Age | Commit message (Collapse) | Author | Files | Lines |
|
In the commit 1c96dcceaeb3
("KVM: x86: fix apic_accept_events vs check_nested_events"),
we accidently started latching SIPIs that are received while the cpu is not
waiting for them.
This causes vCPUs to never enter a halted state.
Fixes: 1c96dcceaeb3 ("KVM: x86: fix apic_accept_events vs check_nested_events")
Signed-off-by: Maxim Levitsky <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
kvmarm-master/next
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Conflict resolution gone astray results in the kernel not booting
on VHE-capable HW when VHE support is disabled. Thankfully spotted
by David.
Reported-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
kvmarm-master/queue
Signed-off-by: Marc Zyngier <[email protected]>
|
|
With protected nVHE hyp code interception host's PSCI SMCs, the host
starts seeing new CPUs boot in EL1 instead of EL2. The kernel logic
that keeps track of the boot mode needs to be adjusted.
Add a static key enabled if KVM protected mode initialization is
successful.
When the key is enabled, is_hyp_mode_available continues to report
`true` because its users either treat it as a check whether KVM will be
/ was initialized, or whether stub HVCs can be made (eg. hibernate).
is_hyp_mode_mismatched is changed to report `false` when the key is
enabled. That's because all cores' modes matched at the point of KVM
init and KVM will not allow cores not present at init to boot. That
said, the function is never used after KVM is initialized.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
While protected KVM is installed, start trapping all host SMCs.
For now these are simply forwarded to EL3, except PSCI
CPU_ON/CPU_SUSPEND/SYSTEM_SUSPEND which are intercepted and the
hypervisor installed on newly booted cores.
Create new constant HCR_HOST_NVHE_PROTECTED_FLAGS with the new set of HCR
flags to use while the nVHE vector is installed when the kernel was
booted with the protected flag enabled. Switch back to the default HCR
flags when switching back to the stub vector.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
KVM by default keeps the stub vector installed and installs the nVHE
vector only briefly for init and later on demand. Change this policy
to install the vector at init and then never uninstall it if the kernel
was given the protected KVM command line parameter.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a handler of SYSTEM_SUSPEND host PSCI SMCs. The semantics are
equivalent to CPU_SUSPEND, typically called on the last online CPU.
Reuse the same entry point and boot args struct as CPU_SUSPEND.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a handler of CPU_SUSPEND host PSCI SMCs. The SMC can either enter
a sleep state indistinguishable from a WFI or a deeper sleep state that
behaves like a CPU_OFF+CPU_ON except that the core is still considered
online while asleep.
The handler saves r0,pc of the host and makes the same call to EL3 with
the hyp CPU entry point. It either returns back to the handler and then
back to the host, or wakes up into the entry point and initializes EL2
state before dropping back to EL1. No EL2 state needs to be
saved/restored for this purpose.
CPU_ON and CPU_SUSPEND are both implemented using struct psci_boot_args
to store the state upon powerup, with each CPU having separate structs
for CPU_ON and CPU_SUSPEND so that CPU_SUSPEND can operate locklessly
and so that a CPU_ON call targeting a CPU cannot interfere with
a concurrent CPU_SUSPEND call on that CPU.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a handler of the CPU_ON PSCI call from host. When invoked, it looks
up the logical CPU ID corresponding to the provided MPIDR and populates
the state struct of the target CPU with the provided x0, pc. It then
calls CPU_ON itself, with an entry point in hyp that initializes EL2
state before returning ERET to the provided PC in EL1.
There is a simple atomic lock around the boot args struct. If it is
already locked, CPU_ON will return PENDING_ON error code.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
All nVHE hyp code is currently executed as handlers of host's HVCs. This
will change as nVHE starts intercepting host's PSCI CPU_ON SMCs. The
newly booted CPU will need to initialize EL2 state and then enter the
host. Add __host_enter function that branches into the existing
host state-restoring code after the trap handler would have returned.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
In preparation for adding a CPU entry point in nVHE hyp code, extract
most of __do_hyp_init hypervisor initialization code into a common
helper function. This will be invoked by the entry point to install KVM
on the newly booted CPU.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Forward the following PSCI SMCs issued by host to EL3 as they do not
require the hypervisor's intervention. This assumes that EL3 correctly
implements the PSCI specification.
Only function IDs implemented in Linux are included.
Where both 32-bit and 64-bit variants exist, it is assumed that the host
will always use the 64-bit variant.
* SMCs that only return information about the system
* PSCI_VERSION - PSCI version implemented by EL3
* PSCI_FEATURES - optional features supported by EL3
* AFFINITY_INFO - power state of core/cluster
* MIGRATE_INFO_TYPE - whether Trusted OS can be migrated
* MIGRATE_INFO_UP_CPU - resident core of Trusted OS
* operations which do not affect the hypervisor
* MIGRATE - migrate Trusted OS to a different core
* SET_SUSPEND_MODE - toggle OS-initiated mode
* system shutdown/reset
* SYSTEM_OFF
* SYSTEM_RESET
* SYSTEM_RESET2
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a host-initialized constant to KVM nVHE hyp code for converting
between EL2 linear map virtual addresses and physical addresses.
Also add `__hyp_pa` macro that performs the conversion.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a handler of PSCI SMCs in nVHE hyp code. The handler is initialized
with the version used by the host's PSCI driver and the function IDs it
was configured with. If the SMC function ID matches one of the
configured PSCI calls (for v0.1) or falls into the PSCI function ID
range (for v0.2+), the SMC is handled by the PSCI handler. For now, all
SMCs return PSCI_RET_NOT_SUPPORTED.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add handler of host SMCs in KVM nVHE trap handler. Forward all SMCs to
EL3 and propagate the result back to EL1. This is done in preparation
for validating host SMCs in KVM protected mode.
The implementation assumes that firmware uses SMCCC v1.2 or older. That
means x0-x17 can be used both for arguments and results, other GPRs are
preserved.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When KVM starts validating host's PSCI requests, it will need to map
MPIDR back to the CPU ID. To this end, copy cpu_logical_map into nVHE
hyp memory when KVM is initialized.
Only copy the information for CPUs that are online at the point of KVM
initialization so that KVM rejects CPUs whose features were not checked
against the finalized capabilities.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When compiling with __KVM_NVHE_HYPERVISOR__, redefine per_cpu_offset()
to __hyp_per_cpu_offset() which looks up the base of the nVHE per-CPU
region of the given cpu and computes its offset from the
.hyp.data..percpu section.
This enables use of per_cpu_ptr() helpers in nVHE hyp code. Until now
only this_cpu_ptr() was supported by setting TPIDR_EL2.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add rules for renaming the .data..ro_after_init ELF section in KVM nVHE
object files to .hyp.data..ro_after_init, linking it into the kernel
and mapping it in hyp at runtime.
The section is RW to the host, then mapped RO in hyp. The expectation is
that the host populates the variables in the section and they are never
changed by hyp afterwards.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
MAIR_EL2 and TCR_EL2 are currently initialized from their _EL1 values.
This will not work once KVM starts intercepting PSCI ON/SUSPEND SMCs
and initializing EL2 state before EL1 state.
Obtain the EL1 values during KVM init and store them in the init params
struct. The struct will stay in memory and can be used when booting new
cores.
Take the opportunity to move copying the T0SZ value from idmap_t0sz in
KVM init rather than in .hyp.idmap.text. This avoids the need for the
idmap_t0sz symbol alias.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Once we start initializing KVM on newly booted cores before the rest of
the kernel, parameters to __do_hyp_init will need to be provided by EL2
rather than EL1. At that point it will not be possible to pass its three
arguments directly because PSCI_CPU_ON only supports one context
argument.
Refactor __do_hyp_init to accept its parameters in a struct. This
prepares the code for KVM booting cores as well as removes any limits on
the number of __do_hyp_init arguments.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
KVM precomputes the hyp VA of __kvm_hyp_host_vector, essentially a
constant (minus ASLR), before passing it to __kvm_hyp_init.
Now that we have alternatives for converting kimg VA to hyp VA, replace
this with computing the constant inside __kvm_hyp_init, thus removing
the need for an argument.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
When a CPU is booted in EL2, the kernel checks for VHE support and
initializes the CPU core accordingly. For nVHE it also installs the stub
vectors and drops down to EL1.
Once KVM gains the ability to boot cores without going through the
kernel entry point, it will need to initialize the CPU the same way.
Extract the relevant bits of el2_setup into an init_el2_state macro
with an argument specifying whether to initialize for VHE or nVHE.
The following ifdefs are removed:
* CONFIG_ARM_GIC_V3 - always selected on arm64
* CONFIG_COMPAT - hstr_el2 can be set even without 32-bit support
No functional change intended. Size of el2_setup increased by
148 bytes due to duplication.
Signed-off-by: David Brazdil <[email protected]>
[maz: reworked to fit the new PSTATE initial setup code]
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
CPU index should never be negative. Change the signature of
(set_)cpu_logical_map to take an unsigned int.
This still works even if the users treat the CPU index as an int,
and will allow the hypervisor's implementation to check that the index
is valid with a single upper-bound check.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Make it possible to retrieve a copy of the psci_0_1_function_ids struct.
This is useful for KVM if it is configured to intercept host's PSCI SMCs.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Acked-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Small refactor that replaces array of v0.1 function IDs indexed by an
enum of function-name constants with a struct of function IDs "indexed"
by field names. This is done in preparation for exposing the IDs to
other parts of the kernel. Exposing a struct avoids the need for
bounds checking.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Acked-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Refactor implementation of v0.1+ functions (CPU_SUSPEND, CPU_OFF,
CPU_ON, MIGRATE) to have two functions psci_0_1_foo / psci_0_2_foo that
select the function ID and call a common helper __psci_foo.
This is a small cleanup so that the function ID array is only used for
v0.1 configurations.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Acked-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
KVM's host PSCI SMC filter needs to be aware of the PSCI version of the
system but currently it is impossible to distinguish between v0.1 and
PSCI disabled because both have get_version == NULL.
Populate get_version for v0.1 with a function that returns a constant.
psci_opt.get_version is currently unused so this has no effect on
existing functionality.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Acked-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Expose the boolean value whether the system is running with KVM in
protected mode (nVHE + kernel param). CPU capability was selected over
a global variable to allow use in alternatives.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add an early parameter that allows users to select the mode of operation
for KVM/arm64.
For now, the only supported value is "protected". By passing this flag
users opt into the hypervisor placing additional restrictions on the
host kernel. These allow the hypervisor to spawn guests whose state is
kept private from the host. Restrictions will include stage-2 address
translation to prevent host from accessing guest memory, filtering its
SMC calls, etc.
Without this parameter, the default behaviour remains selecting VHE/nVHE
based on hardware support and CONFIG_ARM64_VHE.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Signed-off-by: Marc Zyngier <[email protected]>
|
|
There is a lock version kvm_write_guest. Use it to simplify code.
Signed-off-by: Keqian Zhu <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Reviewed-by: Andrew Jones <[email protected]>
Reviewed-by: Steven Price <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Rename PV_FEATURES to PV_TIME_FEATURES.
Signed-off-by: Keqian Zhu <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Reviewed-by: Andrew Jones <[email protected]>
Reviewed-by: Steven Price <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Since the ASID is now stored in svm->asid, pre_sev_run should also place
it there and not directly in the VMCB control area.
Reported-by: Ashish Kalra <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Now that the PAN toggling has been removed, the only user of
__system_matches_cap() is has_generic_auth(), which is only built when
CONFIG_ARM64_PTR_AUTH is selected, and Qian reports that this results in
a build-time warning when CONFIG_ARM64_PTR_AUTH is not selected:
| arch/arm64/kernel/cpufeature.c:2649:13: warning: '__system_matches_cap' defined but not used [-Wunused-function]
| static bool __system_matches_cap(unsigned int n)
| ^~~~~~~~~~~~~~~~~~~~
It's tricky to restructure things to prevent this, so let's mark
__system_matches_cap() as __maybe_unused, as we used to do for the other
user of __system_matches_cap() which we just removed.
Reported-by: Qian Cai <[email protected]>
Suggested-by: Qian Cai <[email protected]>
Signed-off-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now that arm64 no longer uses UAO, remove the vestigal feature detection
code and Kconfig text.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Some code (e.g. futex) needs to make privileged accesses to userspace
memory, and uses uaccess_{enable,disable}_privileged() in order to
permit this. All other uaccess primitives use LDTR/STTR, and never need
to toggle PAN.
Remove the redundant PAN toggling.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now that set_fs() is gone, addr_limit_user_check() is redundant. Remove
the checks and associated thread flag.
To ensure that _TIF_WORK_MASK can be used as an immediate value in an
AND instruction (as it is in `ret_to_user`), TIF_MTE_ASYNC_FAULT is
renumbered to keep the constituent bits of _TIF_WORK_MASK contiguous.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now that the uaccess primitives dont take addr_limit into account, we
have no need to manipulate this via set_fs() and get_fs(). Remove
support for these, along with some infrastructure this renders
redundant.
We no longer need to flip UAO to access kernel memory under KERNEL_DS,
and head.S unconditionally clears UAO for all kernel configurations via
an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO,
nor do we need to context-switch it. However, we still need to adjust
PAN during SDEI entry.
Masking of __user pointers no longer needs to use the dynamic value of
addr_limit, and can use a constant derived from the maximum possible
userspace task size. A new TASK_SIZE_MAX constant is introduced for
this, which is also used by core code. In configurations supporting
52-bit VAs, this may include a region of unusable VA space above a
48-bit TTBR0 limit, but never includes any portion of TTBR1.
Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and
KERNEL_DS were inclusive limits, and is converted to a mask by
subtracting one.
As the SDEI entry code repurposes the otherwise unnecessary
pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted
context, for now we rename that to pt_regs::sdei_ttbr1. In future we can
consider factoring that out.
Signed-off-by: Mark Rutland <[email protected]>
Acked-by: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Now the uaccess primitives use LDTR/STTR unconditionally, the
uao_{ldp,stp,user_alternative} asm macros are misnamed, and have a
redundant argument. Let's remove the redundant argument and rename these
to user_{ldp,stp,ldst} respectively to clean this up.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: Robin Murohy <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
This patch separates arm64's user and kernel memory access primitives
into distinct routines, adding new __{get,put}_kernel_nofault() helpers
to access kernel memory, upon which core code builds larger copy
routines.
The kernel access routines (using LDR/STR) are not affected by PAN (when
legitimately accessing kernel memory), nor are they affected by UAO.
Switching to KERNEL_DS may set UAO, but this does not adversely affect
the kernel access routines.
The user access routines (using LDTR/STTR) are not affected by PAN (when
legitimately accessing user memory), but are affected by UAO. As these
are only legitimate to use under USER_DS with UAO clear, this should not
be problematic.
Routines performing atomics to user memory (futex and deprecated
instruction emulation) still need to transiently clear PAN, and these
are left as-is. These are never used on kernel memory.
Subsequent patches will refactor the uaccess helpers to remove redundant
code, and will also remove the redundant PAN/UAO manipulation.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
As a step towards implementing __{get,put}_kernel_nofault(), this patch
splits most user-memory specific logic out of __{get,put}_user(), with
the memory access and fault handling in new __{raw_get,put}_mem()
helpers.
For now the LDR/LDTR patching is left within the *get_mem() helpers, and
will be removed in a subsequent patch.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Currently __copy_user_flushcache() open-codes raw_copy_from_user(), and
doesn't use uaccess_mask_ptr() on the user address. Let's have it call
raw_copy_from_user(), which is both a simplification and ensures that
user pointers are masked under speculation.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: Robin Murphy <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
We currently have many uaccess_*{enable,disable}*() variants, which
subsequent patches will cut down as part of removing set_fs() and
friends. Once this simplification is made, most uaccess routines will
only need to ensure that the user page tables are mapped in TTBR0, as is
currently dealt with by uaccess_ttbr0_{enable,disable}().
The existing uaccess_{enable,disable}() routines ensure that user page
tables are mapped in TTBR0, and also disable PAN protections, which is
necessary to be able to use atomics on user memory, but also permit
unrelated privileged accesses to access user memory.
As preparatory step, let's rename uaccess_{enable,disable}() to
uaccess_{enable,disable}_privileged(), highlighting this caveat and
discouraging wider misuse. Subsequent patches can reuse the
uaccess_{enable,disable}() naming for the common case of ensuring the
user page tables are mapped in TTBR0.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
In preparation for removing addr_limit and set_fs() we must decouple the
SDEI PAN/UAO manipulation from the uaccess code, and explicitly
reinitialize these as required.
SDEI enters the kernel with a non-architectural exception, and prior to
the most recent revision of the specification (ARM DEN 0054B), PSTATE
bits (e.g. PAN, UAO) are not manipulated in the same way as for
architectural exceptions. Notably, older versions of the spec can be
read ambiguously as to whether PSTATE bits are inherited unchanged from
the interrupted context or whether they are generated from scratch, with
TF-A doing the latter.
We have three cases to consider:
1) The existing TF-A implementation of SDEI will clear PAN and clear UAO
(along with other bits in PSTATE) when delivering an SDEI exception.
2) In theory, implementations of SDEI prior to revision B could inherit
PAN and UAO (along with other bits in PSTATE) unchanged from the
interrupted context. However, in practice such implementations do not
exist.
3) Going forward, new implementations of SDEI must clear UAO, and
depending on SCTLR_ELx.SPAN must either inherit or set PAN.
As we can ignore (2) we can assume that upon SDEI entry, UAO is always
clear, though PAN may be clear, inherited, or set per SCTLR_ELx.SPAN.
Therefore, we must explicitly initialize PAN, but do not need to do
anything for UAO.
Considering what we need to do:
* When set_fs() is removed, force_uaccess_begin() will have no HW
side-effects. As this only clears UAO, which we can assume has already
been cleared upon entry, this is not a problem. We do not need to add
code to manipulate UAO explicitly.
* PAN may be cleared upon entry (in case 1 above), so where a kernel is
built to use PAN and this is supported by all CPUs, the kernel must
set PAN upon entry to ensure expected behaviour.
* PAN may be inherited from the interrupted context (in case 3 above),
and so where a kernel is not built to use PAN or where PAN support is
not uniform across CPUs, the kernel must clear PAN to ensure expected
behaviour.
This patch reworks the SDEI code accordingly, explicitly setting PAN to
the expected state in all cases. To cater for the cases where the kernel
does not use PAN or this is not uniformly supported by hardware we add a
new cpu_has_pan() helper which can be used regardless of whether the
kernel is built to use PAN.
The existing system_uses_ttbr0_pan() is redefined in terms of
system_uses_hw_pan() both for clarity and as a minor optimization when
HW PAN is not selected.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: James Morse <[email protected]>
Cc: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
The SDEI support code is split across arch/arm64/ and drivers/firmware/,
largley this is split so that the arch-specific portions are under
arch/arm64, and the management logic is under drivers/firmware/.
However, exception entry fixups are currently under drivers/firmware.
Let's move the exception entry fixups under arch/arm64/. This
de-clutters the management logic, and puts all the arch-specific
portions in one place. Doing this also allows the fixups to be applied
earlier, so things like PAN and UAO will be in a known good state before
we run other logic. This will also make subsequent refactoring easier.
Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: James Morse <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
As with SCTLR_ELx and other control registers, some PSTATE bits are
UNKNOWN out-of-reset, and we may not be able to rely on hardware or
firmware to initialize them to our liking prior to entry to the kernel,
e.g. in the primary/secondary boot paths and return from idle/suspend.
It would be more robust (and easier to reason about) if we consistently
initialized PSTATE to a default value, as we do with control registers.
This will ensure that the kernel is not adversely affected by bits it is
not aware of, e.g. when support for a feature such as PAN/UAO is
disabled.
This patch ensures that PSTATE is consistently initialized at boot time
via an ERET. This is not intended to relax the existing requirements
(e.g. DAIF bits must still be set prior to entering the kernel). For
features detected dynamically (which may require system-wide support),
it is still necessary to subsequently modify PSTATE.
As ERET is not always a Context Synchronization Event, an ISB is placed
before each exception return to ensure updates to control registers have
taken effect. This handles the kernel being entered with SCTLR_ELx.EOS
clear (or any future control bits being in an UNKNOWN state).
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
Let's make SCTLR_ELx initialization a bit clearer by using meaningful
names for the initialization values, following the same scheme for
SCTLR_EL1 and SCTLR_EL2.
These definitions will be used more widely in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|
|
For a while now el2_setup has performed some basic initialization of EL1
even when the kernel is booted at EL1, so the name is a little
misleading. Further, some comments are stale as with VHE it doesn't drop
the CPU to EL1.
To clarify things, rename el2_setup to init_kernel_el, and update
comments to be clearer as to the function's purpose.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
|