Age | Commit message (Collapse) | Author | Files | Lines |
|
Enter a SRCU critical section for a memslots lookup during steal time
update if and only if a steal time update is actually needed. Taking
the lock can be avoided if steal time is disabled by the guest, or if
KVM knows it has already flagged the vCPU as being preempted.
Reword the comment to be more precise as to exactly why memslots will
be queried.
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Remove the disabling of page faults across kvm_steal_time_set_preempted()
as KVM now accesses the steal time struct (shared with the guest) via a
cached mapping (see commit b043138246a4, "x86/KVM: Make sure
KVM_VCPU_FLUSH_TLB flag is not missed".) The cache lookup is flagged as
atomic, thus it would be a bug if KVM tried to resolve a new pfn, i.e.
we want the splat that would be reached via might_fault().
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
In order to convert an HVA to a PFN, KVM usually tries to use
the get_user_pages family of functinso. This however is not
possible for VM_IO vmas; in that case, KVM instead uses follow_pfn.
In doing this however KVM loses the information on whether the
PFN is writable. That is usually not a problem because the main
use of VM_IO vmas with KVM is for BARs in PCI device assignment,
however it is a bug. To fix it, use follow_pte and check pte_write
while under the protection of the PTE lock. The information can
be used to fail hva_to_pfn_remapped or passed back to the
caller via *writable.
Usage of follow_pfn was introduced in commit add6a0cd1c5b ("KVM: MMU: try to fix
up page faults before giving up", 2016-07-05); however, even older version
have the same issue, all the way back to commit 2e2e3738af33 ("KVM:
Handle vma regions with no backing page", 2008-07-20), as they also did
not check whether the PFN was writable.
Fixes: 2e2e3738af33 ("KVM: Handle vma regions with no backing page")
Reported-by: David Stevens <[email protected]>
Cc: [email protected]
Cc: Jann Horn <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
There is a bug in the TDP MMU function to zap SPTEs which could be
replaced with a larger mapping which prevents the function from doing
anything. Fix this by correctly zapping the last level SPTEs.
Cc: [email protected]
Fixes: 14881998566d ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
In order to ensure the module loader does not get confused if a symbol
is exported in EL2 nVHE code (as will be the case when we will compile
e.g. lib/memset.S into the EL2 object), make sure to stub all exports
using __DISABLE_EXPORTS in the nvhe folder.
Suggested-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Quentin Perret <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
It is currently possible to stub EXPORT_SYMBOL() macros in C code using
__DISABLE_EXPORTS, which is necessary to run in constrained environments
such as the EFI stub or the decompressor. But this currently doesn't
apply to exports from assembly, which can lead to somewhat confusing
situations.
Consolidate the __DISABLE_EXPORTS infrastructure by checking it from
asm-generic/export.h as well.
Signed-off-by: Quentin Perret <[email protected]>
Acked-by: Will Deacon <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The aarch32 debug ID register is called DBG*D*IDR (emphasis added), not
DBGIDR, use the correct spelling.
Signed-off-by: Alexandru Elisei <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Instead of using a bunch of magic numbers, use the existing definitions
that have been added since 8673e02e58410 ("arm64: perf: Add support
for ARMv8.5-PMU 64-bit counters")
Reviewed-by: Alexandru Elisei <[email protected]>
Reviewed-by: Eric Auger <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Upgrading the PMU code from ARMv8.1 to ARMv8.4 turns out to be
pretty easy. All that is required is support for PMMIR_EL1, which
is read-only, and for which returning 0 is a valid option as long
as we don't advertise STALL_SLOT as an implemented event.
Let's just do that and adjust what we return to the guest.
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Let's not pretend we support anything but ARMv8.0 as far as the
debug architecture is concerned.
Reviewed-by: Eric Auger <[email protected]>
Reviewed-by: Alexandru Elisei <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Our current ID register filtering is starting to be a mess of if()
statements, and isn't going to get any saner.
Let's turn it into a switch(), which has a chance of being more
readable, and introduce a FEATURE() macro that allows easy generation
of feature masks.
No functionnal change intended.
Reviewed-by: Eric Auger <[email protected]>
Reviewed-by: Alexandru Elisei <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Despite advertising support for AArch32 PMUv3p1, we fail to handle
the PMCEID{2,3} registers, which conveniently alias with the top
bits of PMCEID{0,1}_EL1.
Implement these registers with the usual AA32(HI/LO) aliasing
mechanism.
Reviewed-by: Eric Auger <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
We shouldn't expose *any* PMU capability when no PMU has been
configured for this VM.
Reviewed-by: Eric Auger <[email protected]>
Reviewed-by: Alexandru Elisei <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
The AArch32 CP14 DBGDIDR has bit 15 set to RES1, which our current
emulation doesn't set. Just add the missing bit.
Reported-by: Peter Maydell <[email protected]>
Reviewed-by: Eric Auger <[email protected]>
Reviewed-by: Alexandru Elisei <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
If not in long mode, the low bits of CR3 are reserved but not enforced to
be zero, so remove those checks. If in long mode, however, the MBZ bits
extend down to the highest physical address bit of the guest, excluding
the encryption bit.
Make the checks consistent with the above, and match them between
nested_vmcb_checks and KVM_SET_SREGS.
Cc: [email protected]
Fixes: 761e41693465 ("KVM: nSVM: Check that MBZ bits in CR3 and CR4 are not set on vmrun of nested guests")
Fixes: a780a3ea6282 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Reviewed-by: Sean Christopherson <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Don't let KVM load when running as an SEV guest, regardless of what
CPUID says. Memory is encrypted with a key that is not accessible to
the host (L0), thus it's impossible for L0 to emulate SVM, e.g. it'll
see garbage when reading the VMCB.
Technically, KVM could decrypt all memory that needs to be accessible to
the L0 and use shadow paging so that L0 does not need to shadow NPT, but
exposing such information to L0 largely defeats the purpose of running as
an SEV guest. This can always be revisited if someone comes up with a
use case for running VMs inside SEV guests.
Note, VMLOAD, VMRUN, etc... will also #GP on GPAs with C-bit set, i.e. KVM
is doomed even if the SEV guest is debuggable and the hypervisor is willing
to decrypt the VMCB. This may or may not be fixed on CPUs that have the
SVME_ADDR_CHK fix.
Cc: [email protected]
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Set the emulator context to PROT64 if SYSENTER transitions from 32-bit
userspace (compat mode) to a 64-bit kernel, otherwise the RIP update at
the end of x86_emulate_insn() will incorrectly truncate the new RIP.
Note, this bug is mostly limited to running an Intel virtual CPU model on
an AMD physical CPU, as other combinations of virtual and physical CPUs
do not trigger full emulation. On Intel CPUs, SYSENTER in compatibility
mode is legal, and unconditionally transitions to 64-bit mode. On AMD
CPUs, SYSENTER is illegal in compatibility mode and #UDs. If the vCPU is
AMD, KVM injects a #UD on SYSENTER in compat mode. If the pCPU is Intel,
SYSENTER will execute natively and not trigger #UD->VM-Exit (ignoring
guest TLB shenanigans).
Fixes: fede8076aab4 ("KVM: x86: handle wrap around 32-bit address space")
Cc: [email protected]
Signed-off-by: Jonny Barker <[email protected]>
[sean: wrote changelog]
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Commit 7a873e455567 ("KVM: selftests: Verify supported CR4 bits can be set
before KVM_SET_CPUID2") reveals that KVM allows to set X86_CR4_PCIDE even
when PCID support is missing:
==== Test Assertion Failure ====
x86_64/set_sregs_test.c:41: rc
pid=6956 tid=6956 - Invalid argument
1 0x000000000040177d: test_cr4_feature_bit at set_sregs_test.c:41
2 0x00000000004014fc: main at set_sregs_test.c:119
3 0x00007f2d9346d041: ?? ??:0
4 0x000000000040164d: _start at ??:?
KVM allowed unsupported CR4 bit (0x20000)
Add X86_FEATURE_PCID feature check to __cr4_reserved_bits() to make
kvm_is_valid_cr4() fail.
Signed-off-by: Vitaly Kuznetsov <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Cc: Paolo Bonzini <[email protected]>
Cc: Wanpeng Li <[email protected]>
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Zheng Zhan Liang <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST
will generally use the default value for MSR_IA32_ARCH_CAPABILITIES.
When this happens and the host has tsx=on, it is possible to end up with
virtual machines that have HLE and RTM disabled, but TSX_CTRL available.
If the fleet is then switched to tsx=off, kvm_get_arch_capabilities()
will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to
use the tsx=off hosts as migration destinations, even though the guests
do not have TSX enabled.
To allow this migration, allow guests to write to their TSX_CTRL MSR,
while keeping the host MSR unchanged for the entire life of the guests.
This ensures that TSX remains disabled and also saves MSR reads and
writes, and it's okay to do because with tsx=off we know that guests will
not have the HLE and RTM features in their CPUID. (If userspace sets
bogus CPUID data, we do not expect HLE and RTM to work in guests anyway).
Cc: [email protected]
Fixes: cbbaa2727aa3 ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES")
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
gen-hyprel is, for better or worse, a native-endian program:
it assumes that the ELF data structures are in the host's
endianness, and even assumes that the compiled kernel is
little-endian in one particular case.
None of these assumptions hold true though: people actually build
(use?) BE arm64 kernels, and seem to avoid doing so on BE hosts.
Madness!
In order to solve this, wrap each access to the ELF data structures
with the required byte-swapping magic. This requires to obtain
the kernel data structure, and provide per-endianess wrappers.
This result in a kernel that links and even boots in a model.
Fixes: 8c49b5d43d4c ("KVM: arm64: Generate hyp relocation data")
Reported-by: Guenter Roeck <[email protected]>
Tested-by: Guenter Roeck <[email protected]>
Acked-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
|
|
Grab kvm->lock before pinning memory when registering an encrypted
region; sev_pin_memory() relies on kvm->lock being held to ensure
correctness when checking and updating the number of pinned pages.
Add a lockdep assertion to help prevent future regressions.
Cc: Thomas Gleixner <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: "H. Peter Anvin" <[email protected]>
Cc: Paolo Bonzini <[email protected]>
Cc: Joerg Roedel <[email protected]>
Cc: Tom Lendacky <[email protected]>
Cc: Brijesh Singh <[email protected]>
Cc: Sean Christopherson <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Fixes: 1e80fdc09d12 ("KVM: SVM: Pin guest memory when SEV is active")
Signed-off-by: Peter Gonda <[email protected]>
V2
- Fix up patch description
- Correct file paths svm.c -> sev.c
- Add unlock of kvm->lock on sev_pin_memory error
V1
- https://lore.kernel.org/kvm/[email protected]/
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Nested VMX was enabled by default in commit 1e58e5e59148 ("KVM:
VMX: enable nested virtualization by default"), which was merged
in Linux 4.20. This patch is to fix the documentation accordingly.
Signed-off-by: Yu Zhang <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.11, take #3
- Avoid clobbering extra registers on initialisation
|
|
Recent commit 255cbecfe0 modified struct kvm_vcpu_arch to make
'cpuid_entries' a pointer to an array of kvm_cpuid_entry2 entries
rather than embedding the array in the struct. KVM_SET_CPUID and
KVM_SET_CPUID2 were updated accordingly, but KVM_GET_CPUID2 was missed.
As a result, KVM_GET_CPUID2 currently returns random fields from struct
kvm_vcpu_arch to userspace rather than the expected CPUID values. Fix
this by treating 'cpuid_entries' as a pointer when copying its
contents to userspace buffer.
Fixes: 255cbecfe0c9 ("KVM: x86: allocate vcpu->arch.cpuid_entries dynamically")
Cc: Vitaly Kuznetsov <[email protected]>
Signed-off-by: Michael Roth <[email protected]>
Message-Id: <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Signed-off-by: Marc Zyngier <[email protected]>
|
|
VMX also uses KVM_REQ_GET_NESTED_STATE_PAGES for the Hyper-V eVMCS,
which may need to be loaded outside guest mode. Therefore we cannot
WARN in that case.
However, that part of nested_get_vmcs12_pages is _not_ needed at
vmentry time. Split it out of KVM_REQ_GET_NESTED_STATE_PAGES handling,
so that both vmentry and migration (and in the latter case, independent
of is_guest_mode) do the parts that are needed.
Cc: <[email protected]> # 5.10.x: f2c7ef3ba: KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
Cc: <[email protected]> # 5.10.x
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Revert the dirty/available tracking of GPRs now that KVM copies the GPRs
to the GHCB on any post-VMGEXIT VMRUN, even if a GPR is not dirty. Per
commit de3cd117ed2f ("KVM: x86: Omit caching logic for always-available
GPRs"), tracking for GPRs noticeably impacts KVM's code footprint.
This reverts commit 1c04d8c986567c27c56c05205dceadc92efb14ff.
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Drop the per-GPR dirty checks when synchronizing GPRs to the GHCB, the
GRPs' dirty bits are set from time zero and never cleared, i.e. will
always be seen as dirty. The obvious alternative would be to clear
the dirty bits when appropriate, but removing the dirty checks is
desirable as it allows reverting GPR dirty+available tracking, which
adds overhead to all flavors of x86 VMs.
Note, unconditionally writing the GPRs in the GHCB is tacitly allowed
by the GHCB spec, which allows the hypervisor (or guest) to provide
unnecessary info; it's the guest's responsibility to consume only what
it needs (the hypervisor is untrusted after all).
The guest and hypervisor can supply additional state if desired but
must not rely on that additional state being provided.
Cc: Brijesh Singh <[email protected]>
Cc: Tom Lendacky <[email protected]>
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Even when we are outside the nested guest, some vmcs02 fields
may not be in sync vs vmcs12. This is intentional, even across
nested VM-exit, because the sync can be delayed until the nested
hypervisor performs a VMCLEAR or a VMREAD/VMWRITE that affects those
rarely accessed fields.
However, during KVM_GET_NESTED_STATE, the vmcs12 has to be up to date to
be able to restore it. To fix that, call copy_vmcs02_to_vmcs12_rare()
before the vmcs12 contents are copied to userspace.
Fixes: 7952d769c29ca ("KVM: nVMX: Sync rarely accessed guest fields only when needed")
Reviewed-by: Sean Christopherson <[email protected]>
Signed-off-by: Maxim Levitsky <[email protected]>
Message-Id: <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
On VMX, if we exit and then re-enter immediately without leaving
the vmx_vcpu_run() function, the kvm_entry event is not logged.
That means we will see one (or more) kvm_exit, without its (their)
corresponding kvm_entry, as shown here:
CPU-1979 [002] 89.871187: kvm_entry: vcpu 1
CPU-1979 [002] 89.871218: kvm_exit: reason MSR_WRITE
CPU-1979 [002] 89.871259: kvm_exit: reason MSR_WRITE
It also seems possible for a kvm_entry event to be logged, but then
we leave vmx_vcpu_run() right away (if vmx->emulation_required is
true). In this case, we will have a spurious kvm_entry event in the
trace.
Fix these situations by moving trace_kvm_entry() inside vmx_vcpu_run()
(where trace_kvm_exit() already is).
A trace obtained with this patch applied looks like this:
CPU-14295 [000] 8388.395387: kvm_entry: vcpu 0
CPU-14295 [000] 8388.395392: kvm_exit: reason MSR_WRITE
CPU-14295 [000] 8388.395393: kvm_entry: vcpu 0
CPU-14295 [000] 8388.395503: kvm_exit: reason EXTERNAL_INTERRUPT
Of course, not calling trace_kvm_entry() in common x86 code any
longer means that we need to adjust the SVM side of things too.
Signed-off-by: Lorenzo Brescia <[email protected]>
Signed-off-by: Dario Faggioli <[email protected]>
Message-Id: <160873470698.11652.13483635328769030605.stgit@Wayrath>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Update various words, including the wrong parameter name and the vague
description of the usage of "slot" field.
Signed-off-by: Zenghui Yu <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
The injection process of smi has two steps:
Qemu KVM
Step1:
cpu->interrupt_request &= \
~CPU_INTERRUPT_SMI;
kvm_vcpu_ioctl(cpu, KVM_SMI)
call kvm_vcpu_ioctl_smi() and
kvm_make_request(KVM_REQ_SMI, vcpu);
Step2:
kvm_vcpu_ioctl(cpu, KVM_RUN, 0)
call process_smi() if
kvm_check_request(KVM_REQ_SMI, vcpu) is
true, mark vcpu->arch.smi_pending = true;
The vcpu->arch.smi_pending will be set true in step2, unfortunately if
vcpu paused between step1 and step2, the kvm_run->immediate_exit will be
set and vcpu has to exit to Qemu immediately during step2 before mark
vcpu->arch.smi_pending true.
During VM migration, Qemu will get the smi pending status from KVM using
KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status
will be lost.
Signed-off-by: Jay Zhou <[email protected]>
Signed-off-by: Shengen Zhuang <[email protected]>
Message-Id: <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
The HW_REF_CPU_CYCLES event on the fixed counter 2 is pseudo-encoded as
0x0300 in the intel_perfmon_event_map[]. Correct its usage.
Fixes: 62079d8a4312 ("KVM: PMU: add proper support for fixed counter 2")
Signed-off-by: Like Xu <[email protected]>
Message-Id: <[email protected]>
Reviewed-by: Sean Christopherson <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Since we know vPMU will not work properly when (1) the guest bit_width(s)
of the [gp|fixed] counters are greater than the host ones, or (2) guest
requested architectural events exceeds the range supported by the host, so
we can setup a smaller left shift value and refresh the guest cpuid entry,
thus fixing the following UBSAN shift-out-of-bounds warning:
shift exponent 197 is too large for 64-bit type 'long long unsigned int'
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
__ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:395
intel_pmu_refresh.cold+0x75/0x99 arch/x86/kvm/vmx/pmu_intel.c:348
kvm_vcpu_after_set_cpuid+0x65a/0xf80 arch/x86/kvm/cpuid.c:177
kvm_vcpu_ioctl_set_cpuid2+0x160/0x440 arch/x86/kvm/cpuid.c:308
kvm_arch_vcpu_ioctl+0x11b6/0x2d70 arch/x86/kvm/x86.c:4709
kvm_vcpu_ioctl+0x7b9/0xdb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3386
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported-by: [email protected]
Signed-off-by: Like Xu <[email protected]>
Message-Id: <[email protected]>
Cc: [email protected]
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
Add compile-time asserts in rsvd_bits() to guard against KVM passing in
garbage hardcoded values, and cap the upper bound at '63' for dynamic
values to prevent generating a mask that would overflow a u64.
Suggested-by: Paolo Bonzini <[email protected]>
Signed-off-by: Sean Christopherson <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
The documentation classifies KVM_ENABLE_CAP with KVM_CAP_ENABLE_CAP_VM
as a vcpu ioctl, which is incorrect. Fix it by specifying it as a VM
ioctl.
Fixes: e5d83c74a580 ("kvm: make KVM_CAP_ENABLE_CAP_VM architecture agnostic")
Signed-off-by: Quentin Perret <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Paolo Bonzini <[email protected]>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.11, take #2
- Don't allow tagged pointers to point to memslots
- Filter out ARMv8.1+ PMU events on v8.0 hardware
- Hide PMU registers from userspace when no PMU is configured
- More PMU cleanups
- Don't try to handle broken PSCI firmware
- More sys_reg() to reg_to_encoding() conversions
|
|
Provide a hypervisor implementation of the ARM architected TRNG firmware
interface described in ARM spec DEN0098. All function IDs are implemented,
including both 32-bit and 64-bit versions of the TRNG_RND service, which
is the centerpiece of the API.
The API is backed by the kernel's entropy pool only, to avoid guests
draining more precious direct entropy sources.
Signed-off-by: Ard Biesheuvel <[email protected]>
[Andre: minor fixes, drop arch_get_random() usage]
Signed-off-by: Andre Przywara <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
We now set the pfn dirty and mark the page dirty before calling fault
handlers in user_mem_abort(), so we might end up having spurious dirty
pages if update of permissions or mapping has failed. Let's move these
two operations after the fault handlers, and they will be done only if
the fault has been handled successfully.
When an -EAGAIN errno is returned from the map handler, we hope to the
vcpu to enter guest directly instead of exiting back to userspace, so
adjust the return value at the end of function.
Signed-off-by: Yanan Wang <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
map path
(1) During running time of a a VM with numbers of vCPUs, if some vCPUs
access the same GPA almost at the same time and the stage-2 mapping of
the GPA has not been built yet, as a result they will all cause
translation faults. The first vCPU builds the mapping, and the followed
ones end up updating the valid leaf PTE. Note that these vCPUs might
want different access permissions (RO, RW, RX, RWX, etc.).
(2) It's inevitable that we sometimes will update an existing valid leaf
PTE in the map path, and we perform break-before-make in this case.
Then more unnecessary translation faults could be caused if the
*break stage* of BBM is just catched by other vCPUS.
With (1) and (2), something unsatisfactory could happen: vCPU A causes
a translation fault and builds the mapping with RW permissions, vCPU B
then update the valid leaf PTE with break-before-make and permissions
are updated back to RO. Besides, *break stage* of BBM may trigger more
translation faults. Finally, some useless small loops could occur.
We can make some optimization to solve above problems: When we need to
update a valid leaf PTE in the map path, let's filter out the case where
this update only change access permissions, and don't update the valid
leaf PTE here in this case. Instead, let the vCPU enter back the guest
and it will exit next time to go through the relax_perms path without
break-before-make if it still wants more permissions.
Signed-off-by: Yanan Wang <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Procedures of hyp stage-1 map and guest stage-2 map are quite different,
but they are tied closely by function kvm_set_valid_leaf_pte().
So adjust the relative code for ease of code maintenance in the future.
Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Yanan Wang <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
The arguments for __do_hyp_init are now passed with a pointer to a
struct which means there are scratch registers available for use. Thanks
to this, we no longer need to use clever, but hard to read, tricks that
avoid the need for scratch registers when checking for the
__kvm_hyp_init HVC.
Tested-by: David Brazdil <[email protected]>
Signed-off-by: Andrew Scull <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
arm_smccc_1_1_hvc() only adds write contraints for x0-3 in the inline
assembly for the HVC instruction so make sure those are the only
registers that change when __do_hyp_init is called.
Tested-by: David Brazdil <[email protected]>
Signed-off-by: Andrew Scull <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Hyp code used the hyp_symbol_addr helper to force PC-relative addressing
because absolute addressing results in kernel VAs due to the way hyp
code is linked. This is not true anymore, so remove the helper and
update all of its users.
Acked-by: Ard Biesheuvel <[email protected]>
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Storing a function pointer in hyp now generates relocation information
used at early boot to convert the address to hyp VA. The existing
alternative-based conversion mechanism is therefore obsolete. Remove it
and simplify its users.
Acked-by: Ard Biesheuvel <[email protected]>
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Hyp code uses absolute addressing to obtain a kimg VA of a small number
of kernel symbols. Since the kernel now converts constant pool addresses
to hyp VAs, this trick does not work anymore.
Change the helpers to convert from hyp VA back to kimg VA or PA, as
needed and rework the callers accordingly.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
KVM nVHE code runs under a different VA mapping than the kernel, hence
so far it avoided using absolute addressing because the VA in a constant
pool is relocated by the linker to a kernel VA (see hyp_symbol_addr).
Now the kernel has access to a list of positions that contain a kimg VA
but will be accessed only in hyp execution context. These are generated
by the gen-hyprel build-time tool and stored in .hyp.reloc.
Add early boot pass over the entries and convert the kimg VAs to hyp VAs.
Note that this requires for .hyp* ELF sections to be mapped read-write
at that point.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Add a post-processing step to compilation of KVM nVHE hyp code which
calls a custom host tool (gen-hyprel) on the partially linked object
file (hyp sections' names prefixed).
The tool lists all R_AARCH64_ABS64 data relocations targeting hyp
sections and generates an assembly file that will form a new section
.hyp.reloc in the kernel binary. The new section contains an array of
32-bit offsets to the positions targeted by these relocations.
Since these addresses of those positions will not be determined until
linking of `vmlinux`, each 32-bit entry carries a R_AARCH64_PREL32
relocation with addend <section_base_sym> + <r_offset>. The linker of
`vmlinux` will therefore fill the slot accordingly.
This relocation data will be used at runtime to convert the kernel VAs
at those positions to hyp VAs.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|
|
Generating hyp relocations will require referencing positions at a given
offset from the beginning of hyp sections. Since the final layout will
not be determined until the linking of `vmlinux`, modify the hyp linker
script to insert a symbol at the first byte of each hyp section to use
as an anchor. The linker of `vmlinux` will place the symbols together
with the sections.
Signed-off-by: David Brazdil <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
|