
ti_wilink_st.h: Replace zero-length array with flexible-array member
swap.h: Replace zero-length array with flexible-array member
skbuff.h: Replace zero-length array with flexible-array member
sched: topology.h: Replace zero-length array with flexible-array member
rslib.h: Replace zero-length array with flexible-array member
rio.h: Replace zero-length array with flexible-array member
posix_acl.h: Replace zero-length array with flexible-array member
platform_data: wilco-ec.h: Replace zero-length array with flexible-array member
memcontrol.h: Replace zero-length array with flexible-array member
list_lru.h: Replace zero-length array with flexible-array member
lib: cpu_rmap: Replace zero-length array with flexible-array member
irq.h: Replace zero-length array with flexible-array member
ihex.h: Replace zero-length array with flexible-array member
igmp.h: Replace zero-length array with flexible-array member
genalloc.h: Replace zero-length array with flexible-array member
ethtool.h: Replace zero-length array with flexible-array member
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"Seven fixes: three in target, one on a sg error leg, two in qla2xxx
fixing warnings introduced in the last merge window and updating
MAINTAINERS and one in hisi_sas fixing a problem introduced by libata"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
scsi: sg: add sg_remove_request in sg_common_write
scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN
scsi: target: fix PR IN / READ FULL STATUS for FC
scsi: target: Write NULL to *port_nexus_ptr if no ISID
scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer
scsi: qla2xxx: Fix regression warnings
scsi: hisi_sas: Fix build error without SATA_HOST
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <[email protected]>
|